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Abstract

Collaborative learning, which enables collaborative and decentralized training of deep neural 

networks at multiple institutions in a privacy-preserving manner, is rapidly emerging as a 

valuable technique in healthcare applications. However, its distributed nature often leads to 

significant heterogeneity in data distributions across institutions. In this paper, we present a novel 

generative replay strategy to address the challenge of data heterogeneity in collaborative learning 

methods. Different from traditional methods that directly aggregating the model parameters, we 

leverage generative adversarial learning to aggregate the knowledge from all the local institutions. 

Specifically, instead of directly training a model for task performance, we develop a novel dual 

model architecture: a primary model learns the desired task, and an auxiliary “generative replay 

model” allows aggregating knowledge from the heterogenous clients. The auxiliary model is then 

broadcasted to the central sever, to regulate the training of primary model with an unbiased 

target distribution. Experimental results demonstrate the capability of the proposed method 

in handling heterogeneous data across institutions. On highly heterogeneous data partitions, 

our model achieves ~4.88% improvement in the prediction accuracy on a diabetic retinopathy 

classification dataset, and ~49.8% reduction of mean absolution value on a Bone Age prediction 

dataset, respectively, compared to the state-of-the art collaborative learning methods.
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1. Introduction

Deep artificial neural networks (DNNs) have led to state-of-the-art performances in a wide 

range of computer vision tasks. One major issue in DNNs is the requirement for large 

quantities of the annotated image data to train robust models. However, large quantities 

of the data are inherently decentralized and are widely distributed in multiple centers, 

especially for medical imaging, where cohort sizes at single institutions are often small. 
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Gathering data from multiple centers is often hindered by barriers to data sharing and 

regulatory and privacy concerns. Collaborative learning (also termed federated learning, 

distributed learning, or decentralized learning) allows collaboratively training a shared 

global model on multiple centers while keeping the personal data decentralized, and is thus 

an attractive alternative (McMahan et al., 2016; Chang et al., 2018; Kairouz et al., 2019).

Recently, collaborative learning has been highlighted as a foundational research area in 

medical domain (Langlotz et al., 2019). Numerous collaborative learning methods have 

been proposed in past decades (Su and Chen, 2015; McMahan et al., 2016; Lin et al., 

2017; Chang et al., 2018; Vepakomma et al., 2018), such as Federated Averaging (FedAVG) 

(McMahan et al., 2016) and Cyclical weight transfer (CWT) (Chang et al., 2018). Despite 

the promising progress, collaborative learning still faces the data heterogeneity challenge, 

where data across institutions is usually non-independent and identically distributed (non-

iid) (Qu et al., 2021; Roth et al., 2020; Dayan et al., 2021; Liu et al., 2021), which impedes 

the model convergence and cause performance drops. Numerous efforts have been devoted 

to solving the performance drops on data heterogeneity challenge (Hsu et al., 2019; Hsieh 

et al., 2019; Balachandar et al., 2020), such as applying different types of optimization 

heuristic to stabilize the local model update (Li et al., 2020; Hsu et al., 2019, 2020; Wang 

et al., 2020), and using knowledge distillation to learn a more powerful global model (Gong 

et al., 2021; Zhang et al., 2021). While effective, these methods may require heuristic 

parameters tune (Hsu et al., 2019; Hsieh et al., 2019; Li et al., 2020), suffer from usage 

restriction for layer-wise mapping optimization methods (Zhang et al., 2021), or may not be 

optimal for highly heterogeneous settings.

In this paper, we propose a novel and flexible generative replay strategy to address the data 

heterogeneity challenge in collaborative learning and to meet gaps in the prior approaches. 

Different from traditional methods that directly aggregating the model parameters, we 

leverage generative adversarial learning (Shin et al., 2017; van de Ven and Tolias, 2018; 

Choi et al., 2018) to aggregate the knowledge from the data distribution of all the local 

institutions. Specifically, we develop a novel dual model architecture consisting of a primary 

classifier for the desired task (e.g., a classification or regression task), and an auxiliary 

“generative replay model” for either generating artificial examples or extracting latent 

features from local clients. Our generative replay strategy helps solve the challenge of data 

heterogeneity in collaborative learning by training the primary model using the aggregated 

knowledge collected by generative replay model from the heterogenous clients. We further 

incorporate differential privacy (Abadi et al., 2016) into the training of the auxiliary model 

to prevent the exposure of sensitive or private patient information.

Our strategy is flexible to deploy, can either be 1) incorporated into a well-deployed 

collaborative learning methods to improve their capability of handling data heterogeneity 

across institutions (left image in Fig. 1), or 2) be used to construct a novel and individual 

collaborative learning framework FedReplay (right image in Fig. 1) for communication 

efficiency and better privacy protection. When incorporated into an existing collaborative 

learning framework—for example CWT (Chang et al., 2018)—we first train an auxiliary and 

universal image generation network on local institutional data, share the generator between 

local institutions, and then train a standard CWT model based on the local institutional data 
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and the augmented replayed data from the shared generator (referred to CWT+Replay). The 

training of auxiliary generator in CWT+Replay is time-consuming and the replayed data 

may reveal patient privacy. We further apply our generative replay technique to conduct an 

individual collaborative learning framework, termed FedReplay, to avoid the possibility of 

revealing patient privacy from the replayed images. Similar to CWT+Replay, FedReplay 

also has a dual model architecture, a primary model that learns the desired task, and an 

auxiliary encoder network that extracts latent variables. Our FedReplay is robust to various 

types of heterogeneity in data across institutions, as the primary model is directly trained 

on the union of the latent variables collected from the auxiliary generators of all the local 

institutions, and the latent variables contain most important features in the original data. The 

main contributions of our paper are summarized as follows:

1. We propose a novel generative replay technique to address the challenge of data 

heterogeneity among institutions that participate in collaborative learning. As 

opposed to existing methods that either provide sophisticated ways to control 

the optimization strategy or share partial global data to mitigate the performance 

drops from data heterogeneity, our generative replay technique provides a new 

insight for the development of collaborative learning methods, which is easy 

to implement, and can be applied to any kind of deep learning task (e.g., 

classification, regression, etc.).

2. Our generative replay technique is flexible to use. It can either be directly 

incorporated into a existing federated learning framework to increase their 

capability of handling data heterogeneity across institutions with minimal 

modifications (left image in Fig. 1), or be used as a novel and individual 

collaborative learning framework to reduce communication cost and mitigate 

privacy cost (right image in Fig. 1).

3. While previous collaborative learning methods require frequent communication 

between local institutions and the central server, the proposed FedReplay only 

requires a one-time communication between local institutions and the central 

server, which is time-efficient. The training of primary model is performed solely 

on the central server, without restriction to hardware and network speeds among 

institutions.

2. Related Works

Collaborative Learning

Prior collaborative learning methods can be generally classified into two categories, 

parallelized collaborative learning methods and serial collaborative learning methods.

Parallelized methods involve training each individual institution on the local institutional 

data for several iterations/epochs, transferring the gradients/weights from individual 

institutions to a central server for averaging, and then transferring the averaged weights/

gradients back to individual institutions. FedAVG (McMahan et al., 2016) and Federated 

stochastic gradient descent (FedSGD) (Su and Chen, 2015; McMahan et al., 2016) are 

two of the most popular parallelized methods. FedAVG (McMahan et al., 2016) involves 
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frequent transferring of model weights between individual institutions and central server, 

while FedSGD (Su and Chen, 2015; McMahan et al., 2016) involves frequent transferring 

of gradients between individual institutions and central server, which is an extreme case of 

FedAVG (McMahan et al., 2016).

Parallelized methods are computationally efficient due to their parallel processing. However, 

they may be suboptimal if institutions have very different network connection speeds or deep 

learning hardware (a common situation among medical institutions). Bonawitz et al. (2019) 

relaxed the strict system condition by dropping devices that fail to compute the predefined 

epochs within a specified time window. Beyond the heterogeneity in system, heterogeneity 

in data across institutions is another critical concern for parallelized methods. The training 

examples at each local institution are sampled from institution-specific distribution for 

parallelized methods, which is a biased estimator of the central target distribution if 

heterogeneity exists. The learned weights in different institutions will diverge severely 

when high skewness exists in the data, thus the synchronized averaged central model will 

lose accuracy or even completely diverge (Hsu et al., 2019). Several recent efforts have 

been devoted to solving the performance drops in statistically data heterogeneous settings. 

For example, Zhao et al. (2018) proposed FedAVG+Share to improve the performance 

of FedAVG on non-IID data by distributing a small amount of data for globally sharing 

between all the institutions. Unlike FedAVG that simply updates the weights on the server, 

Hsu et al. (2019) accumulated the model updates with momentum and used an exponentially 

weighted moving average as the model update, to improve its robustness to non-IID data. 

While effective, these methods either require 1) all the participated institutions are active 

(Khaled et al., 2019; Wang and Joshi, 2018), 2) additional convexity assumptions (Wang et 

al., 2019), 3) need sharing partial institutional data (Zhao et al., 2018), or 4) only work well 

in data distributions with mild heterogeneity (see the comparison results in Fig. 5).

Compared to the parallelized methods, serial methods involve training in a serial and 

cyclical way, which may be less computationally efficient than parallel processing, but 

may be more flexible to variations in hardware and network speeds among institutions. 

CWT (Chang et al., 2018) is one of the typical serial methods, which involves updating 

weights at one institution at a time, and cyclically transferring weights to the next training 

institution until convergence. Split learning (SplitNN) (Vepakomma et al., 2018) can be also 

considered as a serial collaborative learning method. In SplitNN (Vepakomma et al., 2018), 

each institution trains a partial deep network up to the cut layer, sends the intermediate 

output feature maps at the cut layer to the server. The server then completes the rest of 

the training without looking at raw data from clients. In SplitNN, in addition to the model 

weights, the intermediate feature maps and gradients are communicated between different 

institutions. Similar to parallelized methods, heterogeneity in data across institutions is also 

a big concern in serial methods. Serial methods always suffer from catastrophic forgetting 

problems when heterogeneity exists in data distributions. The model tends to abruptly forget 

what was previously learned information when it transfers to the next institution. The higher 

the skewness of heterogeneity in data, the more severe the catastrophic forgetting tends to be 

in serial methods, thus resulting in performance drops. Balachandar et al. (2020) introduced 

cyclically weighted loss to mitigate the performance loss for label distribution skewness in 

CWT, but this classification label based weighted loss only works for image classification 
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tasks. By contrast, our generative replay strategy is more scalable and can work well on 

various types of tasks.

Adversarial Attacks

Recent works have shown that collaborative learning is vulnerable to gradient inversion 

attacks (Zhu and Han, 2020; Huang et al., 2021; Geiping et al., 2020) or model inversion 

attacks (Yin et al., 2021; Fredrikson et al., 2015; He et al., 2019). Zhu and Han (2020) 

demonstrated that it was able to reconstruct a client’s private data with the shared gradients. 

But this work is limited to shallow network and low resolution images. Geiping et al. (2020) 

substantially improved the reconstructed image quality by exploiting a cosine distance 

loss together with the optimization problem. Similar to gradient inversion attacks, model 

inversion attacks are first introduced by Fredrikson et al. (2015) and aim to reconstructing 

private data from the output (or intermediate output) through the inference of a well-trained 

regression model. Recent works have improved and extended the approach to more complex 

setting (Yin et al., 2021; Fredrikson et al., 2015; He et al., 2019), e.g., extending to modern 

DNNs (He et al., 2019) on collaborative learning. In this paper, we study the privacy 

protection capability of the different collaborative learning methods under gradient inversion 

attacks and model inversion attacks.

Differential Privacy

Differential privacy is a mathematical system for publicly sharing information while not 

revealing private information about individuals. With differential privacy, users should learn 

useful information about a population as a whole but not about a particular individual. Early 

works on differential privacy mainly focus on convex optimization problems (Chaudhuri et 

al., 2011; Bassily et al., 2014). In 2016, Abadi et al. (2016) introduced an algorithm with 

Gaussian mechanism for training non-convex deep learning models with strong differential 

privacy supporting. They further introduced the moments accountant mechanism to keep 

track of the overall privacy budget, guaranteeing a tighter estimation for privacy loss 

compared to the standard composition theorem (Dwork et al., 2010). Mironov (Mironov, 

2017) proposed Rényi Differential Privacy (RDP) as a natural relaxation of standard 

differential privacy for easy composition, and introduced RDP accountant to keep track 

of the accumulative privacy loss, which further provides tighter bound for privacy loss 

compared to moments accountant. Several recent works have also applied differential 

privacy to the training of collaborative learning methods (Shokri and Shmatikov, 2015; 

Beaulieu-Jones et al., 2018; Li et al., 2019). For example, Li et al. (2019) applied differential 

privacy techniques to protect the patient data in a federated brain tumour segmentation. 

Beaulieu-Jones et al. (2018) incorporated the differential privacy into the training of CWT 

(Chang et al., 2018), which demonstrated provable differential privacy guarantee without 

large performance sacrifices. In this paper, we incorporate differential privacy into our 

generative replay strategy and train our auxiliary model in a differentially private manner 

following the technique described by Abadi et al. (2016). We further apply RDP accountant 

(Mironov, 2017) for privacy loss analysis.
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3. Method

In this section, we 1) first describe the details of how to incorporate the proposed generative 

replay strategy into existing collaborative learning networks, 2) present the details of the 

proposed individual collaborative method FedReplay, 3) provide the privacy analysis under 

different adversarial attacks and illustrate how to improve the patient privacy by deploy our 

generative replay strategy with differential privacy.

3.1. Optimizing Collaborative Learning Methods with Generative Replay

In this section, we use CWT (Chang et al., 2018) as an example to illustrate how to apply the 

proposed generative replay strategy to the existing collaborative learning methods. We use 

an image classification task as the desired task. We apply the Vector Quantized Variational 

AutoEncoder (VQ-VAE-2) (Razavi et al., 2019) as our auxiliary image generation network. 

The complete pseudo-code of CWT+Replay is shown in Algorithm 1 and its detailed 

architecture is shown in Fig. 1.

CWT+Replay consists of a primary model (classifier) for the learned classification task, 

and an auxiliary generative replay model for synthesizing images that closely resemble 

input images. In CWT+replay, the auxiliary generator (VQ-VAE-2 (Razavi et al., 2019)) is 

first trained before the standard CWT training of primal model. VQ-VAE-2 is originated 

from Vector Quantized Variational AutoEncoder (VQ-VAE) (Van Den Oord et al., 2017), 

which consists of an encoder for mapping the observations to discrete latent variables, and 

a decoder for reconstructing observations from these latent variables, and its prior is learnt 

rather than static. Similar to CWT (Chang et al., 2018), the generator is also trained in a 

serial way, i.e., first updating generator weights θG at one institution at a time, and serially 

transferring weights to the next training institution. During the training of generator in 

institution k, the generator aims to learn a mixed data distribution of both the real data xk 

in institution k and the replayed data from previous generator. Here total K institutions are 

involved in the collaborative learning framework.

Once the generator is trained successfully, we then distribute the decoders, the latent 

variables1, and their corresponding labels to all the institutions for standard primary 

classifier training. Specifically, during the training of the classifier in institution k, the 

classifier is trained based on both the real data xk in institution k and the replayed data from 

the generator. With the auxiliary replayed data, all the institutions now aim at optimizing the 

primary classifier based on both the replayed data which resemble the data distribution from 

other institutions and the institutional specific data, rather than only the institution-specific 

data distribution, thus do not suffer from catastrophic forgetting as in CWT (Chang et al., 

2018).

The application of generative replay strategy to other collaborative learning methods can 

be also deployed similarly. For example, when incorporating into FedAVG (McMahan et 

al., 2016), similar to CWT+Replay, we first train an auxiliary generative replay model 

1We can also train a prior generator with PixelCNN (Oord et al., 2016) to simulate the latent variables, and then distribute the trained 
PixelCNN instead of the latent variables.
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to synthesize images that closely resemble the input images, we then train a standard 

parallelized FedAVG model based on both the real data from local institutions and the 

replayed data from the generator.

3.2. The FedReplay Collaborative Learning Approach

Even though CWT+Replay works well on non-IID situations, it still requires frequent 

transfer of the model weights between local institutions and the central server. In addition, 

the training of auxiliary image generation network for CWT+Replay is time-consuming 

and the replayed data may reveal patient privacy. To optimize the communication cost and 

to prevent privacy leakage from replayed data, we introduce a new collaborative learning 

approach, FedReplay, based on our generative replay technique in this section. Similar to 

CWT+Replay, FedReplay also uses a dual model architecture, where an auxiliary encoder 

extracts the latent variables from local institutions, and a primary model learns the task 

based on the extracted latent variables.

The framework of our FedReplay is shown in Fig. 1 and its pseudo-code is depicted in 

Algorithm 2. FedReplay assumes the server has high storage capacity, which allows storage 

of the relevant latent variables, and training of the primary model based on the extracted 

latent variables. Our FedReply follows a three-stage training phase: 1) Train a universal 

and auxiliary encoder network on the data at one of the local institutions and distribute the 

unique pre-trained encoder network to all of the other institutions; 2) Apply the pre-trained 

encoder network to local institutions, compress the raw data into latent variables, and upload 

the latent variables and their corresponding labels to the central server; 3) Train a global 

primary model purely on the central server with the union of all the latent variables. As we 

do not need to know the decoder part for data reconstruction in FedReplay, we can simply 

apply several convolutional and ReLu (the nonlinear rectified linear unit function) layers as 

the encoder network. In addition, the training of the auxiliary encoder network can be also 

easily achieved on one of the arbitrary institutions with the learned task (see Section 4.1 for 

more details).
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Our FedReplay is robust to various types of heterogeneity in data across institutions, as the 

primary model is directly trained on the union of the latent variables from all the institutions, 

and the latent variables contain most important features in the original data. FedReplay 

is also robust to the system heterogeneity, since the training of primary model is totally 

performed on the central sever, and it only requires a one-time communication between 

institutions and the central server.

3.3. Privacy Analysis

3.3.1. Adversarial Attacks—Recent works have shown that it is able to reconstruct 

pixel-wise level private data from the shared gradients or latent variables in collaborative 

learning (He et al., 2019; Zhu and Han, 2020). We evaluate the privacy protection capability 

of FedReplay by comparing the quality of recovered image in FedReplay and the baseline 

FedAVG under model inversion attacks (He et al., 2019) and gradient inversion attacks 

(Geiping et al., 2020), respectively.

FedAVG shares the gradients of the whole network, while FedReplay shares the intermediate 

latent variables extracted from the auxiliary encoder network. Given a neural network 

with parameters θ, the real private image x that we aim to recover, the shared gradient 

∇Lθ(x), and the dummy input x, we formulate the image recovery task of FedAVG as an 

optimization problem following (Geiping et al., 2020):

arg min
x

1 − ∇θLθ(x), ∇θLθ(x)
∇θLθ(x) ∇θLθ(x) + αTV(x) . (1)

The former part aims to match the gradient of the recovered input x with the target 

transmitted gradient ∇θLθ(x), which is measured as a cosine distance following (Geiping 

et al., 2020). The latter part regularizes the recovered image with a total variation (Rudin et 

al., 1992), which encourages x to be piece-wise smooth. The hyperparameter α balances the 

effects of the two terms.

Similarly, malicious attacker may also be able to recover the private data from the shared 

latent variables (denoted as Eθ(x)) in FedReplay (He et al., 2019; Zhang et al., 2020). 

Specifically, we consider the white-box setting for this model inversion attack, as each local 

client shares the same auxiliary encoder network. We formulate the model inversion attacks 

as the following optimization problem:

arg min
x

Eθ(x) − Eθ(x) 2 + αTV(x), (2)

where the former part is Euclidean Distance which aims to match the latent variables Eθ(x)
of dummy input to the shared latent variables Eθ(x). Following (He et al., 2019), we apply 

regularized Maximum Likelihood Estimation to solve this problem. We will qualitatively 

and quantitatively measure the privacy protection capability of FedAVG and FedReplay 

according to Eq. 1 and Eq. 2 in the 4.4.2.
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3.3.2. Differential Privacy—To provide a privacy guarantee for our generative replay 

strategy, we incorporate differential privacy (Dwork et al., 2006) into our generative replay 

strategy and train our auxiliary model in a differentially private manner.

Differential privacy (Dwork et al., 2006) is formally defined as an algorithm :D → 
Range( ) with domain D and the output range Range( ) is (ε, δ)-differential private, if for 

all neighboring datasets D1 ∈ D, D2 ∈ D that differ only on one individual subject, and for 

all subset S ⊆ Range( ) the following holds:

Pr A D1 ∈ S ≤ exp(ε) ⋅ Pr A D2 ∈ S + δ . (3)

Here smaller ε indicates strong bind for the above constraints and provides strong privacy 

guarantees, but usually accompanied with decreased performance. δ relaxes the inequality 

by allowing a δ additive probability term, which is preferably set to smaller than 1/|D1|. |D1| 

indicates the train size of dataset D1. The differential privacy guarantees that the algorithm 

 on two neighboring datasets D1, D2 will produce similar results, thus ensuring that the 

algorithm  learns from the population but not from the individuals.

We follow the work of (Abadi et al., 2016) to protect the privacy of the training data in 

each institution with Gaussian mechanisms, i.e., clipping the gradient norm and adding with 

Gaussian noise in each stochastic gradient descent computation. Algorithm 3 illustrates 

the detailed privacy training procedure of the generator with parameters θG and loss 

function LG(θG). In each batch size training step, we first 1) compute the gradient 

gt xk
i = ∇LG θG; xk

i  for each individual sample xk
i , 2) clip the ℓ2 norm of each gradient, 

i.e., replacing the gradient vector gt with gt/max 1,
gt 2
C  for a given clipping threshold C, 3) 

add the gradient with Gaussian noise (noise scale σ), and then 4) update parameters θG with 

the calculated gradients. We continue the training until model convergence or we approach 

the specified privacy budget. Here we only describe how we provide privacy supporting for 

the training of the auxiliary generator, the training procedure of the primary classifier and 

the auxiliary encoder network (for FedReplay) with privacy supporting can be also deployed 

similarly.
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We apply RDP (Mironov, 2017) to keep track of the cumulative privacy loss parameters 

(ε, δ) during the training stage. The privacy accountant in RDP (Mironov, 2017) takes the 

sub-sampling rate (b/|D|), and the applied noise scale σ as input, and is also dependent on 

the overall training epochs.

4. Experiments

We applied our generative replay approach to CWT (Chang et al., 2018), and compared the 

proposed CWT+Replay and FedReplay, with several state-of-the-art collaborative learning 

methods (Abadi et al., 2016; Chang et al., 2018; Vepakomma et al., 2018; Hsu et al., 

2019; Zhao et al., 2018). In this section, we will describe the studied dataset, detailed 

simulated data partitions, the compared methods, and quantitative results to demonstrate the 

effectiveness of the proposed generative replay strategy. A privacy analysis for the proposed 

generative replay strategy is also provided at the end of this section.

4.1. Experimental Setup

Dataset.—We evaluated the performance of different collaborative learning methods on 

both medical image classification and regression tasks.

• Image classification task on Diabetic Retinopathy (Retina) Dataset (Kaggle, 

2017). Retina dataset consists of 17563 pairs of right and left color digital retinal 

fundus images. Each image was rated as a scale of 0 to 4 according to the 

presence of diabetic retinopathy, where 0 to 4 indicates no, mild, moderate, 

severe and proliferative diabetic retinopathy, respectively. For simplicity, the 

labels were binarized to Healthy (scale 0) and Diseased (scale 2, 3 or 4) 

in our study, while the mild diabetic retinopathy images (scale 1) between 

healthy and diseased status were excluded. Additionally, only left eye images 

were used, to remove the confusion from using multiple images for the same 

patient. We randomly selected 6000 images (3000 positive (Healthy) and 3000 

negative (Diseased) images) for training, 3000 images (1500 positive and 1500 

negative images) for validation, and 3000 images (1500 positive and 1500 

negative images) for testing. We applied a similar technique that Kaggle Diabetic 

Retinopathy Competition winner Benjamin Graham proposed (Graham, 2015) 

to pre-process these images, i.e., first rescaling images to the same eye radius 

of 300, subtracting the local average color of each image, then cropping to 

remove the image boundaries, and finally resizing to image resolution 256×256 

to serve as the input of deep neural network. Similar to (Chang et al., 2018), the 

prediction accuracy was applied as the evaluation metric.

• Image recognition task on RSNA Pediatric Bone Age Prediction with X-Ray 
image (BoneAge dataset) (Halabi et al., 2019). BoneAge dataset is used to 

estimate the bone age of pediatric patients based on radiographs of their hand. 

It consists of 14236 (mean age, 127 months) labeled and deidentified hand 

radiographs. Only male hands were used in our study, to remove the discrepancy 

between male and female hands. Specifically, we randomly selected 1000 images 

for validation, used 4575 images for training, and applied the original test dataset 
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from BoneAge dataset as the global test dataset. The image resolution of the 

bone age images were resized to 256 × 256, and their intensity values were 

normalized to [0,1]. The mean absolute distance in months was used as the 

evaluation metric.

Data Partitions.—We simulated three sets of data partitions on both Retina dataset 

(Kaggle, 2017) and BoneAge dataset (Halabi et al., 2019), i.e., IID data partitions, non-IID 

data partitions with mild degree of label distribution skewness, and non-IID data partitions 

with high degree of label distribution skewness. We simulated 4 local institutions in each 

set of experiments. The detailed data partitions are shown in Fig. 2 and Fig. 3. We applied 

the mean Kolmogorov-Smirnov (KS) statistics between every two institutions to measure the 

degree of label distribution skewness. KS=0 means IID data partitions, while KS=1 indicates 

identically different label distributions across institutions.

Comparison Methods.—We compared our CWT+Replay and FedReplay with the 

following baseline methods for collaborative learning:

• FedAVG (McMahan et al., 2016), one of the most popular parallelized methods 

for collaborative learning. We set the fractions of institutions that were selected 

for computation in each round to 1, i.e., all the local institutions were involved 

in the computation in each round. In addition, we set the number of iterations 

trained on local institution to ⌊|Dk|/b⌋ in each round, where |Dk| is the quantity of 

training samples in local institution k and b is the local minibatch size.

• CWT (Chang et al., 2018), a type of serial collaborative learning. Following 

(Balachandar et al., 2020), we set the number of iterations trained on local 

institution k to ⌊|Dk|/b⌋ to prevent performance drops from sample size 

variability.

• SplitNN (Vepakomma et al., 2018), can be considered as a serial collaborative 

learning. We choose the peer-to-peer mode version in (Vepakomma et al., 

2018) for collaborative training, where one institution first starts one round of 

training, then cyclically sends the partial of network model weights to the next 

institution for another round of training until model convergence. In SplitNN, 

in addition to the model weights, the intermediate feature maps and gradients 

are also communicated between the institutions and the central server. Similar 

to SplitNN, our CWT+Replay and FedReplay also require transferring the 

intermediate feature maps (latent variables) between the institutions and the 

central server.

• FedAVGM (Hsu et al., 2019), an optimization method for FedAVG (McMahan et 

al., 2016), which applies momentum optimizer on the server (Hsu et al., 2019) to 

improve its robustness to non-IID data.

• FedAVG+Share (Zhao et al., 2018), an optimization method for FedAVG 

(McMahan et al., 2016). FedAVG+Share aims to improve the performance of 

FedAVG on non-IID data by globally sharing a small amount of data between all 

Qu et al. Page 11

Med Image Anal. Author manuscript; available in PMC 2023 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the institutions. Following (Zhao et al., 2018), we distributed 5% globally shared 

data among each institution in our experiments.

• FedProx (Li et al., 2020), an optimization method for FedAVG (McMahan et 

al., 2016), which introduces a proximal term to the local objective to help 

stabilize the model training. We tune the penalty constant μ in the proximal 

term from the candidate set {0.001, 0.01, 0.1, 1} on Split-2 for both Retina and 

BoneAge datasets, and apply the same penalty constant for all the remaining data 

partitions. Specifically, μ is set to 0.001 for both Retina and BoneAge dataset.

Implementation Details.—All the methods described in this paper were implemented 

with Pytorch and optimized with SGD. We used the ResNet34 (He et al., 2016) as 

the backbone network architecture for both the classification and regression tasks in all 

collaborative learning methods. For SplitNN (Vepakomma et al., 2018), we applied the 

data partitions with Split 2 as example, and run multiple experiments on both Retina 

(Kaggle, 2017) and BoneAge dataset (Halabi et al., 2019) to choose the optimized cut 

layer. Specifically, conv1 was applied as the cut layer since it provides the best performance 

in our experiments. We set batch size b to 32, the learning rate η to 0.001 and progressively 

decreased with scale 10 every 35 epochs. For auxiliary generator of CWT+Replay: we 

followed work in (Razavi et al., 2019) to set the hyper parameters for VQ-VAE-2. All the 

images in VQ-VAE-2 were pre-processed to resolution 256×256, and thus the latent layers 

of VQ-VAE-2 were with resolution 32 × 32 and 64 × 64 for top levels and bottom levels, 

respectively. Unlike in (Razavi et al., 2019), we set the batch size to 32, and the learning rate 

ηG to 0.0004 (halved every 150 epochs). Adam (Kingma and Ba, 2014) was applied as the 

optimizer.

We used ResNet34 (He et al., 2016) as the backbone network for FedReplay. Shown in Fig. 

4, we split the ResNet34 (He et al., 2016) into two parts, where the first part (consisting 

of first convolutional, batch normalization, ReLU and max pooling layer) was used as the 

encoder network, while the remaining part was used as the primary classifier network. The 

training of the encoder network is achieved on one of the arbitrary institution with the 

institutional dataset and the desired task. We applied the whole ResNet34 (He et al., 2016) to 

help train the encoder network. Specifically, we trained the ResNet34 (He et al., 2016) with 

the attached institutional dataset on the learned task (classification task for Retina (Kaggle, 

2017) dataset, and regression task for BoneAge dataset (Halabi et al., 2019)) until model 

convergence. The first part of the trained ResNet34 (He et al., 2016) were then used as the 

auxiliary encoder network. The training parameters for the auxiliary encoder network and 

primary classifier were the same to the primary classifier model in CWT+Replay.

4.2. Performance Evaluation

In this section, we evaluated the performance of different collaborative learning methods, 

assessing prediction accuracy for Retina dataset (Kaggle, 2017), and mean absolute error 

(MAE) loss for BoneAge dataset (Halabi et al., 2019). The performance on the centrally 

hosted data was applied as the benchmark performance.
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As shown in Fig. 5, all the compared collaborative learning methods show comparable 

performance to the benchmark centrally hosting method in the case where data at different 

institutions is homogenous (Split 1). However, the performance of the standard CWT 

(Chang et al., 2018), SplitNN (Vepakomma et al., 2018), and FedAVG (McMahan et al., 

2016) drop significantly with the increasing degree of label distribution skewness in data 

across institutions. For example, the MAE loss of CWT (Chang et al., 2018), SplitNN 

(Vepakomma et al., 2018), and FedAVG (McMahan et al., 2016) on BonAge dataset (Halabi 

et al., 2019) increase from 6.88 ± 0.04, 6.80 ± 0.05, 7.26±0.07 on data Split 1 to 27.88±2.82, 

30.28±1.47, 30.87±0.07 on data Split 3, respectively.

The serial collaborative learning methods, such as CWT (Chang et al., 2018) and SplitNN 

(Vepakomma et al., 2018), always suffer from catastrophic forgetting when heterogeneity 

exists in data distributions across institutions. The model tends to abruptly forget what 

was previously learned information when it transfers to next institution. For example, in 

the Split 3 experiment of Retina dataset (Kaggle, 2017), when transferring the model 

trained in Inst2 to the next Inst3, the model learned in Inst 3 tends to forget what was 

previously learned information from Inst2, and the prediction accuracy on Inst2 is dropped 

from original 87.7% to 69.0% (see the second row in Table 1). While for parallelized 

methods, such as FedAVG (McMahan et al., 2016), the data used for training at each local 

institution is sampled from an institution-specific distribution, which is a biased estimator 

of the central target distribution if heterogeneity exists. The learned weights in different 

institutions will diverge severely when high skewness exists in data across institutions, and 

the synchronized averaged central model will lose accuracy or even completely diverge 

(Zhao et al., 2018). The existing optimized methods, such as FedAVGM (Hsu et al., 2019), 

FedProx (Li et al., 2020) and FedAVG+Share (Zhao et al., 2018) may help alleviate the 

model divergence problem, but they still suffer from performance drops in highly skewed 

non-IID data partitions, such as the MAE loss 21.81 ± 3.71 and 15.63 ± 3.43 of FedAVGM 

(Hsu et al., 2019) and FedAVG+Share (Zhao et al., 2018) on Split 3, compared to the MAE 

loss 7.49 ± 0.032, and 7.99 ± 0.14 on homogenous Split 1. As a comparison, our generative 

replay strategy helps generate synthetic images closely resembling the studied participants 

(CWT+Replay) or provide accessible to the union of the latent variables (FedReplay), thus 

can avoid the performance drops even on highly skewed heterogeneity cases.

4.3. Application to a Real-World Federated Dataset

We further evaluated our method on a real-world federated dataset, International Brain 

Tumor Segmentation (BraTS) 2017 challenge (Menze et al., 2014; Bakas et al., 2017), and 

compared it to the state-of-the-art collaborative learning methods CWT (Chang et al., 2018), 

FedAVG (McMahan et al., 2016), and FedAVG+Share (Zhao et al., 2018). The performance 

on the centrally hosted data was applied as the benchmark performance.

BraTs 2017 is a multi-institutional pre-operative multimodal MRI scans of glioblastoma 

(GBM/HGG) and lower grade glioma (LGG). Each subject consists of four modal 

MRI scans: a) native (T1), b) post-contrast T1-weighted, c) T2-weighted, and d) T2 

Fluid Attenuated Inversion Recovery (T2-FLAIR) volumes, and an associated voxel-level 

annotation of “tumor core”, “enhancing tumor”, and “whole tumor”. We used HGG patients 
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in our study, applied the T2-FLAIR modality as the input, and evaluated on the binary 

whole tumor segmentation task. We used the training dataset of BraTs 2017 (consists of 210 

subjects collected from 10 different institutions2) to form our institutional training and test 

datasets. Specifically, we random selected 45 subjects as the test dataset, used the remaining 

165 subjects for the training dataset. We run with three trials and applied the Dice Similarity 

Coefficient (DSC) (Dice, 1945) to measure similarity between the predicted results and the 

ground truth mask label.

We used U-net (Ronneberger et al., 2015) pre-trained on brain MRI segmentation dataset 

(Buda et al., 2019) as the baseline network. U-net consists of four levels of blocks and a 

bottleneck layer with 512 convolutional filters. Each block contains an encoding part with 

two convolutional layers (followed by batch normalization and ReLU activation function) 

and one max pooling layer, and a decoding part with two convolutional layers (followed 

by batch normalization and ReLU activation function) and an up-convolutional layer. Skip 

connections are applied between each encoding layer and its corresponding layer in the 

decoding part. For FedReplay, we split the U-net at the first encoding block, applied the first 

encoding as the auxiliary encoder network, used the remaining part as the primary classifier. 

We trained the auxiliary encoder on a institution that contains the largest number of subjects, 

and then distributed the auxiliary encoder to all the rest institutions for feature extraction. 

We extracted three consecutive axial slices as the input, all the images were resized to 256 × 

256 and then cropped to 224 × 224. All our experiments used a batch size of 32 and learning 

rate 1e-4 with Adam optimizer. All the models were trained with total 35 communication 

rounds.

We report mean DSC over 10 institutions trained with CWT, FedAVG, FedAVG+Share, 

and the proposed FedReplay on BraTs 2017 in Figure 6. FedReplay outperforms all the 

competing collaborative learning methods on the real-world federated dataset, achieves 

comparable performance to the benchmark method (Central) on the centrally hosted data, 

i.e., 85.4% of our FedReplay as a comparison to 85.3% of Central.

4.4. Privacy Analysis

4.4.1. Privacy Analysis with Differential Privacy—In this section, we applied 

CWT+Replay as an example to demonstrate the capability of the proposed strategy 

in providing a provable differential privacy guarantee without too much sacrifice in 

performance. We leveraged RDP (Mironov, 2017) to keep track of the cumulative privacy 

loss parameters (ε, δ) during the training stage. In RDP (Mironov, 2017), the privacy 

accountant is directly relevant to the sub-sampling rate (b/|D|), the applied noise rate σ, and 

the total training epochs. In our experiments, we set the noise rate to 0.7. Fig. 7 depicts the 

ε value as a function of epochs for different train sample sizes and various target δ. Here we 

set the target δ to 1/|D| following (Abadi et al., 2016).

As seen in Fig. 7, with larger institutional training sample size, e.g., when |D| = 10000, a 

maximum ε value of 5 allows for 300 epochs of training and δ = 1−5, while with decreasing 

training sample size, the privacy accountant is also increasing. The training sample size 

2We thank Spyridon Bakas, one of the authors of BraTs challenge, for providing real institutional details of BraTs 2017.
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|D| in our BoneAge prediction experiment (Halabi et al., 2019) for each institution is 

1144, and thus δ = 8.7−4. We set the maximum training epochs to 225 in our BoneAge 

image generation task. Thus, when a maximum δ of value 8.7−4 was required, we obtained 

an ε value of 17.8 in our image generation task. Table 2 shows the MAE loss of the 

CWT+Replay with and without differential privacy on Split 3 of Bone Age dataset (Halabi 

et al., 2019), respectively. For fair comparison, we only applied differential privacy on the 

training of our image synthesis network. Incorporated with differential privacy, our image 

generation network is able to synthesize images that resembling the studied participants 

while not revealing information from the real studied participants. Table 2 indicates that 

our CWT+Replay still achieves promising results even when the auxiliary image synthesis 

network is developed under a provable differential privacy guarantee, e.g., 9.84±0.02 for 

our result compared to the state-of-the-art result 15.63 ± 3.43 on Split 3 of FedAVG+Share 

(Zhao et al., 2018).

4.4.2. Data Leakage—We further evaluate the privacy protection capability of 

FedReplay by comparing the quality of the recovered images from FedAVG and FedReplay 

according to Eq. 1 and Eq. 2. We apply the Peak Signal-to-Noise Ratio (PSNR), a ratio 

between the maximum value (power) of an image and the mean squared error between the 

target image and recovered image. We measure the PSNR of the reconstruction of 224 × 224 

Retina images over a random selected 50 images of the test dataset. The higher the PSNR 

value, the better the reconstructed image quality. We apply AdamW to optimization Eq. 1 

and Eq. 2, and all optimization runs up to 20,000 iterations.

We use ResNet34 as the baseline network. ResNet34 consists of several sequential Residual 

blocks and can be listed as {Conv1, Layer1, Layer2, Layer3, Layer4, FC}. We evaluate three 

sets of auxiliary encoder network (extracted from ResNet34) for FedReplay: 1) Conv1: a 

Convolutional layer following up a ReLu, a batch normalization and a max pooling layer, 2) 

Layer2: Conv1 with two residual blocks, and 3) Layer 3: Conv1 with three Residual blocks.

Table 3 compares the prediction accuracy and the privacy protection capability of FedAVG 

and the proposed FedReplay on data partition Split-3 of Retina dataset. It is not easy to 

reconstruct a recognizable image from both FedAVG and FedReplay under current attacker 

technique when the input image has high resolution(224×224), as the low PSNR shown in 

Table 3 and no clear patterns shown in Fig. 8. In addition, the flexibility design of the dual 

model architecture of our FedReplay allows the room for better privacy protection capability 

by applying a deeper network as the auxiliary encoder while only slightly impeding the final 

prediction performance. See the nearly unrecognizable results from Layer3 shown in Fig. 7 

and the decent prediction performance 75.00% shown in Table 3 (compared to 70.65% of 

FedAVG).

5. Conclusion

In this paper, we present a novel generative replay strategy to address the challenge of data 

heterogeneity across institutions in collaborative learning. Our generative replay strategy is 

flexible to use. It can either be incorporated into existing collaborative learning methods to 

improve their capability of handling data heterogeneity across institutions, or be used as a 
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novel and separate collaborative learning framework (FedReplay) to reduce communication 

cost and mitigate the privacy cost. Unlike existing methods that either design sophisticated 

ways to control the optimization strategy or share partial global data to mitigate the 

performance drops from data heterogeneity across institutions, our generative replay strategy 

with differential privacy supporting is a flexible and straightforward alternative solution, 

which provides new insight for the development of collaborative learning methods in real 

applications.

One concern of our generative replay technique is that the task performance is heavily 

dependent on the quality of the generator when it is applied to existing collaborative learning 

methods. However, this is also largely alleviated by the progress of training generative 

models. In addition, our FedReplay relaxes this constraint by training a primary model based 

on the extracted latent variables, and thus do not need to train a high quality generator for 

synthesizing images that closely resembles the input images. As a contrast, the training of 

the auxiliary encoder network for FedReplay can be easily achieved on one of the arbitrary 

institutions with the learned task.
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Figure 1: 
Two ways of applying the proposed generative replay strategy to address the challenge of 

data heterogeneity among institutions that participate in collaborative learning. We apply an 

image classification task as the desired task. Left: Illustration of incorporating the proposed 

generative replay strategy into existing collaborative method CWT (Chang et al., 2018) 

(referring to CWT+Replay). Right: Illustration of applying the proposed generative replay 

strategy to construct an individual collaborative learning framework FedReplay.
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Figure 2: 
Three sets of simulated data partitions on Retina dataset (Kaggle, 2017). Here labels 1 and 

2 indicate positive (Healthy) and negative (Diseased) labels, respectively. Large KS indicates 

high degree of label distribution skewness.

Qu et al. Page 20

Med Image Anal. Author manuscript; available in PMC 2023 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3: 
Three sets of simulated data partitions on BoneAge dataset (Halabi et al., 2019). The 

histogram of labels for each institution is shown.
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Figure 4: 
Detailed network architecture of FedReplay when ResNet34 (He et al., 2016) is used as the 

backbone network. We omit ReLu, batch normalization and max pooling layers that follow 

each convolution layer. We split the ResNet34 (He et al., 2016) into two parts, where the 

first part was used as the auxiliary encoder network, and the remaining part was used as the 

primary classifier network.
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Figure 5: 
Performance evaluation on Retina dataset (Kaggle, 2017) and BoneAge dataset (Halabi et 

al., 2019). Mean and standard deviation test accuracies (the higher the better) and MAE loss 

(the lower the better) were obtained with 4 runs. We use the same setting for the following 

experiments.
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Figure 6: 
Mean predicted dice similarity coefficient (DSC) over 10 institutions trained with CWT, 

FedAVG, FedAVG+Share, and the proposed FedReplay on BraTs 2017, as a comparison to 

the benchmark method (Central) on the centrally hosted data. Our FedReplay outperforms 

all the competing collaborative learning methods on the real-world federated dataset.
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Figure 7: 
The ε value as a function of epochs for different train sample sizes. The target δ is set to 

1/|D| following (Abadi et al., 2016), and |D| is the train sample size.
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Figure 8: 
Reconstruction of two images from FedAVG with deep gradient inversions and our 

FedReplay with model inversion attacks. We experiment with three neural network 

architectures for the auxiliary encoder of FedReplay, from simple Conv1 layer, to several 

Residual blocks. FedReplay shows similar privacy protection capability to the baseline 

FedAVG when shallow network is applied as the encoder network, and superior protection 

capability when deeper neural network is applied (Ours Layer3).
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Table 1:

Catastrophic forgetting phenomenon of CWT (Chang et al., 2018) on non-IID data partitions Split 3 of Retina 

dataset (Kaggle, 2017). The prediction accuracy on 4 institutional train dataset from models achieved after one 

round of training on each institution is shown. In this experiment, the model was trained in cyclical order: 

Inst1→ Inst2 → Inst3 → Inst4 → Inst1 …

Data╲Model Inst1 Inst2 Inst3 Inst4

Inst1 95.6% 91.0% 69.9% 51.7%

Inst2 83.4% 87.7% 69.0% 60.0%

Inst3 23.4% 53.7% 93.0% 91.0%

Inst4 9.4% 41.8% 95.7% 97.7%
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Table 2:

MAE loss of CWT+Replay on BoneAge dataset (Halabi et al., 2019) with and without differential privacy 

constrain during image synthesis training.

Split 1 Split 2 Split 3

No privacy 7.60 ± 0.03 7.55 ± 0.06 7.84 ± 0.09

With privacy 7.89 ± 0.05 8.39 ± 0.26 9.84 ± 0.02
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Table 3:

Comparison of FedReplay and FedAVG in terms of prediction accuracy and average restoration performance 

on Split-3 of Retina datasets. FedReplay achieves better prediction accuracy on heterogenous data partitions 

while at the same time shows similar or even better patient privacy capability (worse reconstruction image 

quality) than FedAVG.

FedAVG Ours (Conv1) Ours (Layer 2) Ours (Layer 3)

ACC 70.65 ± 0.83 77.20 ± 0.13 76.48 ± 0.63 75.00 ± 0.98

PSNR 11.82 ± 1.86 11.64 ± 0.98 10.48 ± 1.23 9.22 ± 1.28
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