Skip to main content
. 2023 Jan 5;216:119483. doi: 10.1016/j.eswa.2022.119483

Table 9.

Model’s performance using Rmsprop optimizer for Study One, along with confidence interval (α=0.05). Ac–accuracy, Pr–precision, Re–recall, Fs–F1-score, Sn–sensitivity, Sp–specificity.

Algorithm Training set
Testing set
Ac Pr Re Fs Sn Sp Ac Pr Re Fs Sn Sp
VGG16 100% 1 1 1 1 1 88% ± 7.591 0.90 ± 0.069 0.88 ± 0.076 0.87 ± 0.079 1 0.7143 ± 0.117
ResNet50 57% ± 7.420 0.32 ± 0.093 0.57 ± 0.074 0.41 ± 0.087 1 0 56% ± 14.53 0.32 ± 0.181 0.56 ± 0.145 0.4 ± 0.170 1 0
ResNet101 62% ± 6.976 0.80 ± 0.051 0.56 ± 0.075 0.48 ± 0.082 1 0.12 ± 0.106 56% ± 14.536 0.28 ± 0.186 0.5 ± 0.155 0.36 ± 0.175 1 0
Xception 100% 1 1 1 1 1 94%±5.36 0.94 ± 0.054 0.94 ± 0.054 0.94 ± 0.054 1 0.8571 ± 0.083
EfficientNetB0 57% ± 7.420 0.32 ± 0.093 0.57 ± 0.074 0.41 ± 0.087 1 0 56% ± 14.53 0.32 ± 0.181 0.56 ± 0.145 0.4 ± 0.170 1 0
EfficientNetB7 57% ± 7.420 0.32 ± 0.093 0.57 ± 0.074 0.41 ± 0.087 1 0 56% ± 14.53 0.32 ± 0.181 0.56 ± 0.145 0.4 ± 0.170 1 0
NasNetLarge 100% 1 1 1 1 1 81% ± 9.56 0.81 ± 0.096 0.81 ± 0.096 0.81 ± 0.096 0.88 ± 0.076 0.7143 ± 0.117
EfficientNetV2M 57% ± 7.420 0.32 ± 0.093 0.57 ± 0.074 0.41 ± 0.087 1 0 56% ± 14.53 0.32 ± 0.181 0.56 ± 0.145 0.4 ± 0.170 1 0
ResNet152V2 100% 1 1 1 1 1 81%± 9.55 0.86 ± 0.082 0.81 ± 0.096 0.8 ± 0.098 1 0.5714 ± 0.143
EfficientNetV2L 57% ± 7.420 0.32 ± 0.093 0.57 ± 0.074 0.41 ± 0.087 1 0 56% ± 14.53 0.32 ± 0.181 0.56 ± 0.145 0.4 ± 0.170 1 0