Table 9.
Model’s performance using Rmsprop optimizer for Study One, along with confidence interval (). –accuracy, –precision, –recall, –F1-score, –sensitivity, –specificity.
Algorithm | Training set |
Testing set |
||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
VGG16 | 100% | 1 | 1 | 1 | 1 | 1 | 88% 7.591 | 0.90 ± 0.069 | 0.88 ± 0.076 | 0.87 ± 0.079 | 1 | 0.7143 ± 0.117 |
ResNet50 | 57% 7.420 | 0.32 ± 0.093 | 0.57 ± 0.074 | 0.41 ± 0.087 | 1 | 0 | 56% 14.53 | 0.32 ± 0.181 | 0.56 ± 0.145 | 0.4 ± 0.170 | 1 | 0 |
ResNet101 | 62% 6.976 | 0.80 ± 0.051 | 0.56 ± 0.075 | 0.48 ± 0.082 | 1 | 0.12 ± 0.106 | 56% 14.536 | 0.28 ± 0.186 | 0.5 ± 0.155 | 0.36 ± 0.175 | 1 | 0 |
Xception | 100% | 1 | 1 | 1 | 1 | 1 | 94%5.36 | 0.94 ± 0.054 | 0.94 ± 0.054 | 0.94 ± 0.054 | 1 | 0.8571 ± 0.083 |
EfficientNetB0 | 57% 7.420 | 0.32 ± 0.093 | 0.57 ± 0.074 | 0.41 ± 0.087 | 1 | 0 | 56% 14.53 | 0.32 ± 0.181 | 0.56 ± 0.145 | 0.4 ± 0.170 | 1 | 0 |
EfficientNetB7 | 57% 7.420 | 0.32 ± 0.093 | 0.57 ± 0.074 | 0.41 ± 0.087 | 1 | 0 | 56% 14.53 | 0.32 ± 0.181 | 0.56 ± 0.145 | 0.4 ± 0.170 | 1 | 0 |
NasNetLarge | 100% | 1 | 1 | 1 | 1 | 1 | 81% 9.56 | 0.81 ± 0.096 | 0.81 ± 0.096 | 0.81 ± 0.096 | 0.88 ± 0.076 | 0.7143 ± 0.117 |
EfficientNetV2M | 57% 7.420 | 0.32 ± 0.093 | 0.57 ± 0.074 | 0.41 ± 0.087 | 1 | 0 | 56% 14.53 | 0.32 ± 0.181 | 0.56 ± 0.145 | 0.4 ± 0.170 | 1 | 0 |
ResNet152V2 | 100% | 1 | 1 | 1 | 1 | 1 | 81% 9.55 | 0.86 ± 0.082 | 0.81 ± 0.096 | 0.8 ± 0.098 | 1 | 0.5714 ± 0.143 |
EfficientNetV2L | 57% 7.420 | 0.32 ± 0.093 | 0.57 ± 0.074 | 0.41 ± 0.087 | 1 | 0 | 56% 14.53 | 0.32 ± 0.181 | 0.56 ± 0.145 | 0.4 ± 0.170 | 1 | 0 |