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BACKGROUND: Percutaneous thermal ablation is a curative-intent locoregional therapy (LRT) for selected patients with
unresectable colorectal liver metastasis (CLM). Several factors have been identified that contribute to local tumour control after
ablation. However, factors contributing to disease progression outside the ablation zone after ablation are poorly understood.
METHODS: In this retrospective study, using next-generation sequencing, we identified genetic biomarkers associated with
different patterns of progression following thermal ablation of CLM.
RESULTS: A total of 191 ablation naïve patients between January 2011 and March 2020 were included in the analysis, and 101 had
genomic profiling available. Alterations in the TGFβ pathway were associated with increased risk of development of new
intrahepatic tumours (hazard ratio [HR], 2.75, 95% confidence interval [95% CI] 1.39–5.45, P= 0.004); and alterations in the Wnt
pathway were associated with increased probability of receiving salvage LRT for any intrahepatic progression (HR, 5.8, 95% CI
1.94–19.5, P= 0.003).
CONCLUSIONS: Our findings indicate that genomic alterations in cancer-related signalling pathways can predict different
progression patterns and the likelihood of receiving salvage LRT following percutaneous thermal ablation of CLM.
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BACKGROUND
Approximately two-thirds of all deaths related to colorectal cancer
are attributed to colorectal liver metastasis (CLM) [1]. The gold
standard local treatment of CLM is surgical resection, which is
associated with a 5-year overall survival (OS) rate of 16–74% [2].
However, only about 25% of patients with CLM are eligible for
surgical resection [3]. Thermal ablation (e.g., radiofrequency
ablation or microwave ablation) is an alternative curative-intent
local treatment option for selected patients with unresectable
CLM and is associated with a 5-year OS rate of 24–58% [4].
Retrospective studies have shown that resection provides better
local tumour control, especially for lesions >3 cm, but thermal
ablation has the advantage of being minimally invasive and is
associated with low morbidity, and is easily repeatable [5, 6].
Knowledge of the likelihood of various outcomes after thermal

ablation of CLM would help oncologists decide which patients are
best treated with this approach and which patients might benefit
more from other forms of therapy. The Cancer Genome Atlas project
has identified molecular subtypes of colorectal cancer, which may
foster the discovery of new therapeutic targets [7]. However, these
findings have not yet been incorporated into research on thermal
ablation for CLM. To date, the only molecular features that have

been studied for prognostic value among patients undergoing
thermal ablation of CLM are single mutations—specifically, RAS
mutations and their influence on the progression of ablated
tumours [8–10]. Molecular tumour profiling using next-generation
sequencing will soon become more widely available and might offer
useful information for the prognostication of patients with CLM
eligible for thermal ablation. Since thermal ablation is a local
therapy, the molecular tumour profile could be especially useful for
predicting patterns of progression beyond the ablated tumour.
We hypothesised that genetic alterations in signalling pathways

indirectly influence OS after thermal ablation of CLM via distinct
progression patterns (Fig. 1). The aims of this study were to
analyse the influence of disease progression patterns on OS and
analyse the influence of genetic alterations in signalling pathways
on these disease progression patterns.

METHODS
Study cohort
Patients who underwent percutaneous CT-guided thermal ablation (e.g.,
microwave ablation or radiofrequency ablation) for CLM between January
2011 and March 2020 at The University of Texas MD Anderson Cancer
Center were identified from a prospectively managed institutional review
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board–approved registry. This retrospective study was approved by The
University of Texas MD Anderson Cancer Center Institutional Review Board.
The requirement for written informed consent was waived for this
retrospective analysis. Patients who received ablation combined with other
LRT (e.g., resection, transarterial chemoembolization, radioembolization
with Yttrium 90) in the same procedure, patients with less than 1 year of
imaging follow-up, and patients who underwent non-thermal ablation
were excluded from the study. From the patients included in the
progression pattern analysis, patients with missing genetic sequencing,
fewer than 46 genes sequenced, or missing APC mutation status (most
frequently altered gene in the Wnt pathway) were excluded from the
genomic mutation analysis. In patients who received repeated thermal
ablation treatment, only the initial ablation treatment was included. This
study was conducted according to the STROBE guidelines [11].

Data collection
Baseline characteristics per patient were collected from the electronic
medical records. Procedural characteristics were retrieved from a custom
structured report stored on the picture archiving and communication system
for each CT-guided ablation intervention. Outcomes of patients treated
before October 2015 were collected from the dataset of a previously
published study [10]. Outcomes of the progression of ablated tumours were
updated according to new criteria (at or within the ablation zone). Imaging
follow-up of patients who were still alive or without disease progression at
the conclusion of this study were updated. Follow-up information was
collected until January 2022. All data were imported into the study database
and validated independently by two investigators (IP and YML).

Somatic gene mutation profiling
Tumour DNA was extracted from formalin-fixed, paraffin-embedded
samples from primary colorectal cancer. The Ion Torrent Personal Genome
Machine (Life Technologies, Carlsbad, USA) was used to screen for

mutations in cancer-related genes using an IT AmpliSeq cancer panel
genomic library preparation protocol (Life Technologies) [12]. The reports
of the mutational profiles were extracted from the institutional data
warehouse and imported into the study database. The tested genes, exons,
and codons of each panel are available in the supplementary materials (46-
gene panel: Supplementary Table 6, 50-gene panel: Supplementary Table 7,
134-gene panel: Supplementary Table 8). One panel that was in use in
2018 had 143 tested genes but was missing the status of APC mutations –
the predominantly mutated gene in the Wnt pathway. KRAS, NRAS, and
BRAF mutations were grouped into a single category, RAS/BRAF mutation.
This is supported by the fact that these mutations are mostly mutually
exclusive and overlap functionally [13, 14].

Cancer-related signalling pathways
Genetic mutations in the AmpliSeq multigene panel were categorised
according to the list by Sanchez-Vega et al. of ten canonical cancer-related
signalling pathways [14]. Data were available for genes in seven of these
pathways: p53, Wnt, RTK-RAS, TGFβ, PI3K, Notch and cell cycle. Data for
genes in the Hippo, Myc and oxidative stress response/Nrf2 pathways was
unavailable.

Image-guided thermal ablation procedure
Our institutional CT-guided percutaneous thermal ablation protocol has
been reported in detail previously [10, 15]. In general, patients were
eligible for percutaneous ablation if they presented with ≤5 CLMs and each
was ≤5 cm in diameter. All procedures were performed under general
anaesthesia and under CT guidance with additional ultrasound guidance if
deemed necessary. Post-ablation contrast-enhanced CT was acquired for
ablation confirmation if the renal function allowed the use of a contrast
agent. Image fusion available on the CT console was used at the
interventional radiologist’s discretion but no ablation confirmation soft-
ware was used during the study period. Ablations were performed with
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Fig. 1 Directed acyclic graph of postulated causal relationships with OS after thermal ablation of CLM. Treatments are depicted in yellow,
risk factors are depicted in blue, and outcome is depicted in red. A0 ablation, defined as ablation with a >5mm margin, has been reported
multiple times to be the most important predictor of intrahepatic progression at the ablation zone following thermal ablation [9, 29–31]. In
addition, factors reflecting tumour burden, like maximum tumour size, number of CLMs, extrahepatic metastasis (e.g., positive lymph nodes),
and KRAS mutations, have been reported to further contribute to the progression of ablated tumours [9, 10]. Development of new
intrahepatic tumours (IHP), extrahepatic progression (EHP), and salvage locoregional therapy (LRT) for any intrahepatic progression are drivers
of OS [27]. In addition, non-cancer-related death are competing risks towards OS.
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radiofrequency ablation (Cool-tip Ablation System, Covidien, Boulder, USA)
or microwave ablation (Certus Probe, Certus 140 2.4-GHz Ablation System,
Neuwave, Madison, USA). Patients underwent initial post-ablation cross-
sectional follow-up imaging within 2–8 weeks after ablation. After the
initial post-ablation follow-up imaging, further follow-up imaging was
performed at 2- to 6-month intervals until patient death or loss to follow-
up. Cross-sectional follow-up imaging was performed with contrast-
enhanced CT, positron emission tomography/CT, or magnetic resonance
imaging.

Definitions
A0 ablation was defined as a tumour-free margin ≥5mm, either estimated
by visual inspection [10] or estimated using a software-based approach
[16, 17]. To describe ablation endpoints, standardised terminology and
reporting criteria were employed [18, 19]. All disease progression patterns
are based on imaging follow-up findings. The start time for all time-to-
event analyses was the date of ablation. In the survival analysis of OS
survival after IHP, OS was measured from the time of diagnosis of IHP to
death or last imaging follow-up. A residual tumour was defined as viable
tumour within or at the edge of the ablation zone at initial follow-up
imaging. Local tumour progression was defined as viable tumour within or
at the edge of the ablation zone after at least one cross-sectional imaging
study had demonstrated complete ablation. Time to progression of the
ablated tumours was defined as the time from ablation to the first image
evidence of residual tumour or local tumour progression. Thus, in patients
treated for multiple CLMs, the time progression of the ablated tumours
was measured on a patient level as the time to the residual tumour or local
tumour progression at any of the ablation zones. The time to development
of new intrahepatic tumours was defined as the time from ablation to the
appearance of viable tumour within the liver outside the ablation zone.
Intrahepatic progression of any kind is defined as either progression of the
ablated tumours, the development of new intrahepatic tumours, or both.
Extrahepatic progression was defined as the progression or new
appearance of metastasis outside the liver. No disease progression was
defined as no disease progression neither intrahepatic, nor extrahepatic
after thermal ablation of CLM. Salvage LRT was defined as any LRT (e.g.,
ablation, resection, transarterial chemoembolization) for any intrahepatic
progression. Patients ineligible for salvage LRT would undergo palliative
treatment, including palliative chemotherapy, as per standard practice.

Statistical analysis
The Cox proportional hazards model was used to estimate the effects of
progression patterns on OS and the effects of genetic mutations on the
time to progression of the ablated tumour and the time to development of
new intrahepatic tumours (time-to-event outcomes). Patients were right
censored at the last imaging follow-up or death. Logistic regression was
used to assess the effects of genetic mutations on salvage LRT after
intrahepatic progression (binary outcome). All analyses were performed
with multivariable models. The log-rank test was used to compare survival
and cumulative incidence curves. A value of P < 0.05 was used for statistical
significance, and two-sided 95% CIs were reported. A complete case
analysis was performed. Estimates with infinite 95% CIs (e.g., estimates
associated with rare mutations) were excluded from the model. Statistical
analysis was performed using R (version 4.0.5) and RStudio (version
2021.09.2) [20]. Ggplot2 and ggpubr were used for graphics [21, 22], and
tidyverse was used for data processing [23].

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

RESULTS
Study population
Of 226 patients who underwent initial percutaneous thermal
ablation for CLM during the study period, 191 met the criteria for
inclusion in the progression pattern analysis, and 101 (52.8%) met
the criteria for inclusion in the pathway-centric genomic mutation
sub-analysis (Fig. 2). The reasons for exclusion from the pathway-
centric analysis were missing mutation profile (n= 41), <46 tested
genes (n= 4), and profile with missing APC status (n= 45). The
demographic and clinicopathologic characteristics of the study

population are summarised in Table 1. The median age was 56.7
years (interquartile range [IQR] 48.6–66.6). Eighty-two patients
(42.9%) died during the median follow-up period of 31.5 months
(IQR 18.46–44.26). A total of 117 patients (61.3%) had previously
undergone hepatic resection for CLM. One hundred thirty-five
patients (70.7%) had intrahepatic progression of any kind. Among
those, 43 patients (22.5%) had local progression of an ablated
tumour, defined as the appearance of viable tumour at or within
the ablation zone; and 121 patients (63.4%) had the development
of new intrahepatic tumours; 143 patients (74.9%) had extra-
hepatic progression; 115 patients (60.2%) had multiple sites of
progression; finally, 26 patients (13.6%) had no disease progres-
sion, of whom 20 were still alive at the time of data collection.
The most prevalent mutations were mutations in the p53

(74.3%), Wnt (63.4%) and RTK-RAS (47.5%) pathways (Fig. 3).
Within these pathways, the vast majority of mutations were in the
predominant genes TP53 (74.3%), APC (60.4%), and KRAS, NRAS, or
BRAF (hereafter, referred to collectively as “RAS/BRAF”) (41.6%). The
frequency of mutations by race and pathway is presented in
Supplementary Fig. 1.

Effect of progression patterns on OS
Supplementary Table 1 shows the effect of progression patterns
on OS after thermal ablation of CLM after adjustment for
clinicopathologic factors (age, prior hepatic resection, and tumour
burden [diameter of largest CLM, number of CLMs, extrahepatic
metastasis, and right-sided primary tumour]). Development of
new intrahepatic tumours following ablation was associated with
worse OS (HR= 3.44, 95% confidence interval [95% CI] 1.9–6.24,
P < 0.001), whereas the progression of ablated tumours and
extrahepatic progression were not. Salvage LRT for any intrahe-
patic progression was associated with better OS (HR 0.2, 95% CI
0.1–0.4, P < 0.001). These effects are also reflected in the
Kaplan–Meier curves in Fig. 4, showing that patients with
intrahepatic progression had significantly shorter OS (median OS
42.7 months, 95% CI 40.9–51.8) than patients without intrahepatic
progression (median OS 70.3 months, 95% CI 52.4 to not reached)
(P= 0.0015). Among the patients who had intrahepatic progres-
sion, those who received salvage LRT had significantly longer OS
(median OS 51.3 months, 95% CI 39.3 to not reached) than
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Fig. 2 Patient selection for progression pattern analysis and sub-
analyses of genomic mutations. LRT locoregional therapy.
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patients who did not receive salvage LRT (median OS 23.3 months,
95% CI 18.4–28.1) (P < 0.001).

Factors affecting intrahepatic progression patterns
Factors affecting intrahepatic progression of any kind. Factors
affecting the intrahepatic progression of any kind after initial
thermal ablation for CLM are reported in Supplementary Table 2.
Alterations in the TGFβ pathway were associated with significantly
worse intrahepatic progression-free survival, with a HR of 2.74
(95% CI 1.42–5.27, P= 0.003). Alterations in the Wnt pathway were
associated with significantly better intrahepatic progression-free
survival, with a HR of 0.56 (95% CI 0.33–0.94, P= 0.03). However,
the cumulative incidence function does not show a significant
difference (Supplementary Fig. 2). Further, A0 ablation was
associated with significantly improved intrahepatic progression-
free survival with a HR of 0.42 (95% CI 0.22–0.82, P= 0.01).

Factors associated with the development of new intrahepatic
tumours. Factors associated with the development of new
intrahepatic tumours (not including tumours at the edge of the
ablation zone) after initial thermal ablation for CLM are reported in
Supplementary Table 3. Alterations in the TGFβ pathway were
associated with significantly shorter time to development of new
intrahepatic tumours, with a HR of 2.75 (95% CI 1.39–5.45,
P= 0.004). However, mutations in this pathway were relatively
rare in this dataset (n= 16, all SMAD4 mutations). In addition, the
overall number of ablated CLM at the initial session was associated
with a significantly shorter time to development of new
intrahepatic tumours (HR 1.77, 95% CI 1.2–2.63 P= 0.004). The
median time to development of new intrahepatic tumours in
patients with TGFβ alteration was 3.49 months (95% CI 1.75 to not
reached) vs. 16.1 months (95% CI 8.5–47.9) (P= 0.013) (Fig. 5).

Factors associated with the progression of ablated tumours. Fac-
tors associated with the progression of ablated tumours after
initial thermal ablation for CLM are reported in Supplementary
Table 4. The main factors associated with progression of ablated
tumours were A0 ablation (HR 0.17, 95% CI 0.05–0.66, P= 0.01),

Table 1. Baseline demographic and clinical characteristics of 191
patients who underwent initial thermal ablation for colorectal liver
metastasis (CLM) and were included in this study per initial session.

Characteristic Value

Age, median (IQR), yr 56.7 (48.6–66.6)

Male sex, no. (%) 121 (63.4)

Rectal primary tumour, no. (%) 39 (20.4)

Right-sided primary tumour, no. (%) 45.0 (23.6%)

Node-positive primary tumour, no. (%) 114 (59.7)

Liver metastasis, no. (%)

Metachronous 86 (45.0)

Synchronous 102 (53.4)

N/A 3 (1.6)

Prior hepatic resection for CLM, no. (%) 117 (61.3%)

Extrahepatic metastasis, no. (%) 111 (58.1)

Pre-ablation chemotherapy, no (%) 142.0 (74.3%)

Fluorouracil-based regimen 127 (66.5%)

Oxaliplatin 74 (38.7%)

Irinotecan 70 (36.6%)

Use of Bevacizumab 90 (47.1%)

Lines of pre-ablation chemotherapy

0 49 (25.7%)

1 83 (43.5%)

2 54 (28.3%)

3 5 (2.6%)

Number of ablated CLMs, median (IQR) 1 (1–2)

Diameter of largest ablated CLM, median
(IQR), cm

1.4 (1.0–2.0)

N/A not available, IQR interquartile range.
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Fig. 3 Frequency of alterations in seven cancer-related signalling pathways. Alterations in the signalling pathways and mutations in the
predominant member gene in each of these pathways among the 101 patients included in the mutation analysis. Pathways are
represented by solid bars and the member genes as light bars.
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prior resection (HR 0.36, 95% CI 0.16–0.83, P= 0.016), and
diameter of the largest ablated CLM (HR 1.59, 95% CI 1.04–2.42,
P= 0.032). None of the altered pathways exhibited a significant
effect on the progression of ablated tumours.

Factors associated with the use of salvage LRT
Factor associated with salvage LRT use following initial ablation are
reported in Supplementary Table 5 and shows the ORs for
receiving salvage LRT for intrahepatic progression among patients
who developed any intrahepatic progression (n= 75). Alterations
in the Wnt signalling pathway significantly increased the odds of
receiving salvage LRT at the time of intrahepatic progression by
5.8-fold (95% CI 1.94–19.5, P= 0.003). Other altered pathways did
not exhibit a significant influence on the odds of receiving
salvage LRT.

DISCUSSION
In this study, we have shown that the most important risk factors
associated with worse OS following CLM ablation were the
development of new intrahepatic tumours (HR 3.44, P < 0.001) and
lack of salvage local therapy at the time of intrahepatic
progression (HR= 0.2, P < 0.001). Alteration in the TGFβ pathway
had a 2.75-fold increase in risk of the development of new
intrahepatic tumours (HR 2.75, P= 0.004) and alteration in the Wnt
pathway was associated with a reduced risk of any intrahepatic
progression (HR 0.56, P= 0.03). Interestingly, patients with
alterations in the Wnt pathway were 5.8 times more likely to
receive salvage LRT if intrahepatic progression occurred
(P= 0.003). However, with the present data, we could not identify
a mediator via which mutations in Wnt would affect use of salvage
LRT. None of the altered pathways examined exhibited a
significant influence on the progression of the ablated tumour.
This study showed that different progression patterns had

different effects on OS. Further, it showed that information about
the genomic mutation status of CLMs provided valuable
prognostic biomarkers of disease progression and the eligibility
for salvage LRT. This kind of information per LRT (e.g., resection,
ablation, transarterial chemoembolization) could be used to select

optimal treatment modalities for patients with CLMs, depending
on their individual risk for different progression patterns and thus
the expected need for salvage LRT. In our study population, 86.4%
of patients had progressive disease following ablation. More
importantly, 70.7% of the patients had intrahepatic progression of
any kind, which emphasises the role for salvage LRT, which was
associated with significant OS improvement (median OS
51.3 months vs. 23.3 months, P < 0.001). However, only over half
of the patients with intrahepatic progression received salvage LRT.
The most common reason for ineligibility for salvage LRT was
extrahepatic progression (>50%).
Several of our findings are in keeping with those previously

reported in other studies of surgical and ablation series. Previous
studies showed that patients receiving salvage LRT for intrahepa-
tic progression following surgical resection had improved OS
[24, 25], which is consistent with our finding of use of salvage LRT
being a protective factor. Also, alterations in Wnt, and TGFβ have
been found as protective and risk factors for OS, respectively, in a
similar pathway-centric study of a cohort undergoing resection for
CLM [26]. Salvage LRT for intrahepatic progression following
thermal ablation of CLM has been reported to have a similar OS to
those of patients without intrahepatic progression [27, 28], which
is consistent with our finding of salvage LRT is associated with a
reduction on the risk of death by 80%. A0 ablation (ablation with a
margin of ≥5mm) showed as the best predictor of lack of
progression following ablation of CLM and was associated with an
83% risk reduction (HR= 0.17, P= 0.01), which has been reported
in several previous studies on [9, 29–31]. We also confirmed in this
expanded patient series our previous findings of a lower risk of
intrahepatic progression at the ablation zone for patients with
prior resection [15].
Current literature on the influence of RAS mutation on progres-

sion of ablated tumours has shown diverging results [9, 10, 29]
and did not show a significant effect in our study cohort. We
believe that the lack of RAS influence on the progression of
ablated tumours in our present study might be attributed to
several factors. First, we applied a stricter definition of the
progression of ablated tumours than the one used in other
published studies (any tumour directly in contact with or within
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the ablation zone vs. within 1 cm of the ablation zone), in
agreement with current recommendations for standardised
terminology [18, 32]. Second, the inclusion in our present analysis
of additional tumour biomarkers not previously reported might
have lessened the individual influence of RAS mutation among
patients with multiple co-mutations. Third, there might be a
selection bias since interventional radiologists may have per-
formed more aggressive ablations in patients with RAS mutation
with the aim to obtain larger ablation zones given our under-
standing of the recent literature [9, 10]. Finally, the inclusion in the
multivariable analysis of margin assessment by using accurate
ablation confirmation software might have further reduced the
impact of RAS on the progression of ablated tumours, as
demonstrated by the criticality of achieving A0 ablation.
This study has limitations due to its retrospective nature. Even

though the study population is from a high-volume centre,
genomic profiling with ≥46 genes and APC mutation status for
first-time ablation treatments was available in only over half of the
patients undergoing thermal ablation for CLM. One of the main
reasons is that a large number of patients were referred to our
institution from other institutions and underwent resection of
their primary tumour at another institution. The resulting small
sample size led to relatively low statistical power, and therefore it
is likely that some true effects were not discovered, especially
effects related to rarely altered genes. Due to the small sample
size, we could also not translate the found effects of mutations on
progression patterns directly onto OS. Our findings might also
reflect the intrinsic practice patterns of our institution regarding
the management of CLM, and therefore the findings require
external validation. Due to the heterogeneous patient population
referred to liver ablation at our centre, we did not analyse the
effect of mutations on initial tumour burden. Further, there were
major advances in percutaneous liver ablation procedures during
the study period. Another limitation is very heterogenous pre- and
post-ablation systemic treatment, which might have contributed

to the progression patterns and affected the overall survival. These
variations are likely due to the low level of evidence about the
benefit of (neo-)adjuvant chemotherapy combined with thermal
ablation of CLM [6].
In conclusion, our findings indicate that genomic alterations can

predict different progression patterns following the thermal
ablation of CLM. Alternation in the TGFβ pathway was associated
with an increased risk of development of new tumours, and Wnt
pathway alteration showed an increased likelihood of receiving
salvage LRT following post-ablation intrahepatic recurrence, with
both having direct implications on survival outcomes.
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