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Abstract
Objective In this phase II psychometric study on the Montreal cognitive assessment (MoCA), we tested the clinicometric 
properties of Italian norms for patients with mild cognitive impairment (PwMCI) and early dementia (PwD) and provided 
optimal cutoffs for diagnostic purposes.
Methods Retrospective data collection was performed for consecutive patients with clinically and biologically defined MCI 
and early dementia. Forty-five patients (24 PwMCI and 21 PwD) and 25 healthy controls were included. Raw MoCA scores 
were adjusted according to the conventional 1-point correction (Nasreddine) and Italian norms (Conti, Santangelo, Aiello). 
The diagnostic properties of the original cutoff (< 26) and normative cutoffs, namely, the upper limits (uLs) of equivalent 
scores (ES) 1, 2, and 3, were evaluated. ROC curve analysis was performed to obtain optimal cutoffs.
Results The original cutoff demonstrated high sensitivity (0.93 [95% CI 0.84–0.98]) but low specificity (0.44 [0.32–0.56]) 
in discriminating between patients and controls. Nominal normative cutoffs (ES0 uLs) showed excellent specificity (SP 
range = 0.96–1.00 [0.88–1.00]) but poor sensitivity (SE range = 0.09–0.24 [0.04–0.36]). The optimal cutoff for Nasred-
dine’s method was 23.50 (SE = 0.82 [0.71–0.90]; SP = 0.72 [0.60–0.82]). Optimal cutoffs were 20.97, 22.85, and 22.29 
(SE range = 0.69–0.73 [0.57–0.83], SP range = 0.88–0.92 [0.77–0.97]) for Conti’s, Santangelo’s, and Aiello’s methods, 
respectively.
Conclusion Using the 1-point correction, combined with a cutoff of 23.50, might be useful in ambulatory settings with a 
large turnout. Our optimal cutoffs can offset the poor sensitivity of Italian cutoffs.
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Introduction

Early detection of cognitive impairment in the elderly has 
never been more relevant in neurological practice, even 
more so for the newly devised disease-modifying treatments 
for Alzheimer’s disease (AD), such as the recently FDA-
approved Aducanumab [1]. Since AD-modifying therapies 

might be effective only at stages preceding full-blown 
dementia, cognitive screening tools should be improved to 
help clinicians in discriminating between a physiological 
age-related cognitive decline and prodromal signs imputable 
to mild cognitive impairment (MCI).

Among the available cognitive screening batteries, the 
Mini-mental state examination (MMSE [2]) is regarded 
internationally as a gold standard for assessing global 
cognitive functioning in moderate/advanced stages of 
dementia. However, the MMSE weighs heavily on linguis-
tic capabilities, does not sufficiently explore the executive 
and visuo-spatial/-constructive domains, and may produce 
false negatives in case of subtle/mild cognitive defects. To 
deal with such limitations, Nasreddine et al. developed the 
Montreal cognitive assessment (MoCA) to be coupled with 
MMSE during neuropsychological evaluation [3]. This is a 
30-point screening battery that covers a wide range of cog-
nitive domains, promoting a more in-depth and demanding 
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assessment than MMSE, seemingly more sensitive in detect-
ing patients with MCI and/or early-stage AD [3].

The originally suggested cutoff of 26 provided the best 
balance between sensitivity and specificity (0.90–1.00 and 
0.87, respectively) in distinguishing MCI and AD patients 
from healthy controls. Nevertheless, several studies have 
reported an increased false positive rate by using this cutoff 
value, particularly in older and lower-educated participants 
[4]. In this regard, the 1-point correction for participants 
with ≤ 12 years of education has been deemed inadequate 
for adjusting the nowadays known influence exerted by age 
and formal schooling [4], as evidenced by the different cor-
rection norms available [5–8]. Moreover, some authors have 
suggested that the inclusion criteria applied in the original 
investigation for healthy participants (i.e., no cognitive 
complaints, scores within the normal range at neuropsycho-
logical assessment, no abnormalities detected during the 
neurological examination and CT scan in a subsample of 
51 participants) have resulted in a “hyper-normal” control 
group, with clear repercussions on the cutoff setup [6, 9].

A European perspective: the Italian 
experience

The Italian experience involving the MoCA is rather contro-
versial, as is true for the vast majority of psychometric stud-
ies in the field of clinical neuropsychology. After release of 
the Italian-translated version of the MoCA [10], two clinico-
metric studies [11, 12] attempting to explore the diagnostic 
properties of the battery and three normative studies [9, 13, 
14] defining the ranges of normality in non-clinical popula-
tions were published.

Clinicometric studies

In the Italian clinicometric studies [11, 12], receiver operat-
ing characteristic (ROC) curve analysis was used to assess 
the diagnostic accuracy of the MoCA. Pirrotta et al. [11] 
tested 287 participants living in the Sicily region (Southern 
Italy) and split the whole sample into two groups based on 
the MMSE score (i.e., experimental group, n = 154, MMSE 
score < 26; control group, n = 133, MMSE score > 26). 
The authors indicated a cutoff of 15.5 as the best threshold 
value for distinguishing between the two groups (sensitiv-
ity = 0.83, specificity = 0.97). This study, however, presents 
some criticisms. First, an arbitrary MMSE cutoff was used to 
perform the splitting; however, updated adjusting norms and 
a weighted cutoff (i.e., 23.8) were already available on cross-
sectional data collected in a representative normative sample 
[15]. Second, the experimental and control groups were not 
equivalent in terms of years of age and formal schooling. 
Indeed, participants within the experimental group were 

older and less educated than those included in the control 
group (M age = 76.8 vs. 63.1; M education = 6.0 vs. 10.4). 
Finally, although the concomitant effects of higher age and 
lower education had already been observed in the Italian 
population [16], analyses were conducted on raw scores.

Bosco et al. [12] tested the diagnostic accuracy of the 
MoCA by comparing AD patients with age-and-education-
matched controls from Southern Italy. A cutoff ≤ 14 was 
found to effectively discriminate between patients and 
healthy controls (sensitivity = 0.87, specificity = 0.87–0.92). 
In addition, the authors calculated the best MoCA cutoff 
value (MoCA score ≤ 17, sensitivity = 0.86, specific-
ity = 0.63) for differentiating older adults with suspected 
cognitive impairment (i.e., adjusted MMSE score ≤ 23.8) 
from those with spared cognitive functioning (i.e., adjusted 
MMSE score > 23.8). Although the authors applied the 
propensity score matching procedure [12, 17] in order to 
minimize the effects of sociodemographic variables on the 
diagnostic accuracy estimation of the MoCA, their study 
included only participants with poor education. Further-
more, using a state variable based on the MMSE cutoff may 
not be an acceptable solution when exploring the diagnostic 
properties of a cognitive tool since the outcome of a screen-
ing assessment may be not sufficient for properly character-
izing a cognitive profile [18].

Normative studies

As argued before, normative data taking into account the 
effects of potentially confounding demographic variables are 
needed to correctly interpret the MoCA score, i.e., to com-
pare patients’ scores apart from demographic differences. 
Since 2015, three independent Italian contributions [9, 13, 
14] providing regression-based norms [19–21] have been 
published.

Conti et  al. [9] extracted norms from a sample con-
sisting of 225 healthy older adults (M age = 70.1 years, 
SD = 5.7, range = 60–80; M education = 9.9 years, SD = 4.6, 
range = 5–23) residing in the Emilia Romagna region 
(Northern Italy). The mean raw MoCA score was 23.28 
(SD = 3.22).

In the same year, Santangelo et al. [13] provided norma-
tive data from a larger sample (N = 415) that spanned age 
groups ranging from 21 to 95 years (M age = 56.82 years, 
SD = 18.8), leading to an expected increase in the average 
years of education (M education = 11.13 years, SD = 4.76, 
range = 1–21). Participants were healthy volunteers mainly 
recruited in Naples (Southern Italy) and in some other dis-
tricts of Central and Northern Italy. In this study, the mean 
raw MoCA score was 21.98 (SD = 4.22).

More recently, updated MoCA norms have been pro-
vided by Aiello et al. [14]. Their sample involved a total of 
579 healthy participants (M age = 63.44 years, SD = 15.04, 
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range = 21–96; M education = 11.27  years, SD = 4.6, 
range = 1–25) from the Lombardia region (Northern Italy). 
The authors reported an average raw MoCA score of 24.17 
(SD = 3.93).

The above studies present discrepancies. For instance, in 
Santangelo’s study, the mean raw MoCA score was slightly 
lower than reported by Conti et al., likely due to the inclu-
sion of 48 elderly over 80 s (M = 17.08, SD = 4.90) inflat-
ing the variance and lowering the average score. Moreover, 
Santangelo’s normative sample included only 158 partici-
pants with ages between 60 and 79 years [13]. Still, Aiello 
et al.’s participants achieved a raw MoCA score higher than 
that reported in the other two normative studies; in this 
respect, the greater number of units under 60 years of age 
(n = 335/579) may have played a role [14]. These method-
ological issues, in combination with inter-regional socio-
demographic and cultural heterogeneity, are likely reflected 
in the differences observed in correction factors and norma-
tive cutoffs.

Aims

In the clinical neuropsychology literature, most of the psy-
chometric studies have historically been focused on provid-
ing normative data, i.e., on investigating how raw scores are 
distributed in the normal population, whether raw scores 
are affected by confounding variables, and what the normal-
ity values are (e.g., normative cutoff). These contributions 
(phase I psychometric studies), however, are necessary but 
not sufficient; indeed, they should be followed by accurate 
clinicometric studies (phase II psychometric studies) in 
which the test’s discriminative capability and diagnostic 
properties of optimal cutoffs (e.g., sensitivity, specificity, 
predictive values, accuracy) are estimated. Clearly, much 
depends on the objectives of the neuropsychological evalu-
ation. For instance, phase II psychometric studies are needed 
when the aim is to assess the presence of a clinical condi-
tion (e.g., MCI or dementia) but less so when the purpose is 
to delineate the cognitive profile in patients with an estab-
lished pathology (e.g., traumatic brain injury) or to monitor 
cognitive functioning over time. From a purely diagnostic 
perspective, phase II psychometric studies are helpful in 
determining if normative cutoffs can be declined in clinical 
practice. To this end, diagnostic properties of normative and 
optimal cutoffs can be compared: the former is the test score 
above which, typically, there should be approximately 95% 
of the normal population (with 95% confidence interval) 
[21], while the latter is the value ensuring the best balance 
between sensitivity and specificity in discriminating patients 
from controls [22].

In Italy, the two available clinicometric studies on the 
MoCA are not the “physiological” evolution of the three 
normative studies. This is also the reason why no consensus 

exists on which cutoff to use in outpatient services. Accord-
ingly, in order to offset this gap, the aim of the present study 
is to test the clinicometric properties of the Italian MoCA’s 
normative data, using Nasreddine’s method as a gold stand-
ard international reference. We also provide optimal cutoffs 
for each adjusting method under examination. To the best of 
our knowledge, this is the first study on the matter.

Materials and methods

Participants and procedure

Retrospective data collection was performed for consecutive 
patients with suspected MCI previously referred to the Mem-
ory Centre of the Trieste University Hospital (Neurological 
Unit, Azienda Sanitaria Universitaria Integrata Giuliano 
Isontina, ASUGI) for diagnostic and treatment purposes, 
from 2018 to 2021. Patients fulfilled the following inclusion 
criteria: age < 85 years, at least 5 years of formal schooling, 
clinical dementia rating (CDR [23]) score ≥ 0.5, and clini-
cally diagnosed MCI [24] or early dementia, according to 
functional impairment. The etiological diagnosis was sup-
ported by National Institute on Aging and Alzheimer’s Asso-
ciation guidelines (NIA-AA-2011 [25]) for AD, Rascovsky’s 
criteria [26] for behavioral variant frontotemporal dementia 
(bvFTD), IWG-2 criteria [27] for mixed AD (i.e., in case AD 
pathology with concurrent signs of cerebrovascular disease), 
DLB Consortium criteria [28] for Dementia with Lewy Bod-
ies (DLB), and International Society for Vascular Behavioral 
and Cognitive Disorders (VASCOG) Criteria [29] for vascu-
lar cognitive disorder (VCD).

All patients underwent a comprehensive clinical assess-
ment consisting of extensive neuropsychological evaluation 
(Supplementary Material 1), general physical and neurologi-
cal examination, laboratory testing (i.e., thyroid, liver and 
kidney function, B12, folate, homocysteine, electrolytes, 
and blood cells count), neuroimaging scans (CT or MRI), 
EEG, SPECT/CT or PET/CT, and lumbar puncture to test 
cerebrospinal fluid AD biomarkers (Aβ42, t-Tau, and p-Tau; 
Aβ40 and Aβ42/40 ratio when available). It is important to 
underline that MoCA was not part of the neuropsychologi-
cal composite battery employed to support MCI or demen-
tia diagnosis. Exclusion criteria were moderate/advanced 
stage of dementia disease, severe vascular encephalopathy, 
acquired brain lesions, other neurodegenerative disease (e.g., 
primary progressive aphasia), psychiatric disorders (e.g., 
major depression), history of alcohol abuse and/or psycho-
tropic drug therapies, and learning disabilities.

Out of a total of 144 eligible patients, 99 were excluded 
as they were only given the MMSE (i.e., no data on the 
MoCA were available). Therefore, 45 patients were included 
in the study. Of these, 24 patients met clinical diagnosis 
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of MCI (PwMCI; amnestic MCI-multiple domain, n = 21; 
nonamnestic MCI-single domain with selective executive 
impairment, n = 2; nonamnestic MCI-multiple domain, 
n = 1); the remaining 21 patients were diagnosed with early-
stage dementia (PwD; AD, n = 6; mixed AD, n = 10; FTD, 
n = 5). In line with the abovementioned criteria for etiologi-
cal diagnosis, among MCI patients, 15 were diagnosed with 
MCI due to AD (MCI-AD; five of them with mixed vascular 
pathology), 6 were diagnosed with mild VCD, 2 with MCI-
DLB, and 1 patient with MCI-FTD.

In addition, a sample of healthy older adults (HCs) was 
enrolled as control group. Thirty volunteers were recruited 
in different districts within Friuli-Venezia Giulia, Veneto, 
and Trentino-Alto Adige regions. Inclusion criteria were 
age < 85 years, years of formal education ≥ 5, CDR score = 0, 
MMSE score ≥ 28, and no cognitive complaints. Exclusion crite-
ria were previous or current neurocognitive, psychiatric, or psy-
chopathological disorders, and ongoing treatments with psycho-
tropic medications interfering with cognition. Candidates with 
pharmacologically compensated chronic medical illnesses (e.g., 
hypertension, type II diabetes, cardiovascular diseases) were not 
excluded to reduce the risk of a “hyper-normality” bias. Of the 
30 candidates, 5 were excluded according to the above criteria.

Both patients and HCs completed the Italian version of 
the MoCA. In short, the MoCA consists of twelve subtests 
exploring spatial–temporal orientation, short- and verbal 
long-term memory, visuospatial and visuoconstructional 
abilities, language skills, sustained attention, and different 
executive domains, i.e., set-shifting, working memory, ver-
bal fluency, and abstraction capabilities. The administration 
takes about 10 min.

Statistical analysis

Descriptive statistics, expressed as frequency (sex) or mean 
and standard deviation (age, education, raw MoCA score), 
were stratified according to subgroups. Between-group com-
parisons were performed by two-way chi-square test (χ2) 
for nominal variables and univariate analysis of variance 
(ANOVA) for continuous variables prior determination of 
univariate normality according to skewness and kurtosis 
indexes. Any post hoc analysis was conducted using Bon-
ferroni’s method.

Raw MoCA scores were separately adjusted according 
to four independent correction methods, namely, the tradi-
tional 1-point correction by Nasreddine et al. and the cor-
rection factors for age and education reported in the Italian 
normative studies by Conti et al., Santangelo et al., and Aiello 
et al. For the sake of clarity, we computed four independent 
adjusted MoCA scores for each participant. Then, a general 
descriptive cutoff analysis was conducted by comparing the 
adjusted MoCA scores to the respective reference cutoffs. The 
conventional threshold value of 26 was used as a touchstone 

for 1-point adjusted MoCA scores; conversely, age-and-edu-
cation adjusted MoCA scores were compared to the related 
Italian normative cutoffs, namely, the upper limits (uLs) of 
the equivalent scores (ES) 1, 2, and 3. ES are derived from 
a 5-point ordinal scale, from 0 (adjusted score < 5th centile) 
to 4 (adjusted score ≥ 50th centile). Particularly, ES1, 2, and 
3 are obtained by dividing the adjusted distribution between 
ES0 and ES4 into three equal parts. ES uLs correspond to the 
non-parametric outer tolerance limits (e.g., in the case of ES0, 
the outer tolerance limit on the 5th centile [20, 21]).

In the general cutoff analysis, the test results — or predicted 
conditions (positive vs. negative) — were contrasted with the 
true conditions (present vs. absent disease) for all participants. 
The resulting outcomes were true positive (TP), true negative 
(TN), false positive (FP), and false negative (FN). Based on the 
count produced for each outcome, the following parameters 
— reflecting the test’s diagnostic capability — were estimated: 
sensitivity (SE) = TP

(TP+FN)
 (true positive rate, i.e., the proportion 

of patients for which the predicted condition was positive), 
specificity (SP) = TN

(TN+FP)
 (true negative rate, i.e., the proportion 

of HCs for which the predicted condition was negative), posi-
tive predictive value (PPV) = TP

(TP+FP)
 (i.e., the proportion of 

participants with a predicted positive condition for which the 
true condition was positive), negative predictive value (NPV) 
= TN

(TN+FN)
 (i.e., the proportion of participants with a predicted 

negative condition for which the true condition was negative), 
false positive rate (FPR) = FP

(FP+TN)
 (fall-out, i.e., the proportion 

of HCs for which the predicted condition was positive), false 
negative rate (FNR) = FN

(FN+TP)
 (miss rate, i.e., the proportion of 

patients for which the predicted condition was negative), and 
accuracy (ACC) = (TP+TN)

(TP+TN+FP+FN)
 (i.e., the total proportion of 

correctly classified participants). As concerns sensitivity and 
specificity, 95% confidence intervals were calculated in accord-
ance with the continuity-corrected score method [30, 31].

A nonparametric ROC curve analysis was performed to (i) 
assess the diagnostic accuracy (or discriminatory power) of 
the four MoCA adjusting methods, i.e., to evaluate the extent 
to which the four MoCA’s adjusted scores could discriminate 
between patients and HCs, and (ii) to determine the optimal 
cutoff value (also known as optimal decision threshold) for each 
of the four methods across all the possible cutoff points based 
on a simultaneous assessment of sensitivity and specificity [32].

According to agreed conventions, an area under the ROC 
curve (AUC) between 0.50 and 0.70 is considered weakly 
discriminative, values within the range 0.70–0.80 are con-
sidered acceptable, whereas an AUC higher than 0.80 is 
deemed excellent [33]. The results of a priori power analysis 
[34] suggested that, at a nominal alpha level of 0.05, power 
set to 0.80, minimum expected AUC of 0.70, and an alloca-
tion ratio equal to 1, the required total sample size was 48 
(24 patients vs. 24 HCs).
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For each ROC-estimated cutoff, the same parameters used 
for characterizing the normative cutoffs were calculated. In 
addition, the Youden index (YI, sensitivity + specificity – 1) 
was used to identify the optimal cutoff values. The YI-based 
method defines an optimal cutoff as the value that maxi-
mizes the difference between sensitivity and FPR, i.e., the 
vertical distance between the 45° line and the point on the 
ROC curve [22, 35]. The higher the YI, the better the cutoff. 
Normative and ROC-estimated cutoffs were descriptively 
compared.

Statistical analyses were performed using IBM SPSS 
Statistics for Windows, version 26.0 (IBM, Armonk, NY), 
Stata Statistical Software, release 15 (StataCorp LLC, Col-
lege Station, TX), and easyROC (R language), version 1.3.1. 
The nominal alpha level was set to 0.05.

Results

Descriptive statistics

As shown in Table 1, patient (PwMCI and PwD) and con-
trol groups were matched for sex (χ2

1 = 0.56, p = 0.45), 
age (patients, M = 71.98, SD = 5.79, range = 57–83; HCs, 
M = 69.32, SD = 9.12, range = 58–86; F1, 68 = 2.222, 
p = 0.14), and years of formal schooling (patients, M = 11.93, 
SD = 4.27, range = 5–18; HCs, M = 10.80, SD = 4.55, 
range = 5–18; F1, 68 = 1.081, p = 0.30). Furthermore, no 
sociodemographic differences emerged when comparing 
HCs, PwMCI, and PwD (sex, χ2

2 = 1.717, p = 0.42; age, 
F2, 67 = 1.105, p = 0.34; education, F2, 67 = 0.548, p = 0.58). 
As for the MoCA score, unsurprisingly, the control group 
obtained a mean raw score higher than the patient group 
(controls, M = 24.36, SD = 3.29, range = 18–30; patients, 
M = 20.09, SD = 3.73, range = 9–26; F1, 68 = 22.568, 
p < 0.001, η2 = 0.25, 1–β = 1.00); furthermore, HCs outper-
formed both PwMCI and PwD (F2, 67 = 13.607, p < 0.001, 
η2 = 0.29, 1–β = 1.00; HCs vs. PwMCI, M diff. = 3.318, 

p = 0.005; HCs vs. PwD, M diff. = 5.36, p < 0.001). Con-
versely, no difference was found between PwMCI and PwD 
(M diff. = 2.042, p = 0.17). These findings suggest overlap-
ping characteristics of the target populations — both in 
terms of sociodemographic variables and global cognitive 
functioning — and warrant our choice to perform an in-
depth analysis on the MoCA’s diagnostic capability regard-
less of the patient subgroups. In other words, we merged 
the two patient subgroups and assessed the clinicometric 
performance of normative and optimal cutoffs in distinguish-
ing HCs from PwMCI and PwD.

Cutoff analysis on the normative values

The results of the general cutoff analysis involving norma-
tive values are reported in Table 2. The original cutoff of 26 
demonstrated high sensitivity (SE = 0.93) but low specificity 
(SP = 0.44), resulting in FPR inflation (FPR = 0.56). How-
ever, Nasreddine’s cutoff showed, as a whole, a fair degree 
of classification capability (ACC = 0.75).

The ES0 uL by Conti et al. allowed to correctly identify 
all the HCs (SP = 1.00); nevertheless, it showed a very low 
sensitivity (SE = 0.20, FNR = 0.80). Among the cutoff points 
proposed by Conti et al., the ES2 uL appeared to be the most 
effective (SE = 0.69, SP = 0.80, ACC = 0.73).

Similar to Conti’s normative data, the ES0 uL by San-
tangelo et al. demonstrated perfect specificity but extremely 
poor sensitivity (SE = 0.09, FNR = 0.91), with the cut-
off point that was able to correctly classify only 4 out of 
45 patients. Among the Santangelo’s cutoff values, the 
best compromise was the ES3 uL, although its diagnos-
tic sensitivity was still far too low (SE = 0.56, SP = 0.96, 
ACC = 0.70). In return, the ES3 uL showed an excellent 
PPV. Indeed, by using this cutoff point as a reference, a 
positive condition was predicted for 26 participants, of 
which 25 were patients with neurocognitive impairment 
(PPV = 0.96).

Table 1  Descriptive statistics

MoCA Montreal cognitive assessment, MCI mild cognitive impairment, CDR clinical dementia rating scale, Pts total patients, PwMCI patients 
with mild cognitive impairment, PwD patients with dementia, HCs healthy controls
Mean (SD)
a Pearson’s χ2 test
b ANOVA

Sample characteristics Overall patients MCI (CDR 0.5) Early dementia 
(CDR ≥ 1)

Healthy controls 
(CDR 0)

Comparisons

Sex (f/m)a 21/24 13/11 8/13 14/11 HCs = Pts; HCs = PwMCI = PwD
Age (years)b 71.98 (5.79) 71.83 (6.09) 72.14 (5.58) 69.32 (9.12) HCs = Pts; HCs = PwMCI = PwD
Education (years)b 11.93 (4.27) 12.04 (4.07) 11.81 (4.58) 10.80 (4.55) HCs = Pts; HCs = PwMCI = PwD
MoCA (raw)b 20.09 (3.76) 21.04 (2.58) 19.00 (4.60) 24.36 (3.29) HCs > Pts; HCs > PwMCI = PwD
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Finally, the ES0 uL by Aiello et al. showed high specific-
ity (SP = 0.96) but low sensitivity (SE = 0.24), resulting in an 
FNR of 0.75. Among the cutoff points reported by Aiello et al., 
the ES2 uL guaranteed good sensitivity and specificity, down-
sizing false outcomes, and increasing classification accuracy 
(SE = 0.73, SP = 0.72, FPR = 0.28, FNR = 0.27, ACC = 0.73).

ROC curve analysis and optimal cutoffs

A ROC curve analysis was performed to quantify, for each 
of the four adjusting methods, the MoCA’s capability in dis-
criminating patients (merged group of PwMCI and PwD) 
from HCs, and to determine the optimal cutoffs. Irrespective 
of the method used, the MoCA proved to be highly discrimi-
native (all AUCs > 0.80, ps < 0.001, see Table 3), with no 
difference detected between the four AUCs according to the 
equality test (χ2

3 = 1.56, p = 0.67).
The ROC-estimated cutoff values are displayed and char-

acterized in Table 4. About Nasreddine’s method, the opti-
mal cutoff was 23.50 (SE = 0.82, SP = 0.72, ACC = 0.78, 
YI = 0.54). As compared with the original cutoff of 26, this 
lower cutoff substantially gains in terms of specificity, flat-
tening the FPR and maximizing the diagnostic accuracy.

As for Conti’s method, the optimal cutoff was 20.97 
(SE = 0.69, SP = 0.88, ACC = 0.75, YI = 0.57). If compared 
with the nominal normative cutoff (i.e., ES0 uL = 17.36), this 
threshold value — which is almost halfway between uLs of 

ES1 and 2 — has better sensitivity, thus reducing the FNR; 
moreover, it ensures a higher specificity and increases accuracy.

About Santangelo’s method, the optimal cutoff was 22.85 
(SE = 0.71, SP = 0.92, ACC = 0.78, YI = 0.63). This cutoff 
is about seven points above the nominal normative cutoff 
(i.e., ES0 uL = 15.50) and slightly higher than the ES3 uL. 
As compared to the former, a cutoff point of 22.85 greatly 
increases sensitivity while maintaining excellent specificity. 
Accordingly, this cutoff dramatically flattens the FNR and 
maximizes diagnostic accuracy. As compared to the latter, 
it does guarantee higher sensitivity and accuracy.

Finally, about Aiello’s method, the optimal cutoff was 
22.29 (SE = 0.73, SP = 0.88, ACC = 0.78, YI = 0.61). This cut-
off approaches the ES2 uL; however, it demonstrates higher 
specificity, thus reducing the FPR. If compared with the nomi-
nal cutoff point (i.e., ES0 uL = 18.58), a higher threshold value 
of 22.29 significantly increases both test sensitivity, resulting 

Table 2  Results of general analysis on normative cutoffs

ES equivalent score, uL upper limit, T + positive test result, T– negative test result, PPV positive predictive value, NPV negative predictive value, 
FPR false positive rate, FNR false negative rate, ACC  accuracy

Normative cutoffs Patients (n = 45) Healthy controls (n = 25) PPV NPV FPR FNR ACC 

T + /T– Sensitivity (95% CI) T + /T– Specificity (95% CI)

Nasreddine et al. (2005)  
   < 26 42/3 0.93 (0.84–0.98) 14/11 0.44 (0.32–0.56) 0.75 0.79 0.56 0.07 0.75

Conti et al. (2015)
  ES0 uL ≤ 17.36 9/36 0.20 (0.12–0.32) 0/25 1.00 (0.93–1.00) 1.00 0.41 0.00 0.80 0.48
  ES1 uL < 19.50 23/22 0.51 (0.39–0.63) 2/23 0.92 (0.82–0.97) 0.92 0.51 0.08 0.49 0.66
  ES2 uL < 21.56 31/14 0.69 (0.57–0.79) 5/20 0.80 (0.68–0.88) 0.86 0.59 0.20 0.31 0.73
  ES3 uL < 23.36 40/5 0.89 (0.79–0.95) 13/12 0.48 (0.36–0.60) 0.75 0.71 0.52 0.11 0.74

Santangelo et al. (2015)
  ES0 uL ≤ 15.50 4/41 0.09 (0.04–0.19) 0/25 1.00 (0.93–1.00) 1.00 0.38 0.00 0.91 0.41
  ES1 uL < 18.28 10/35 0.22 (0.13–0.34) 0/25 1.00 (0.93–1.00) 1.00 0.42 0.00 0.78 0.50
  ES2 uL < 20.25 17/28 0.38 (0.27–0.50) 1/24 0.96 (0.88–0.99) 0.94 0.46 0.04 0.62 0.58
  ES3 uL < 22.23 25/20 0.56 (0.43–0.67) 1/24 0.96 (0.88–0.99) 0.96 0.54 0.04 0.44 0.70

Aiello et al. (2022)
  ES0 uL ≤ 18.58 11/34 0.24 (0.15–0.36) 1/24 0.96 (0.88–0.99) 0.92 0.41 0.04 0.75 0.50
  ES1 uL < 20.69 22/23 0.49 (0.37–0.61) 1/24 0.96 (0.88–0.99) 0.96 0.51 0.04 0.51 0.66
  ES2 uL < 22.56 33/12 0.73 (0.61–0.83) 7/18 0.72 (0.60–0.82) 0.82 0.60 0.28 0.27 0.73
  ES3 uL < 24.52 39/6 0.87 (0.76–0.93) 10/15 0.60 (0.48–0.71) 0.80 0.71 0.40 0.13 0.77

Table 3  Area under the receiver operating characteristic (ROC) curve 
for each method

AUC  area under curve, SE standard error
a Binomial exact confidence interval

Adjusting method AUC SE p-value 95%  CIa

Nasreddine et al. (2005) 0.81 0.05  < 0.001 0.70–0.90
Conti et al. (2015) 0.83 0.05  < 0.001 0.72–0.91
Santangelo et al. (2015) 0.85 0.05  < 0.001 0.74–0.92
Aiello et al. (2022) 0.84 0.05  < 0.001 0.74–0.92
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in a lowered FNR, and diagnostic accuracy. ROC curves and 
the respective optimal cutoffs are shown in Fig. 1.

Discussion

As outlined in a recent systematic review [36], the cus-
tom of assessing psychometric properties of cognitive tests 
on the normal population, without verifying their diag-
nostic properties on target conditions, prevails in Italy 
and beyond. The establishment of this approach likely 
stems from historic overconfidence in the effectiveness 

of normative data, allowing to quickly capture normality 
values for screening purposes. Nevertheless, normative 
cutoffs are generally unweighted for sensitivity and speci-
ficity, and this makes it unclear whether they are truly use-
ful in clinical practice when the actual goal is to identify a 
specific pathology (such as MCI or dementia).

The MoCA is a short and easy-to-administer screen-
ing battery used worldwide for supporting the diagnosis 
of MCI and early dementia, as well as for detecting cogni-
tive deficits in patients with Parkinson’s disease, stroke, 
chronic obstructive pulmonary disease, or heart fail-
ure [37]. Despite its popularity, in Italy, there is still no 

Table 4  Diagnostic properties of ROC-based cutoffs for each adjusting method

T + positive test result, T– negative test result, PPV positive predictive value, NPV negative predictive value, FPR false positive rate, FNR false 
negative rate, ACC  accuracy, YI Youden index
Optimal cutoffs, and their diagnostic properties, are displayed in bold 

ROC-based cutoffs Patients (n = 45) Healthy controls (n = 25) PPV NPV FPR FNR ACC YI

T + /T– Sensitivity (95% CI) T + /T– Specificity (95% CI)

Nasreddine et al. (2005)
   ≤ 14.50 4/41 0.09 (0.04–0.19) 0/25 1.00 (0.93–1.00) 1.00 0.38 0.00 0.91 0.41 0.09
   ≤ 18.50 10/35 0.22 (0.13–0.34) 0/25 1.00 (0.93–1.00) 1.00 0.42 0.00 0.78 0.50 0.22
   ≤ 21.50 25/20 0.56 (0.43–0.67) 4/21 0.84 (0.73–0.91) 0.86 0.51 0.16 0.44 0.66 0.40

   ≤ 23.50 37/8 0.82 (0.71–0.90) 7/18 0.72 (0.60–0.82) 0.84 0.69 0.28 0.18 0.78 0.54
   ≤ 25.50 42/3 0.93 (0.84–0.98) 14/11 0.44 (0.32–0.56) 0.75 0.79 0.56 0.07 0.75 0.37
   ≤ 26.50 44/1 0.98 (0.90–1.00) 18/7 0.28 (0.18–0.40) 0.71 0.87 0.72 0.02 0.73 0.26
   ≤ 27.50 45/0 1.00 (0.93–1.00) 20/5 0.20 (0.12–0.32) 0.69 1.00 0.80 0.00 0.71 0.20

Conti et al. (2015)
   ≤ 17.93 11/34 0.24 (0.15–0.36) 0/25 1.00 (0.93–1.00) 1.00 0.42 0.00 0.75 0.51 0.24
   ≤ 19.14 22/23 0.49 (0.37–0.61) 1/24 0.96 (0.88–0.99) 0.96 0.51 0.04 0.51 0.65 0.45
   ≤ 20.97 31/14 0.69 (0.57–0.79) 3/22 0.88 (0.77–0.94) 0.91 0.61 0.12 0.31 0.75 0.57
   ≤ 21.55 31/14 0.69 (0.57–0.79) 5/20 0.80 (0.68–0.88) 0.86 0.59 0.20 0.31 0.73 0.49
   ≤ 22.58 36/9 0.80 (0.68–0.88) 9/16 0.64 (0.52–0.75) 0.80 0.64 0.36 0.20 0.74 0.44
   ≤ 24.30 42/3 0.93 (0.84–0.98) 15/10 0.40 (0.29–0.52) 0.74 0.77 0.60 0.07 0.74 0.33
   ≤ 26.90 45/0 1.00 (0.93–1.00) 22/3 0.12 (0.06–0.22) 0.67 1.00 0.88 0.00 0.68 0.12

Santangelo et al. (2015)
   ≤ 16.65 6/39 0.13 (0.07–0.24) 0/25 1.00 (0.93–1.00) 1.00 0.39 0.00 0.87 0.44 0.13
   ≤ 18.56 11/34 0.24 (0.15–0.36) 0/25 1.00 (0.93–1.00) 1.00 0.42 0.00 0.75 0.51 0.24
   ≤ 21.31 21/24 0.47 (0.35–0.59) 1/24 0.96 (0.88–0.99) 0.95 0.50 0.04 0.53 0.64 0.43
   ≤ 22.85 32/13 0.71 (0.59–0.81) 2/23 0.92 (0.82–0.97) 0.94 0.64 0.08 0.29 0.78 0.63
   ≤ 24.28 36/9 0.80 (0.68–0.88) 9/16 0.64 (0.52–0.75) 0.80 0.64 0.36 0.20 0.74 0.44
   ≤ 26.42 40/5 0.89 (0.79–0.95) 15/10 0.40 (0.29–0.52) 0.73 0.67 0.60 0.11 0.71 0.29
   ≤ 27.81 45/0 1.00 (0.93–1.00) 17/8 0.32 (0.22–0.44) 0.73 1.00 0.68 0.00 0.76 0.32

Aiello et al. (2022)
   ≤ 18.70 11/34 0.24 (0.15–0.36) 1/24 0.96 (0.88–0.99) 0.92 0.41 0.04 0.75 0.50 0.20
   ≤ 20.67 22/23 0.49 (0.37–0.61) 1/24 0.96 (0.88–0.99) 0.96 0.51 0.04 0.75 0.51 0.45
   ≤ 22.29 33/12 0.73 (0.61–0.83) 3/22 0.88 (0.77–0.94) 0.92 0.65 0.12 0.27 0.78 0.61
   ≤ 23.55 37/8 0.82 (0.71–0.90) 9/16 0.64 (0.52–0.75) 0.80 0.67 0.36 0.18 0.75 0.46
   ≤ 25.17 40/5 0.89 (0.79–0.95) 16/9 0.36 (0.25–0.48) 0.71 0.64 0.64 0.11 0.70 0.25
   ≤ 26.78 45/0 1.00 (0.93–1.00) 18/7 0.28 (0.18–0.40) 0.71 1.00 0.72 0.00 0.74 0.28
   ≤ 28.01 45/0 1.00 (0.93–1.00) 23/2 0.08 (0.03–0.18) 0.66 1.00 0.92 0.00 0.67 0.08
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consensus about the cutoff(s) to be used, even more so for 
the mixed psychometric evidence [9, 11–14]. Accordingly, 
in the present study, we performed the first phase II psy-
chometric study on a sample consisting of PwMCI, PwD, 
and HCs. First, we adjusted separately each raw MoCA 
score in compliance with the correction factors provided in 
the Italian normative studies by Conti et al. [9], Santangelo 
et al. [13], and Aiello et al. [14]; furthermore, raw scores 
were also adjusted according to the 1-point basic correc-
tion by Nasreddine et al. [3] for a total of four independent 

adjusted scores for each participant. Then, we compared 
the diagnostic properties of Italian normative values with 
sensitivity- and specificity-weighted (optimal) cutoffs 
computed via ROC analysis, using Nasreddine’s correc-
tion method and the original cutoff (< 26/30 points) as 
international references.

For both normative and optimal cutoffs, we calculated 
relevant indexes of diagnostic capability, all of which have 
a significant impact on clinical practice. For instance, 
heavy emphasis should be placed on the role of predictive 

Fig. 1  Receiver operating characteristic (ROC) curves for each of the four adjusting method used Note. Gray dots represent optimal cutoffs
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values. Given the result of a test, the PPV is the likelihood 
that a subject with a positive test actually has the condition 
of interest; conversely, the NPV is the likelihood that a sub-
ject with a negative test result is truly free of such a condi-
tion. Predictive values are affected by the test’s sensitivity 
and specificity: the more sensitive the test (lower FNR), the 
greater the NPV; the more specific the test (lower FPR), 
the greater the PPV. A high PPV is desirable, by and large, 
when the costs for performing the test are high or in the 
case of a slowly worsening disease. A high NPV is instead 
preferred in the context of serious health conditions or 
when the disease can be treated or delayed if managed in 
the early stages [38].

In line with previous studies [4], we found that using 
a cutoff of 26 as the threshold value for 1-point-adjusted 
MoCA scores entailed poor specificity (0.44), leading to 
an inflated FPR (0.56). Conversely, the cutoff yielding 
the best diagnostic performance for Nasreddine’s method 
was 23.50, a value close to that recommended in a recent 
meta-analysis on the diagnostic properties of the MoCA 
(i.e., 23 [4]). This cutoff minimized false positives (0.28) 
and guaranteed a good balance between sensitivity (0.82) 
and specificity (0.72). Therefore, the use of Nasreddine’s 
method, combined with a cutoff of 23.50, might represent 
a viable alternative to Italian normative criteria, particu-
larly in ambulatory settings with a large turnout. In such 
a settings, this quick adjusting method may indeed ensure 
some gains in terms of time needed to correct raw scores. 
However, this hypothesis must be treated with caution 
since demographic effects are only weakly addressed by 
the classical 1-point correction [7, 39].

As for Italian norms [9, 13, 14], nominal cutoffs (ES0 
uL) showed the opposite outcomes to Nasreddine’s cutoff, 
namely, excellent specificity but very low sensitivity (i.e., 
0.09–0.24). This result is due to the statistical approach used 
in the normative studies, which provides for the assignment 
of ES0 uLs to the outer tolerance limits on the fifth centile 
of adjusted distributions, in order to decrease the inferential 
risk of false positives [21]. Nonetheless, it is important to 
stress that the choice of a reference cutoff should be guided 
by the assessment aims. For instance, in experimental designs 
posing cognitive impairment as an exclusion criterion, lower 
cutoffs should be preferred as they guarantee higher speci-
ficity and hence fewer false positives. On the contrary, in 
clinical settings, where decreasing the risk of false negatives 
is imperative (e.g., neuropsychological assessment for diag-
nostic purposes or clinical trials), a higher cutoff should be 
preferred to increase diagnostic sensitivity [40].

The ES2 uLs reported by Conti et al. and Aiello et al. 
demonstrated, on the whole, good diagnostic properties, 
broadly comparable to those observed for ROC-estimated 
cutoffs, with the latter providing, however, higher specificity 
(Conti: 0.80 vs. 0.88, Aiello: 0.72 vs. 0.88). Since optimal 

cutoffs for Conti’s (≤ 20.97)1 and Aiello’s (≤ 22.29) norms 
were located between ES1 and ES2 uLs, we suggest that 
future psychometric studies aiming at providing normative 
values for distinguishing HCs from PwMCI/PwD may raise 
nominal cutoffs towards innermost regions of the adjusted 
distributions, e.g., between the 20th and 35th centiles (or, in 
terms of z-deviates, between –1.24 and –0.62 [19, 20]), as 
long as the sample size is sufficiently large. However, there 
are some issues to be taken into account.

Typically, normative cutoffs serve to identify potential 
deficits that are conventionally associated with the score dis-
tribution slice where the “worst” 5% of the healthy popu-
lation is found. This occurs similarly to what happens in 
statistical tests when the nominal alpha is set to 0.05 for 
controlling the type I error. By definition, this corresponds 
to the incorrect rejection of a true null hypothesis. Declining 
the principle in the clinical-neuropsychological setting, a 
cut-point set at the 5th centile allows decreasing the risk of 
false positive, i.e., the risk of mistakenly rejecting the null 
hypothesis that an individual is free from impairment. This 
approach clearly increases the test specificity and therefore 
the FNR. Moving, for instance, the alpha from 0.05 to 0.20, 
the statistical power increases and the risk of making the 
type II error is reduced. This error occurs when one fails to 
reject a false null hypothesis, e.g., classifying a subject with 
cognitive deficits as healthy. In diagnostic terms, decreas-
ing the risk of committing the type II error means flattening 
the FNR by increasing the test sensitivity and therefore the 
number of false positives (i.e., the risk of type I error grows). 
Putting the matter in practical terms, on the one hand, a 
higher cutoff could be actually more sensitive in detecting 
PwMCI/PwD in clinical contexts to which individuals with 
suspected cognitive impairment refer. On the other hand, 
using a higher threshold in the context of a general cogni-
tive screening addressed to a random population may lead 
to excessively inflated FPR.

The case of Santangelo et al. is apparently controversial 
as not even the ES3 uL (< 22.23) reached an acceptable 
sensitivity (0.56). The questionable diagnostic properties 
of these cutoffs might be explained by some intrinsic char-
acteristics of the normative sample including mainly partici-
pants residing in Southern Italy [13]. Accordingly, since our 
study involved only participants from Northern Italy, inter-
regional differences may have played a confounding role. 
In the face of these limitations, the optimal cutoff point for 
Santangelo’s method (≤ 22.85) showed satisfactory sensitiv-
ity (0.71) and specificity (0.92), and the highest PPV (0.94) 
and YI (0.63) among optimal cutoffs. Therefore, although 

1 Note that the lower optimal cutoff for Conti’s method is prob-
ably the result of severer correction factors (i.e., they reward less and 
penalize more), given the normative sample including only elderly 
people [9].
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larger clinicometric investigations are needed to test the 
goodness of Santangelo et al.’s normative data, we suggest 
that their correction factors might be confidently applied, 
in combination with a cutoff of 22.85, by neurologists and 
neuropsychologists working in Northern Italy.

Because of time constraints and over-working, clinicians 
may often suffer from a “representativeness heuristic” bias 
affecting their judgments in selecting the normative data to 
be deployed in clinical practice. They might rely on specific 
norms based on the normative sample size, the patient popula-
tions of interest, or the newest published paper. Although new 
versions of neuropsychological tools generally have advan-
tages over prior versions, such as improved psychometric 
properties or administration procedures [41], inter-regional 
socio-demographic and cultural differences within the same 
country may be relevant confounding predictors [14, 42]. The 
example of Santangelo’s normative data, which are currently 
used in both clinical and research environments of Northern 
Italy [43, 44], reflects on the need for a national commitment 
that supports multicentric studies aimed at collecting large-
scale normative data for cognitive tests, taking into account, 
for instance, differences in cultural background, educational 
quality, language, communication style, occupational level, 
economic issues, cognitive reserve, and intellectual function-
ing [45]. Interestingly, a recent study by Montemurro et al. 
[46] providing MoCA’s normative data and clinical cutoffs for 
the Italian population highlighted that both sociodemographic 
variables and cognitive reserve predicted the variance of the 
MoCA score. These normative values were not tested in the 
present investigation since we covered only normative studies 
correcting raw scores for sex, age, and education and report-
ing unique correction factors/equivalent scores according to 
the classical regression-based procedures. Accordingly, future 
clinicometric studies are needed to further assess the role of 
cognitive reserve in predicting cognitive performance.

The current study has some limits. The sample size is 
restricted; however, particularly for ROC analysis, prelimi-
nary estimations ensured adequate statistical power with a 
minimum of 48 participants. A further threat to external 
validity is that we applied a retrospective nonprobability 
sampling method, and the consecutive patient subsample 
could not homogeneously cover all the diagnostic catego-
ries of clinical interest. Still, previous psychometric inves-
tigations on the MoCA have reported differentiated optimal 
cutoffs for MCI and dementia [47]. Since we found no dif-
ference between PwMCI and PwD on the MoCA score, we 
provided optimal cutoffs for distinguishing controls from 
patients independently on the disease stage. Possible expla-
nations for our null-finding are the modulating roles of cog-
nitive reserve [48], socio-cultural attitudes [49], or reliability 
of caregiver’s ratings on the patient’s functional status [50], 
which can be affected by a number of factors such as car-
egiver burden [51] and time spent on assisting the patient 

[52]. It follows that performance below our optimal cutoffs 
indicates that the patient can suffer from either MCI or early 
dementia. Therefore, an in-depth diagnostic investigation is 
still needed; nevertheless, it would be mandatory given the 
screening nature of the battery. Finally, we provided predic-
tive values based on prevalence estimates derived from the 
sample addressed. Therefore, these may diverge from those 
highlighted within a potential replication study.

Conclusions

In sum, this study demonstrated that all the Italian available 
adjusting methods for the MoCA were highly discriminative 
when comparing an independent sample of HCs and a sample 
including both PwMCI and PwD. Nevertheless, as expected, 
nominal normative cutoffs yielded high specificity but at cost 
of sensitivity, determining an increased rate of false negatives 
when the goal is to detect the presence of a clinical condi-
tion such as MCI or dementia. This can have repercussions on 
healthcare cost-effectiveness and patients’ management, espe-
cially in the current historical period where the early detection 
of PwMCI is of paramount importance as ideal candidates 
for future AD-modifying treatments. To improve the diagnos-
tic capabilities of normative data, we suggest implementing 
adjustments to the well-established equivalent scores method, 
and to perform nationwide normative studies for controlling 
biases due to inter-regional differences.
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