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Caspase recruitment domain and membrane-associated guanylate kinase-like

protein 3 (CARMA3) is a scaffold protein widely expressed in non-

hematopoietic cells. It is encoded by the caspase recruitment domain

protein 10 (CARD10) gene. CARMA3 can form a CARMA3-BCL10-MALT1

complex by recruiting B cell lymphoma 10 (BCL10) and mucosa-associated

lymphoid tissue lymphoma translocation protein 1 (MALT1), thereby activating

nuclear factor-kB (NF-kB), a key transcription factor that involves in various

biological responses. CARMA3 mediates different receptors-dependent

signaling pathways, including G protein-coupled receptors (GPCRs) and

receptor tyrosine kinases (RTKs). Inappropriate expression and activation of

GPCRs and/or RTKs/CARMA3 signaling lead to the pathogenesis of human

diseases. Emerging studies have reported that CARMA3 mediates the

development of various types of cancers. Moreover, CARMA3 and its partners

participate in human non-cancer diseases, including atherogenesis, abdominal

aortic aneurysm, asthma, pulmonary fibrosis, liver fibrosis, insulin resistance,

inflammatory bowel disease, and psoriasis. Here we provide a review on its

structure, regulation, and molecular function, and further highlight recent

findings in human non-cancerous diseases, which will provide a novel

therapeutic target.
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Introduction

CARMA3 is a member of the CARMA family, which includes CARMA1, CARMA2,

and CARMA3 proteins. The three CARMA proteins are encoded by different genes and

expressed in different tissues. CARMA1 is encoded by CARD11 and is mainly expressed

in lymphoid and hematopoietic tissues, and CARMA2 is encoded by CARD14 and

expressed in mucosal and skin tissues, while CARMA3 is encoded by CARD10 and is
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widely expressed in tissues other than hematopoietic cells (1).

Despite different expression patterns, CARMA family members

appear to share functional similarity. They are regarded as

molecular scaffolds that assist in recruiting and assembling

signal transduction molecules. All three CARMA proteins can

recruit BCL10 and MALT1 to form the CARMA-BCL10-

MALT1 complex (commonly known as CBM), which regulates

NF-kB activation and is involved in the occurrence of various

diseases (1). CARMA1 is involved in both innate and adaptive

immune systems (2) and is crucial for antigen receptor-

dependent lymphocyte activation and NF-kB signaling (3–5).

Both CARMA1 deficiency and mutations are associated with

immunodeficiency (6–8). CARMA1 mutations can also cause

atopic diseases, B cell expansion and susceptibility to B cell

lymphoma (8–11). CARMA2 is the less-studied CARMA

protein family member. CARMA2 mutations are associated

with inflammatory skin disorders, especially psoriasis (12). In

cancer cells, CARMA2 knockout leads to inhibition of cell

proliferation and migration and decrease in cell survival (13,

14). The function of CARMA3 is similar to that of other

CARMA proteins, it mediates GPCRs- and RTKs-induced

signaling pathways, which are linked to human disease

pathogenesis. Despite its potential significance, a discussion on

the function of CARMA3 in non-cancer diseases is lacking.

Hence, this study aims to review an understanding of the

molecular function, mutation, and regulation of CARMA3 and

highlight recent findings in non-cancer diseases.
Structural features of CARMA3

CARMA3, also known as CARD10 or BCL10-interacting

membrane protein 1 (Bimp1), was discovered in 2001 (15). The

CARD10 gene is located on human chromosome 22q13.1 and

consists of 20 exons. Its mRNA and coding sequence (CDS)

lengths are 4111nt and 3099nt respectively. It encodes a 1032-

amino acid protein, which comprises five functional domains: a

caspase recruitment domain (CARD) domain, a coiled-coil (CC)

domain, a PDZ domain, an SH3 domain, and a guanylate kinase-

like (GUK) domain (15), as shown in Figure 1. The CARD

domain is a protein module composed of six or seven

antiparallel alpha helices. It is necessary for BCL10

recruitment, which is essential for NF-kB signaling (15). Close

to CARD domain is a CC domain, it is composed of one or more

alpha-helical peptides that are intertwined in a super-helical

fashion (16). CC domain can mediate self-association, leading to

the aggregation and activation of BCL10 in response to upstream

signals (15, 17). The Membrane-associated GUK (MAGUK)

domain comprises a PDZ domain, SH3 domain, and GUK

domain (18). The PDZ and SH3 domains of CARMA3 are

essential for NF-kB activation, which is not affected by deletion

of GUK domain (15).
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Regulation of CARMA3

Although the structure of CARMA3 has been elucidated, the

regulation of CARMA3 remains largely unknown. Several

microRNAs (miRNAs) reportedly play important roles in

regulating CARMA3 levels (Figure 1A). miRNA146a is

upregulated in the serum and tissues of abdominal aortic

aneurysm (AAA) patients and inhibits CARMA3 expression in

human umbilical vein endothelial cells (19). It inhibits NF-kB
activation by targeting CARD10 through negative feedback (20),

and miR-146a knockdown significantly suppressed

lipopolysaccharide-induced cell migration and tube formation

(21). Silencing of miR-146a/b that directly targets CARD10,

resulted in inflammation in psoriatic skin (22). miR-181b has

also been identified as an important regulator of arterial

thrombosis that directly targets CARD10 in endothelial cells

(ECs). Knockdown of CARMA3 reduces thrombin-induced

gene expression and NF-kB signaling, while overexpression

can effectively rescue miR-181b-mediated inhibition of NF-kB
target genes, such as VCAM-1, ICAM-1, and E-SELECTIN (23).

Additionally, CEBPE, a member of the CCAAT/enhancer

binding protein (C/EBP) family of transcription factors,

regulates CARD10 transcription (24), as shown in Figure 1A.

Chromatin immunoprecipitation-polymerase chain reaction

(ChIP-PCR), luciferase reporter assay and electrophoretic

mobility shift assay confirmed that CEBPE binds regulatory

elements upstream of CARD10 (-1.5 kb and -7kb). In immature

granulocytes from CEBPE-knockout mice, the expression of

CARMA3 was significantly lower than that at the same stage

of differentiation in wild-type mice (24).

Some studies reported that A20 regulated the NF-kB
signaling pathway and downregulated proinflammatory

cytokines expression (25–27). A20 negatively regulates

CARMA3- and BCL10-mediated NF-kB activation via its

deubiquitylation activity (28). It directly deubiquitylates IKKg/
NEMO and/or TRAF6, thereby suppressing NF-kB activation by

perturbing assembly of the complex comprising CARMA3,

BCL10 and IKKg/NEMO (28).

These results indicate that CARMA3 is regulated at the

transcriptional and CBM complex formation level by different

regulators. All the CARMA3 regulators reported have been listed

in Table 1.
CARMA3 in GPCRs- and RTKs-
induced NF-kB activation

NF-kB is a transcription factor that involves in cell adhesion,

cell proliferation, cell survival, immune responses, and

inflammatory responses (29–31). In the dormant state, NF-kB
is sequestered in the cytoplasm by interacting with the inhibitor
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of nuclear factor kB (IkB), which masks the nuclear localization

signal of NF-kB. Upon exposure to stimuli, IkB kinase (IKK)

complex is activated, leading to phosphorylation and following

ubiquitination-mediated degradation of IkB, then NF-kB is

released and translocated to the nucleus where it initiates

transcription of its target genes (29, 31, 32). The IKK complex

comprises three subunits: two protein kinase subunits, IKKa
and IKKb (or IKKl and IKK2), and an essential regulatory

subunit, IKKg (also known as NF-kB essential modulator,
Frontiers in Immunology 03
NEMO) (32, 33). The phosphorylation of IKKa/b and K63-

linked polyubiquitination of NEMO is indispensable when

activating the IKK complex (32, 34, 35). CARMA3 is a scaffold

molecule involved in the activation of NF-kB through

ubiquitination of NEMO (36). Upon stimulation, CARMA3,

through its N-terminal effector CARD domain, recruits two

downstream signaling molecules, BCL10 and MALT1, to form a

CBM complex (37), which participates in GPCRs- and RTKs-

induced NF-kB signaling pathways (Figure 2).
TABLE 1 List of CARMA3 regulators.

Regulators Regulating effect References

microRNA-146a/b Transcription inhibition (19–22)

microRNA-181b Transcription inhibition (23)

CEBPE Transcriptional activation (24)

A20 NF-kB signaling inhibition (25–28)
B

A

FIGURE 1

Gene structure of CARD10 and protein structures of CARMA1, CARMA2, and CARMA3. (A) The CARD10 gene consists of 20 exons. Its mRNA and
CDS lengths are 4111 and 3099nt respectively. CEBPE is a transcription factor, that targets the promoter region of CARD10. microRNA -146a/b
and microRNA-181b regulate CARD10 by acting on the 3-’UTR of CARD10 mRNA. (B) All the three CARMA proteins are comprised of five
functional domains: a CARD domain, a CC domain, a PDZ domain, an SH3 domain, and a GUK domain.
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GPCRs are transmembrane receptors and play a vital role in

various cell process signaling activated by a variety of ligands

(38). Several ligands, such as thrombin, CXCL8/IL8,

lysophosphatidic acid (LPA), and angiotensin II (Ang II), have

been shown to induce NF-kB activation (36, 39–43). GPCR-

induced NF-kB activation is defective in CARMA3-deficient

mouse embryonic fibroblasts (MEFs), indicating that CARMA3

is required for GPCR-induced NF-kB signaling pathway (39). In

vascular cells, angiotensin II type I receptor (AGTR1), a member

of the GPCR superfamily, induces the activation of NF-kB by

triggering the CBM signalosome, leading to vascular disease

(43). Additionally, the CBM complex is essential for the

activation of Ang II-induced NF-kB in hepatocytes. It is

responsible for transmitting the signal from AGTR1 to the

IKK complex and activating NF-kB through ubiquitination of

NEMO (36). However, how CARMA3 connects to GPCRs and

regulates NF-kB signaling pathway remains elusive. Sun and Lin

demonstrated that CARMA3 can form a complex with b-
Frontiers in Immunology 04
arrestin 2, which functions as a positive regulator by recruiting

CARMA3 to LPA receptors, leading to NF-kB activation (40). In

addition, a DEP domain-containing protein, DEPDC7, was

identified as a CARMA3-binding partner (44), which could be

a bridge linking activated GPCRs to the CBM signalosome.

RTKs constitute a class of transmembrane receptors that are

involved in mediating various cellular responses. Epidermal

growth factor (EGF) and vascular endothelial growth factor

(VEGF) are known to induce NF-kB activation (31, 45, 46). In

MEFs, knockdown of CARMA3 impairs the activation of the

IKK complex, resulting in a defect in EGFR-induced IkBa
phosphorylation and NF-kB activation, which indicates that

CARMA3 is essential to the activation of EGFR-induced NF-

kB (47). Besides, CBM complex plays a key role in cell

proliferation, migration, and invasion (47, 48). To define the

mechanism of EGFR-induced NF-kB activation, Jiang and Lin

performed high-throughput screening and successfully

identified that TMEM43 could bind to CARMA3 and act as a
FIGURE 2

Schematic overview of GPCR/RTK-CARMA3 signaling pathway leading to NF-kB activation. GPCRs and RTKs bind the ligands and activate the
downstream signaling pathway. Upon activation, CARMA3 forms a complex with BCL10 and MALT1, resulting in K63-linked ubiquitination of
IKKg. This event activates IKK complex, which triggers NF-kB activation by phosphorylation of IkB.
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linker molecule connecting EGFR to CARMA3 and the

CARMA3-containing signaling complex, activating the IKK

complex (45). Altogether, these studies reveal that CARMA3 is

essential for GPCR- and RTK-induced NF-kB activation.
CARMA3 in viral infections and DNA
damage-induced NF-kB activation

CARMA3 is also involved in viral infections and DNA damage.

CARMA3 contributes to antiviral response by regulating RIG-I/

MAVS-induced IRF3 and NF-kB activation. Upon RIG-I

activation, MAVS is activated in the early stages of viral infection,

activating IKKa/IKKb/NEMO in a CARMA3-dependent manner.

CARMA3 binds to MAVS via the C-terminal GUK domain and

blocks downstream activation of IRF3 by preventing the formation

of MAVS oligomerization. In the late stages of virus infection,

CARMA3 is degraded by the proteasome, releasing MAVS to form

high-molecular-weight aggregates and activate IRF3 (49).

Moreover, CARMA3 mediates RIG-I/MAVS-induced NF-kB
activation. In MEF cells, knockout of CARMA3 partially inhibited

NF-kB activation following vesicular stomatitis virus (VSV)

infection. When attacked by VSV or influenza A virus (IAV),

CARMA3-deficient mice showed milder disease symptoms than

wild-type (WT) mice because of less inflammatory response and

stronger ability to clear the infected virus, indicating that CARMA3

plays a negative role in the antiviral innate immune response

(MAVS-induced IRF3 activation) but a positive role in the pro-

inflammatory response (MAVS-induced NF-kB activation) (49).

CARMA3 mediates DNA damage-induced NF-kB signaling

pathway by recruiting TRAF6 in a PKC-independent

mechanism (50). After doxorubicin treatment, the number of

dead cells in CARMA3-deficient MEFs was 2-fold than that of

WT control cells, indicating that CARMA3 is essential to DNA

damage-induced apoptosis. To investigate the role of CARMA3

in DNA damage, Zhao et al. monitored the survival of WT and

CARMA3-deficient mice after 12 Gy irradiation. All WT mice

survived within 14 days after irradiation, whereas approximately

23% of CARMA3 knockout mice died, suggesting that CARMA3

partially protects mice from the effects of irradiation.

Furthermore, CARMA3 knockout mice had impaired tissue

repair and cell proliferation after irradiation, indicating that

CARMA3 plays a protective role in cell survival (50). This study

suggests that CARMA3 plays a vital role in DNA damage-

induced NF-kB signal ing pathway and provides a

molecular target.
CARMA3 in cancers

CARMA3, an oncoprotein overexpressed in various cancers,

participates in cancer cell proliferation, migration, invasion, and
Frontiers in Immunology 05
apoptosis; it is related to the tumor node metastasis (TNM)

stage, tumor status and grade, metastasis, and poor prognosis

(51–59). CARMA3 has similar function in various cancers. In

bladder cancer, CARMA3 expression is associated with tumor

status and grade. CARMA3 knockdown leads to decrease in cell

proliferation and NF-kB signaling (51), and to inhibition of cell

migration and invasion via blocking b-catenin signaling

pathway (52). In lung cancer, CARMA3 is overexpressed and

related to the TNM stage and tumor status. CARMA3 deficiency

leads to inhibition of tumor cell proliferation and invasion, and

to cell cycle arrest at the G1/S boundary (53). Moreover,

CARMA3 promotes cell invasion and migration, and is

positively correlated with lung cancer stemness, metastasis,

and poor survival outcomes (54). Similar results have been

observed in hepatocellular carcinoma (56), colorectal cancer

(57, 58), ovarian cancer (59), breast cancer (60, 61), and renal

cell carcinoma (62–64). In conclusion, CARMA3 is involved in

the development and pathogenesis of various types of cancers.

These findings suggest that CARMA3 would be a promising

therapeutic target for cancer.
CARMA3 in non-cancer diseases

Over the past decades, a lot of studies have indicated the

importance of CARMA3 in non-cancer diseases. Here, we

illustrate the role of CARMA3 in non-tumor diseases from

two aspects: CBM complex and CARMA3 mutations.
CBM complex in non-cancer
diseases

CBM complex in cardiovascular diseases

Inflammation is a key characteristic in the pathogenesis of

cardiovascular diseases, including atherosclerosis, hypertension,

and abdominal aortic aneurysms (65). In the inflammatory

process, blood vessels and perivascular connective tissue are

vital regulators, and congestion and increased capillary

permeability are important features of inflamed tissues (66). In

murine endothelial cells, CARMA3 assembles BCL10 and

MALT1 to form a CBM signalosome, which triggers the

activation of NF-kB induced by CXCL8/IL8, an essential

chemokine involved in pro-angiogenic and pro-inflammatory

processes. This process controls VEGF expression and promotes

the autocrine activation of VEGF receptors (46). The CBM

complex also mediates the activation of thrombin-induced NF-

kB in murine endothelial cells, and CARMA3 deficiency

completely blocks the thrombin-induced phosphorylation of

IkB (41). Using siRNA to disrupt the CBM signalosome, the

thrombin-responsive induction of adhesion molecules
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intercellular adhesion molecule 1 (ICAM1) and vascular cell

adhesion molecule 1 (VCAM1), which are relevant to

atherogenesis, are dramatically downregulated. In addition,

thrombin-induced monocyte/endothelial adhesion was also

reduced. With this, the CBM complex plays a key role in

proximal steps of NF-kB activation as well as in downstream

regulation of NF-kB target genes (41). Moreover, the CBM

complex triggers the Ang II-dependent NF-kB inflammatory

signaling cascade in endothelial and vascular smooth muscle

cells, and then induces pro-inflammatory signals in the vessel

wall, which is a vital factor of atherogenesis (43). BCL10 and

MALT1 are also important in the activation of Ang II-induced

NF-kB, using siRNA to knockdown BCL10 or MALT1, Ang II-

induced phosphorylation of IkB is completely ablated. In

BCL10-deficient mice, the extent of atherosclerosis is

significantly reduced, and the incidence and severity of

abdominal aortic aneurysms are significantly lower than those

observed in the presence of BCL10 (43). In addition, several pro-

inflammatory mediators, which are associated with

atherogenesis, such as the SCF/c-Kit ligand, CD40 ligand,

CXCL6, IL-1a, and Eotaxin/CCL11, have lower serum levels

in BCL10-deficient mice (43). These results indicate that BCL10-

deficient mice are dramatically protected against Ang II-induced

atherosclerosis and abdominal aortic aneurysms. In addition,

MALT1 protease activity is also critical in vascular

inflammation, it mediates thrombin-induced endothelial

permeability and the activation of MALT1 protease disrupts

endothelial capillary tubes (67). These studies indicated the

importance of CARMA3 and its binding partners in

cardiovascular diseases.
CBM complex in pulmonary diseases

Asthma is broadly defined as airway inflammation

implicated in hyperresponsiveness and mucus hypersecretion.

NF-kB plays a key role in the pathogenesis of asthma, including

airway epithelial barrier dysfunction, airway hyperreactivity and

remodeling, chemokine and cytokine production (68–71).

CARMA3 is highly expressed in human airway epithelial cells

and mediates LPA-induced NF-kB activation (72). It is

necessary for the production of pro-inflammatory cytokines

and chemokines, such as CC-chemokine ligand 20 (CCL20)/

macrophage inflammatory protein (MIP)-3a, granulocyte-

macrophage colony-stimulating factor (GM-CSF), thymic

stromal lymphopoietin (TSLP), IL-8, IL-25, and IL-33, which

are significantly upregulated in patients with allergic pulmonary

inflammation or asthma in response to inhaled stimuli (72–74).

In addition, in an asthma mouse model induced by ovalbumin,

deletion of CARMA3 in airway epithelial cells (AECs) alleviated

allergic airway inflammation (73). The CARMA3-deficient

murine model not only attenuated the production of pro-

inflammatory cytokines and chemokines, but also impaired
Frontiers in Immunology 06
dendritic cell (DC) recruitment, DC maturation, DC

migration, Ag processing, and resultant T cell proliferation

(73, 74). After CARMA3-deficient mice were stimulated with

Alternaria alternata, the total number and percentage of type 2

innate lymphoid cells (ILC2) in the lungs were reduced,

suggesting that CARMA3 mediates the accumulation of ILC2

in the lungs after allergen exposure, which may be one

mechanism by which type 2 cytokine production is attenuated

in the lung and airway inflammation in CARMA3-deficient mice

(74). Additionally, CARMA3 plays a vital role in pulmonary

fibrosis (75). Knockdown of CARMA3 attenuates bleomycin-

induced inflammation and fibrosis and protects the lung from

inflammation, fibrosis, collagen fibril deposition, alveolar

epithelial cell destruction, and pathological airway remodeling

(75). In conclusion, CARMA3 is recognized as a pro-

inflammatory molecule involved in lung inflammation, such as

asthma and pulmonary fibrosis.
CBM complex in hepatic diseases

In hepatocytes, palmitate metabolism stimulates the CBM

complex to trigger NF-kB-mediated inflammation in the absence

of receptor engagement. siRNA-mediated depletion of CARMA3

effectively blocked palmitate-dependent IkBa phosphorylation.

Free fatty acids (FFA), which are essential for the pathogenesis of

insulin resistance, are increased in the serum of obese people.

Deletion of BCL10 in mice eliminates hepatic NF-kB activation

induced by a high-fat diet, resulting in mitigated inflammation

and protection from insulin resistance (76).

Ang II is involved in tissue-repairing process by mediating

inflammatory cell infiltration, myofibroblast proliferation, and

collagen synthesis after liver injury (77). But in chronic liver

injury, Ang II induces pathologic liver fibrosis by activating NF-

kB (36). Knockout of CARMA3 effectively disrupts the

activation of Ang II-induced NF-kB signaling pathway,

preventing the occurrence of liver fibrosis (36). However, in an

autoimmune hepatitis model induced by Con A, deletion of

CARMA3 leads to aggravated liver injury and liver sinusoidal

endothelial cells (LSECs) damage, indicating that CARMA3

plays a protective role in the process, which is different from

previous studies. CARMA3 exerts its protective effect by

preserving mitochondrial integrity, but the detailed

mechanisms is still unknown (78). These results indicate that

CARMA3 has diverse characters in different hepatic diseases.
CBM complex in other non-cancer
diseases

CARMA3 is widely expressed in various tissues such as the

heart, lung, liver, intestine, and kidney (29). However, current

research on CARMA3 in non-cancer diseases mainly focuses on
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the cardiovascular system and lung diseases, with relatively few

studies on diseases of other systems. Herein, we briefly overview

the role of CARMA3 in other disorders.

In intestinal epithelial cells (IECs), CBM signalosomes

activate the NF-kB signaling pathway triggered by platelet-

activating factor (PAF) and play a pivotal role in IL-8

production (79). Subsequently, Dudeja et al. demonstrated that

Lactobacillus acidophilus, a probiotic, could eliminate PAF-

induced inflammation in IECs by blocking PAF-induced NF-

kB activation and IL-8 production. In addition, Lactobacillus

acidophilus culture supernatant (LA-CS) can attenuate the PAF-

induced elevation of BCL10 mRNA and protein levels, BCL10

promoter activity, BCL10 interaction with MALT1, and PAF-

induced ubiquitination of IKKg (80). These results suggest a

novel target complex for the treatment of PAF-induced

inflammation in IECs.

In normal human epidermal keratinocytes (NHEKs),

CARMA2 is more investigated, it is expressed in keratinocytes

and its mutations increase the risk of inflammatory skin disease

(81). Recently, a CARMA3-dependent tonic signalosome was

described, which activates MALT1 protease activity and

mediates IL-17/TNF-a−induced keratinocyte inflammatory

response (82). In proliferating NHEKs, the level of CARMA3

is 10-fold higher than that of CARMA2. During differentiation,

CARMA2 was upregulated and CARMA3 was downregulated,

indicating that CARMA3 may be involved in keratinocytes,

particularly during their proliferation (82). Subsequently,

knockdown of MALT1 or CARMA3 in proliferating NHEKs

abrogated the cleavage of MALT1 substrates, indicating that

CARMA3 is fundamental to MALT1 protease activity (82). In

addition, knockout of CARMA3 led to downregulation of serpin

family B member 2 (SERPINB2) at both the mRNA and protein

levels, which is positively related to psoriasis severity (22). These

results suggest the importance of CARMA3 in psoriasis.
CARMA3 mutations in non-cancer
diseases

Over the past few years, mutations in CARD11 and CARD14

have been studied extensively. CARD11 mutations are linked to

lymphoproliferative disorders and immunodeficiencies, whereas

CARD14 variants are associated with several inflammatory skin

disorders (83, 84). However, the consequences of CARD10

mutations in humans remain unclear. De Boer et al. previously

conducted a genome-wide survey and first identified the

CARD10 polymorphism rs6000782 as a likely risk factor for

type1 autoimmune hepatitis (AIH) in Dutch and German

populations (85), which Motawi et al. also concluded with a

cohort of Egyptian children (86). However, these results could

not be replicated in a Japanese population (87). This discrepancy

may result from several factors: (1) ethnic variations, (2)
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different sample sizes, and (3) different experimental

conditions and methods. In addition, CARD10 rs9607469 and

CARD10 rs9610775 are associated with primary open-angle

glaucoma and amnestic mild cognitive impairment,

respectively (88–90). Apart from CARD10 polymorphism,

Hang et al. were the first to identify two in-frame deletions in

CARD10 among 101 cases of ovarian endometriosis, which may

cause the disease (91). Luo et al. used exome sequencing to

identify the causative genes of two siblings, who are affected by

autoimmune deficiency from a consanguineous family. They

identified a new homozygous missense mutation (c.1258C>T; p.

R420C) of CARD10, which is implicated in rare diseases,

repeated infections, Crohn’s disease, allergic diseases, and

other disorders (92). Among the above mentioned CARD10

mutations, rs9610775 and R420C are missense variants and are

located in exons 4 and 7 of CARD10 respectively. Both mutations

alter the CARMA3 CC domain, which is associated with BCL10

aggregation and activation, suggesting that the rs9610775 and

R420C mutations affect CBM assembly and the subsequent NF-

kB activation (90–93). To date, no study has reported the direct

effect of CARD10 mutations on NF-kB signaling. However, Said

et al. found that the NF-kB p65 level is increase in the AIH

patients with CARD10 polymorphism rs6000782, suggesting

that the CARD10 polymorphism rs6000782 may cause disease

by affecting NF-kB signaling and the expression levels of

downstream genes (86). Further studies should be conducted

to elucidate the exact effect of CARD10mutations on the NF-kB
signaling pathway.

All the functions of CARMA3 in non-cancer diseases were

summarized in Figure 3.
Conclusions and perspectives

CARMA3 is widely expressed in a variety of tissues (29) and

plays key roles in the pathological process of human diseases

(37). To date, most of the existing literature on the role of

CARMA3 in diseases has focused on a variety of cancers.

Relatively fewer studies investigated the role of CARMA3 in

non-cancer diseases. In addition, most studies focused on airway

epithelia and the cardiovascular system while searching in the

literature for association between non-cancer disease and

CARMA3. Consider ing that CARMA3 affect s ce l l

inflammation, proliferation, survival, migration, and other cell

processes (55, 58, 64, 94), it should be taken into account that

CARMA3 could be involved in other non-cancer diseases, such

as urinary system diseases, nervous system diseases, and bone

and joint disorders. Further studies exploring these areas

are needed.

Current studies on the regulation of CARMA3 mainly focus

on the transcriptional level, with no investigations on

phosphorylation, ubiquitination, and acetylation of CARMA3

proteins. To further understand the contribution of CARMA3 in
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diseases, its regulation at the protein level is worthy of

investigation. Furthermore, CARMA3-dependent signal

transmission plays a fundamental role in pathophysiology of

various diseases, indicating that generating molecular tools, such

as novel inhibitors specific to CARMA3 and small peptides

target to CBM signalosome, would be immeasurable in treating

CARMA3-related disorders.
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FIGURE 3

Overview of CARMA3 in non-cancer diseases. CBM complex are implicated in the pathogenesis of cardiovascular diseases, pulmonary diseases,
liver-related diseases, intestinal disease and psoriasis; carma3 mutations are related to type1 autoimmune hepatitis, primary open-angle
glaucoma, mild cognitive impairment, ovarian endometriosis and immunodeficiency and autoimmunity.
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