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Abstract
Purpose  Head and neck squamous cell carcinomas (HNSCCs) are a molecularly, histologically, and clinically heterogeneous 
set of tumors originating from the mucosal epithelium of the oral cavity, pharynx, and larynx. This heterogeneous nature of 
HNSCC is one of the main contributing factors to the lack of prognostic markers for personalized treatment. The aim of this 
study was to develop and identify multi-omics markers capable of improved risk stratification in this highly heterogeneous 
patient population.
Methods  In this retrospective study, we approached this issue by establishing radiogenomics markers to identify high-risk 
individuals in a cohort of 127 HNSCC patients. Hybrid in vivo imaging and whole-exome sequencing were employed to 
identify quantitative imaging markers as well as genetic markers on pathway-level prognostic in HNSCC. We investigated the 
deductibility of the prognostic genetic markers using anatomical and metabolic imaging using positron emission tomography 
combined with computed tomography. Moreover, we used statistical and machine learning modeling to investigate whether 
a multi-omics approach can be used to derive prognostic markers for HNSCC.
Results  Radiogenomic analysis revealed a significant influence of genetic pathway alterations on imaging markers. A highly 
prognostic radiogenomic marker based on cellular senescence was identified. Furthermore, the radiogenomic biomarkers 
designed in this study vastly outperformed the prognostic value of markers derived from genetics and imaging alone.
Conclusion  Using the identified markers, a clinically meaningful stratification of patients is possible, guiding the identifica-
tion of high-risk patients and potentially aiding in the development of effective targeted therapies.
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Background

Worldwide, head and neck cancer accounts for more than 
430,000 annual deaths and over 830,000 individuals are 
diagnosed with head and neck cancer every year [1]. Head 
and neck squamous cell carcinoma (HNSCC) accounts This article is part of the Topical Collection on Oncology - Head 

and Neck.
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for approximately 90% of all head and neck cancers [2]. 
HNSCC originates from the epithelial cells outlining the 
mucosa of various cavities in the head and neck area. The 
anatomical, clinical, histological, and molecular heteroge-
neity of HNSCC has been a limiting factor for the develop-
ment of personalized treatments. Today, PD-L1 expression 
and human papilloma virus (HPV) infection status are the 
only considered biomarkers for personalized clinical man-
agement of HNSCC patients [3, 4]. Consequently, further 
markers are urgently needed for the stratification of clini-
cally meaningful groups to better tailor the management of 
these patients to their individual characteristics.

Metabolic in vivo imaging provided by technolo-
gies such as positron emission tomography combined 
with computed tomography (PET/CT) is a non-invasive 
way to capture information about biological processes 
on a whole-body scale. In vivo imaging further enables 
the high-throughput acquisition of quantitative imaging 
features, referred to as radiomics. Radiomics has been 
deployed to describe tumor characteristics, such as shape 
and heterogeneity on a quantitative level, which have been 
shown to deliver prognostic information in various set-
tings [5, 6].

In parallel to the advancements of diagnostic imaging 
modalities driven by clinical research, mechanistic cancer 
research has been capitalizing on the revolution in sequenc-
ing technologies. Today, genomics provides crucial diag-
nostic information to advance toward personalized cancer 
medicine. Tissue-based DNA biomarkers comprise some 
of the most important prognostic factors in HNSCC [7]. 
These prognostic markers can be useful for the monitor-
ing and selection of patients for a specific treatment [6, 8]. 
In contrast to these gene-level markers, pathway-level bio-
markers are largely unexplored. Still, since mutations are 
only one of several ways to inactivate tumor suppressors or 
activate oncogenes [9], genetic analysis inherently provides 
an important but only partial view of the cancer phenotype. 
Radiomic features, on the other hand, have the potential to 
provide functional information on the activity of oncogenic 
drivers at a holistic level. Thus, an approach combining the 
strength of both technologies which is referred to as radiog-
enomics has the potential to raise currently underexplored 
synergies to advance the personalized management of cancer 
patients.

The aim of the present study was therefore threefold 
(Fig. 1): (1) the identification of quantitative and prognostic 
[18F]FDG PET/CT imaging and genetic markers in HNSCC; 
(2) the assessment of the association of previously identified 
imaging markers with pathways related to cell proliferation 
and energy metabolism; (3) to investigate if complementary 
information within imaging and genetic patterns can be used 
to create combined radiogenomic markers with improved 
prognostic value over imaging or genetic markers only.

Materials and methods

Patient data

One hundred and twenty-seven (127) patients diagnosed 
with HNSCC between June 8, 2006 and July 31, 2015 with 
whole-body [18F]FDG PET/CT scans at the General Hos-
pital Vienna were retrospectively enrolled into the study. 
CT was acquired using contrast enhancement with 100 ml 
Iomeron 400 mg/ml. Overall, 2 patients were excluded due 
to lesion sizes below 64 voxels [11], 4 due to a second pri-
mary tumor, and 59 due to missing or insufficient tumor tis-
sue for DNA extraction, resulting in 62 patients for further 
analysis. The clinical annotation was acquired by the head-
and-neck surgeon taking the tissue biopsies and included 
overall survival (OS) starting from the date of histologically 
confirmed diagnosis. An overview of patient characteristics 
is provided in Table 1. All biopsies originated from histolog-
ically confirmed head and neck squamous cell carcinomas. 
The study was approved by the institutional review board 
with ethics ID 1649/2016 at the General Hospital of Vienna.

DNA extraction, whole‑exome sequencing, 
and sequencing data analysis

DNA was extracted from formalin-fixed paraffin-embedded 
samples and sequenced using whole-exome sequencing 
(WES). Details on DNA extraction and WES analysis can 
be found in Supplement section 1 under “DNA extraction 
and whole exome sequencing.”

DNA sequencing analysis

Raw reads were mapped to the genomic reference GRCh38 
using the Burrows–Wheeler Alignment (BWA) tool [12]. 
Small variants were detected using Strelka2 [13] and Var-
Dict [14] variant callers independently, and the resulting 
variants were merged. Variants were annotated with the 
Variant Effect Predictor (VEP) tool from Ensemble [15] 
including the annotation of CADD scores [10, 16, 17]. 
Resulting annotated variants were joined across the cohort 
and germline variants were filtered. The discrimination 
of somatic and germline variants was based on a somatic 
tumor variant filtering strategy from Sukhai et al. [18], 
with additional filters added and parameters adjusted 
in order to minimize the ratio of known germline vari-
ants resulting from a set of 15 paired normal tissues. The 
final somatic variant filtering was performed as follows. 
Only variants present in less than 10% of samples were 
kept. Variants called by both Strelka2 and VarDict with 
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a number of variant reads above 10 and variants called 
by only one variant caller with a number of variant reads 
above 20 were kept. Three population variant databases 
were used for variant filtering including 1000 genome [19], 
Gnomad [20], and the NHLBI Exome Sequencing Project 
[21]. Variants with a minor allele frequency below 1% 
for the non-Finnish European group in all three databases 
were kept. Variants with a record in ClinVar database 

[22] with significance “benign” or “likely benign” were 
removed.

Pathway‑level disruption scores and pathway selection

Mutation-level combined annotation dependent depletion 
(CADD) scores [10] were summed over all variants in asso-
ciated genes to derive gene-level CADD scores indicating 
the functional disruption of each gene. The KEGG pathway 

Fig. 1   Workflow diagram of the study. a Primary tumor tissue from 
62 patients with HNSCC was acquired through surgical biopsy. b 
Image data acquisition using [.18F]FDG PET/CT. c Quantification 
of tumor characteristics based on imaging data using radiomics. d 
DNA extraction from solid tumor tissue and subsequent whole exome 
sequencing. e Quantification of genetically disrupted pathways related 
to cell growth and death as well as energy metabolism using com-
bined annotation dependent depletion (CADD) scores [10]. f Identi-

fication and evaluation of prognostic radiomic, genomic, and radiog-
enomic features using statistical and machine learning approaches. g 
Statistical assessment of the association and complementary informa-
tion of pathway-level genetic features and non-redundant radiomic 
features. h Patient-tailored diagnosis, prognosis, and treatment based 
on the detected radiogenomic markers and associated risk assessment. 
This figure was created using BioRender (biorender.com)
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database [23] was used to assign genes to corresponding 
pathways. Pathway CADD scores were computed as sum 
of gene-level CADD scores for all genes in the respective 
pathway. Pathways were considered for the analysis if they 
were either annotated as related to energy metabolism or to 
cell growth and death based on the KEGG pathway database. 
Pathways were excluded if they do not exist in humans or 
were irrelevant for somatic tissue (Supplementary Table 6).

Gene-level CADD score cutoffs were unlikely to be accu-
rately determined by setting a uniform cutoff [24]. Therefore, 
we used the prognostically relevant cutoffs as determined by 
the survival analysis for the dichotomization of each path-
way’s score individually. By doing so, we derived prognosti-
cally relevant binary states, functional or disrupted, for each 
pathway (Supplementary Fig. 8). The binary pathway states 
were used for the associated with imaging patterns and the 
derivation of radiogenomic markers.

Delineation

Two board-registered nuclear medicine specialists at the 
Division of Nuclear Medicine at the Medical University 
of Vienna performed tumor boundary delineation to derive 
volumes of interest (VOIs) from the whole-body images. 
For each patient, one delineation was created based on the 
agreement of the two nuclear medicine specialists. Delinea-
tion of lesions and background tissue were performed utiliz-
ing semi-automated iso-count VOI tools from the commer-
cially available Hybrid 3D software version 4.0.0 (Hermes 

Medical Solutions AB, Stockholm, Sweden). If required, a 
slice-by-slice modification was performed [25, 26]. Delinea-
tion in PET/CT images was guided by the PET image. VOIs 
were dilated by 5 voxels into every spatial dimension.

Radiomic feature extraction and preprocessing

The SUV maps of the VOIs were normalized using a stand-
ardized reference region before performing interpolation 
to 2 and 4 mm. Radiomic features were extracted from the 
resulting VOIs using an IBSI-conform in-house framework. 
Overall, 104 Imaging Biomarker Standardization Initiative 
(IBSI)-conform radiomic features were extracted, 52 from 
the background-normalized PET and the corresponding CT 
each. Details on the extraction and preprocessing of image 
biomarkers are outlined in Supplemental section 1 under 
“Radiomic feature extraction and preprocessing.”

Development of radiogenomic markers

Radiogenomic features were created by combining the most 
prognostic pathways (p < 0.05) with the most prognostic 
radiomic features (p < 0.05). Each radiogenomic feature 
consists of a radiomic–genomic feature pair with one radi-
omic and one pathway feature. For each radiomic–genomic 
feature pair, four binary radiogenomic features were created 
(pathway-disrupted and radiomic-high, pathway-disrupted 
and radiomic-low, pathway-functional and radiomic-high, 
pathway-disrupted and radiomic-low). For example, the 
radiogenomic feature cellular senescence (functional)-CT 
ih.kurt (high) was defined to be “present” for a patient if the 
patient has a functional cellular senescence pathway and a 
high value (above threshold determined by survival analysis) 
for the CT radiomic feature ih.kurt. In all other cases, the 
radiogenomic feature value was defined as “absent.” From 
the total of 84 radiogenomic markers, only those with suf-
ficiently large subgroups for survival analysis (at least 15% 
samples in each group) were considered, leaving 49 radiog-
enomic markers for further analysis.

Statistical analysis

Survival analysis was conducted using two-sided logrank 
tests with an optimized cutoff and OS. Logrank tests, two-
sided Cox proportional hazard models, and plotting for 
Kaplan–Meier curves were performed using the lifelines 
Python package. No survival analysis was performed if one 
of the groups contained less than 15% samples. The associa-
tion between radiomic features and pathway-level scores was 
performed using the non-parametric, two-sided Mann–Whit-
ney U test implementation of the SciPy Python package. 
Bonferroni correction was applied for all statistical analyses 
to account for multiple testing.

Table 1   Characteristics of the 62 patients included for analysis

Patient characteristics
  Median age, years (range) 57 (35–83)
  Median overall survival, months (range) 25 (0–130)
  Male, n (%) 45 (73)
  Female, n (%) 17 (27)
  Treatment naive at tissue acquisition, n (%) 52 (84)

Clinical stage, n (%)
  I 4 (6)
  II 5 (8)
  III 4 (6)
  IVA 38 (61)
  IVB 3 (5)
  IVC 7 (11)
  Not reported 1 (2)

Localization, n (%)
  Oral cavity 35 (56)
  Oropharynx 16 (26)
  Hypopharynx 6 (10)
  Larynx 4 (6)
  Nasal sinuses 1 (2)
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Machine learning classification

Binary machine learning (ML) classification models 
were built using Dedicaid AutoML version 1.1 (Dedicaid 
GmbH, Vienna, Austria) via a stacked and mixed ensemble 
approach. Algorithms used in the ensemble included random 
forest, support vector machine, and a multi-Gaussian genetic 
algorithm. Preprocessing included standardization of input 
features and removal of redundant features. In case of label 
imbalance, oversampling was employed on the training data 
via the synthetic minority oversampling technique (SMOTE) 
[27]. A total of 20 genomic, radiomic, and radiogenomic fea-
tures were included which were identified to be prognostic 
in the preceding univariate analyses. Prediction target labels 
were generated by dichotomization of the continuous OS 
information. Three binary classification models were created 
for OS greater 24 months, OS greater median (25 months) 
and OS greater 36 months. Results were validated using 
100-fold Monte Carlo cross-validation with a training-to-
test sample ratio of 80:20. Details on the ML analysis can 
be found in Supplement section 2.

Feature importance measurement

Feature importance measurement was based on R-squared 
ranking [28]. R-squared ranks were determined on the binary 
target labels for each of the ML models, leading to one fea-
ture importance ranking per model. The final importance 
was calculated as the average feature importance across all 
100 Monte Carlo cross-validation folds. The importance 
metrics were further normalized to a sum of 100 (%) per 
model.

Code and visualization tools

All analyses were conducted using Python 3. Packages 
used included pandas 1.0.3, numpy 1.19.2, and scikit-learn 
0.23.2. For the survival analysis and plotting of associated 
Kaplan–Meier curves, lifelines 0.24.13 was used. For any 
other statistical analysis, we used SciPy 1.4.1. Visualizations 
were created using Matplotlib 3.2.1 and Seaborn 0.11.1. 
For the creation of rain cloud plots, we used the package 
Ptprince 0.2. For the creation of sankey diagrams, Plotly 
4.4.1 was used. The graphical abstract was created using 
BioRender (biorender.com).

Results

Processing and analysis of the radiomic features

IBSI-conform radiomic features were extracted from [18F]
FDG PET/CT images of primary lesions from 62 patients 

with HNSCC [29]. After redundancy removal [26, 30], 4 
PET-based and 10 CT-based features remained for further 
analysis (Supplemental Fig. 1). Independent assessment 
of PET and CT features identified two texture CT fea-
tures, szm.lzhge (p 6.4 * 10−5) and szm.z.perc (p 0.0016), 
one morphological feature, morph.vol (p 0.0021), and one 
intensity-related PET feature, stat.sum (p 0.0013), to be 
prognostic (Fig. 2a).

On visual inspection of tumors, lesions with high 
PET-based stat.sum were associated with large vol-
umes (Fig. 2b). Since PET-based metabolic tumor vol-
ume (MTV) has been proposed as a prognostic marker 
for multiple cancers, including HNSCC [31], we further 
investigated the association between stat.sum and MTV. 
The analysis confirmed a strong correlation (p < 0.0001) 
(Fig. 2c). CT-based morph.vol was the only additional fea-
ture correlated with MTV, indicating no systematic effect 
of volume on the radiomic features. Furthermore, stat.sum 
was associated with a slightly improved prognostic value 
over MTV (p 0.0013 vs. 0.0040) (Fig. 2d, e).

None of the SUV-based features, SUVmax, SUVmin, 
SUVmean, SUVpeak, and SUV total lesion glycolysis 
(TLG), were significantly prognostic after Bonferroni cor-
rection (p < 0.01) (Supplementary Table 1 and Supplemen-
tary Figs. 2–6), indicating a higher prognostic value of 
radiomic features over SUV metrics in this study cohort.

Processing of genetic data and creation of pathway 
disruption scores

Solid tissue from primary tumors of 62 patients was 
acquired and WES was performed. A total of 15,689 muta-
tions in 8502 genes was detected across all patients. The 
most mutated genes included MUC4 (66%), TTN (35%), 
TP53 (27%), MUC12 (24%), and CSMD3 (23%). The rela-
tion of mutation-, gene-, and pathway-level CADD scores 
for the six selected cell growth and death-related pathways 
and three energy metabolism–related pathways is visual-
ized in two interactive CADD score diagrams (representa-
tively shown in Fig. 3). Of the nine pathways, survival 
analysis identified cellular senescence and apoptosis to be 
significantly prognostic (p < 0.008).

The proliferation-related CADD composition diagram 
(Fig. 3a) suggested a major role of the TP53 gene in deriv-
ing the pathway-level CADD score for p53 signaling, cel-
lular senescence, ferroptosis, cell cycle, and apoptosis. 
However, survival analysis revealed that TP53 alone has 
no prognostic value (p 0.18) (Supplementary Fig. 7). Since 
mutation frequencies in 8486 of 8502 mutated genes was 
below 15%, no additional analyses on single gene level 
were carried out.

550 European Journal of Nuclear Medicine and Molecular Imaging  (2023) 50:546–558

1 3



Association of radiomics and pathway disruption 
scores

Significant associations between four radiomic-pathway 
pairs were identified (p < 0.05) (Fig. 4a). A significant 
association was found between p53 signaling and PET-
based ih.kurt (p < 0.002) (Fig. 4). The overlap of radiomic 
feature distributions for both functional pathway states 
identified ih.kurt as indicator but not as an error-free 
predictor of the pathway states (Fig. 4b). Multiple other 
radiomic-pathway combinations are potentially associated, 
but did not reach significance (Fig. 4c, d). A full list of 
association results is shown in Supplementary Table 2.

Prognostic value of radiogenomic markers

Since the preceding analysis indicated pathway states can-
not be predicted solely from imaging markers (Fig. 4b), the 
incorporation of complementary information via combining 
radiomic and pathway features to radiogenomic features was 
investigated. Of the 49 radiogenomic markers (Supplemen-
tary Table 3), 14 were significantly prognostic (p < 0.001). 
Seven radiogenomic markers were more prognostic than the 
most prognostic univariate marker szm.lzhge (p < 0.0001). 
The best performing radiogenomic marker was cellular 
senescence (functional)-CT ih.kurt (high) indicating a worse 
prognosis (p 5.5 * 10−8).

Fig. 2   stat.sum captures 
information of metabolic tumor 
volume (MTV) and improves 
prognostic stratification. a Most 
prognostic radiomic features 
(p < 0.05) with associated 
modalities and respective sur-
vival analysis results. Ordered 
by p value. b Coronal maximum 
intensity projections (MIPs) of 
the PET images for the three 
lesions with the highest stat.sum 
(left column) and lowest stat.
sum (right column). Red values 
indicate a high [.18F]FDG 
uptake while blue values indi-
cate a low or no uptake. c Pear-
son correlation between MTV 
and stat.sum after applying log 
transformation. d Kaplan–Meier 
curve for MTV. e Kaplan–Meier 
curve for stat.sum. Radiomic 
feature values are shown in 
arbitrary units (AU)
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Multiple cox regression with cellular senescence 
(functional)-CT ih.kurt (high) indicated a strong prog-
nostic value of the radiogenomic marker (p < 0.0001, HR 
2.41) (Fig. 5d, e). Covariates included age at diagnosis 
(p < 0.01, HR 0.04), SUVmax (p 0.08, HR − 0.01), and 
stage IVc (p 0.02, HR 1.06). None of the demographic 
factors age and gender as well as stage IVc were signifi-
cantly prognostic in the independent univariate analysis 
(Supplementary Figs. 10–12).

Machine learning classification

To assess the performance of models integrating com-
plex interactions between multiple genomic, radiomic, 
and radiogenomic features, a ML approach was employed 
to establish and cross-validate three binary classifica-
tions. Prediction targets were OS greater than 24 months, 
OS greater than the median OS, and OS greater than 
36 months. The cross-validation revealed an area under 
the receiver operating characteristic curve (AUC) of 0.72 
for both the 24-months-OS and the median-OS model. For 
the 36-months-OS model, a cross-validated AUC of 0.75 
was observed. Additional performance metrics are shown 
in Fig. 6a. Feature importance ranking further indicated the 
clinical relevance of radiogenomic features, which were the 
most important attributes in all three models, outperform-
ing genetic as well as radiomic features (Fig. 6b). Over all 
models, radiomic features had the lowest prognostic value 
with an average importance of 2.5%, genomic features were 
associated with an average importance of 4.0%, and radiog-
enomic features were most important (5.5%).

Discussion

In our study, we analyzed the association of radiomic with 
genomic data in HNSCC patients. Our results show a strong 
influence of the genetic status on quantitative imaging mark-
ers in a cohort of HNSCC patients following radiomic and 
genomic data analysis. By using complementary informa-
tion from imaging and genetic patterns, we were able to 
demonstrate that combining radiomic and pathway-level 
genomic features to radiogenomic markers improves prog-
nostic performance significantly. Furthermore, we identified 
cellular senescence-derived radiogenomic markers essential 
for prognostic stratification of HNSCC patients.

In the association analysis of radiomic and genetic traits 
at the pathway level, we found that higher levels of the PET-
based histogram feature ih.kurt can be associated with an 
impaired state of p53 signaling and nitrogen metabolism 
(Fig. 4). One plausible explanation for the observed associa-
tion of p53 signaling is the heterogeneous uptake of [18F]
FDG indicated by ih.kurt. The genetic and phenotypic het-
erogeneity of clonal populations in tumors are the result of 
an increased number of proliferation cycles, which results 
in increased mutation rates given the fast growth of tumor 
tissue [32]. This genetic heterogeneity in clonal popula-
tions could be caused by impaired p53 signaling causing 
genome instability [33]. Genome instability has previously 
been shown to promote intratumoral heterogeneity detect-
able on PET via epigenetic mechanisms [34]. Targeting 
p53 signaling has been shown to be a successful treatment 
strategy and is currently evaluated in clinical trials using 

Fig. 3   Composition of pathway CADD scores from gene- and muta-
tion-level scores for KEGG pathways associated with cell growth and 
death (a) and energy metabolism (b). Links of genes influencing mul-
tiple pathways are shown in red. The color intensity of links indicates 
the CADD score of mutations and sums of CADD scores over all 
mutations for mutations and genes, respectively. Hence, darker blue 
or red indicate a higher CADD score (disrupted) while a lighter color 
indicates a low CADD score (functional). The width of links between 
genes and pathways indicates the number of mutations in a gene over 
all patients in our cohort. The fully annotated, interactive version of 
this figure is available at https://​cspie​lvogel.​github.​io/​cadd-​diagr​am/​
cadd_​compo​sition_​cell_​growth_​and_​death.​html and https://​cspie​lvo-
gel.​github.​io/​cadd-​diagr​am/​cadd_​compo​sition_​energy_​metab​olism.​
html for cell growth and death or energy metabolism, respectively
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multiple strategies for treating various cancers, including 
HNSCC [35]. In the association of nitrogen metabolism 
and the increased metabolism indicated by PET imaging, 
the amino acid glutamine might play a crucial role. Many 
cancer cells are reliant on glutamine as main anaplerotic 
metabolite to fuel the citric acid cycle through a series of 
biochemical reactions termed glutaminolysis [36]. There-
fore, nitrogen metabolism plays an essential role in cells 
proliferation via anabolic processes such as the biosynthe-
sis of amino acids, nucleotides, and polyamines. Similar to 
p53 signaling, targeting nitrogen metabolism in proliferating 
cancer cells has been suggested to be a promising therapeu-
tic approach in clinical studies [37–39]. Considering these 

aspects, exploring ih.kurt as a novel imaging-based marker 
to determine patients benefitting from these therapeutic 
approaches is highly promising.

Currently, SUV-based metrics dominate clinical image 
analysis, given their ease of use and compatibility with 
conventional PET/CT acquisition protocols. SUV-based 
metrics have shown prognostic value in a meta-analysis 
[40]. However, we were not able to reproduce this finding 
in this study’s cohort. Still, our results identify PET- and 
CT-derived radiomic features that have prognostic value 
(Fig. 2a), even where SUV-based metrics did not provide 
prognostic information in this study’s cohort. Moreover, 
we identify specific tumor characteristics, which reflect 

Fig. 4   Association of PET- and CT-based radiomic features with 
pathways related to cell growth and death as well as energy metabo-
lism. a Pathways and linked radiomic features with p values below 
0.05. b Distribution of the two most significant associations: PET-
based radiomic histogram feature excess discretized intensity kurtosis 
(ih.kurt) depending on the functional state of two pathways, nitrogen 
metabolism (left) and p53 signaling (right). For each pathway, the 
distribution of the radiomic feature ih.kurt (PET) is visualized for 
patients with functional (blue) and disrupted (pink) genetic status via 
kernel density estimation. A higher width of the curve area at a given 
radiomic feature value on the y-axis indicates a higher probability of 

a patient to have the respective radiomic feature value as estimated 
by the kernel density estimation. Furthermore, for each pathway, two 
boxplots indicate the distribution of the radiomic feature for patients 
with functional and disrupted genetic status. Radiomic features are 
displayed in arbitrary units. c Associations between PET radiomic 
features and pathways. d Associations between CT radiomic features 
and pathways. The width of the links indicates the inverse p value 
within each of the chord plots. Pathways include cellular senescence 
(C. sen.), apoptosis (Apopt.), p53 signaling pathway (p53 s. p.), nitro-
gen metabolism (Nitr. m.), and ferroptosis (Ferrop.)
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these radiomic features. PET-derived stat.sum captures the 
information of MTV (Fig. 2b, c). This can be explained 
by PET-derived stat.sum indicating the summed activity 
throughout the entire lesion and consequently is subject to 
a strong volume-confounding effect [41]. Since stat.sum is 
related to MTV and therefore to the T stage of the tumor, 
a relation with prognosis is not surprising and presents an 
expected finding. However, stat.sum was slightly more prog-
nostic than MTV, indicating additional prognostic informa-
tion being captured by the radiomic feature compared to 
volume alone (Fig. 2d, e). Overall, despite the association 
of volume-related radiomic features such as stat.sum and 
morph.vol with T stage, the investigation of these features is 
potentially valuable. On the one hand, some of these features 
provide a fine-grained resolution of the tumor volume itself 
due to their continuous nature. This makes volume-related 
radiomic features not only better parameters for automated 
analysis but also allows for finding optimal thresholds to 
stratify patients. On the other hand, some volume-related 
radiomic features such as stat.sum incorporate additional 

information to tumor volume and therefore provide a differ-
ent viewpoint of the tumor.

The genetically functional state of cellular senescence 
was significantly associated with reduced survival rates and 
comprised the most prognostic markers when combined 
with radiomic features, in the statistical and ML analysis 
(Figs. 5 and 6). Senescence is known to induce a stable cell 
cycle arrest triggered by p53 and was therefore proposed as 
a prevention mechanism for tumorigenesis [42]. However, 
recent studies have shown that senescent cells can function 
as tumor promoters, partly due to the proinflammatory and 
growth-stimulating effects of the senescence-associated 
secretory phenotype [43].

Since none of the extracted imaging features had a strong 
association with senescence (Fig. 4), we hypothesized that 
the identified prognostic imaging markers contain comple-
mentary information relevant for prognosis. The ML analy-
sis confirmed the added value of combined radiogenomic 
features over their univariate counterparts (Fig. 6). Fur-
thermore, the ML analysis demonstrated the capabilities 

Fig. 5   Kaplan–Meier curves for 
the most prognostic radiog-
enomic marker and the cor-
responding univariate markers. 
Kaplan–Meier curves associated 
with univariate markers include 
cellular senescence (a) and the 
CT-based radiomic feature ih.
kurt (b). The Kaplan–Meier 
curve of the combined radiog-
enomic marker clearly indicates 
an improved prognostic strati-
fication (c). The radiogenomic 
marker was defined to be 
“present” if cellular senescence 
was functional and the ih.kurt 
(CT) was low. In all other cases, 
the radiogenomic marker is 
“absent.” The forest plot shows 
the hazard ratios derived using 
Cox regression (d). A sum-
mary of the univariate analysis 
(logrank) and multivariate (cox) 
analysis with a set of covariates 
are shown in (e)
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of highly multivariate prediction models as prognostic bio-
marker (Fig. 5).

Our findings encourage the utilization of senescence-
derived radiogenomic markers for the prognostic stratifica-
tion of HNSCC patients into clinically meaningful groups. 
Prognosis is certainly one of the most important, yet most 
difficult issues to address in clinical oncology, not only for 
the patients but also for their relatives. Prognostic markers, 
like the ones presented in the present study, can play a vital 
role in clinical decision-making. They allow for an accurate 
estimation of prognosis, enabling physicians to anticipate 
disease progression and, thus, aiding the selection of the 
most suitable treatment and follow-up scheme and allowing 
for an optimized allocation of healthcare resources. In addi-
tion, the prognostic markers identified in this study provide 

a primer for research into the mechanistic causes of the sur-
vival differences depending on the state of radiogenomic 
markers.

In our study, mutational tumor DNA was used, deliver-
ing a stable and easily reproducible ground truth compared 
to transcriptomics data deployed in similar radiogenomic 
studies [44, 45]. In addition, pathway-level genetic markers 
were used not only integrating information about multiple 
genes but also deriving information closer to the functional 
state of the cell. Furthermore, most studies used CT imaging 
alone [44, 45] while in this study, anatomical information 
from CT and metabolic information from [18F]FDG PET 
were integrated.

Since we used genetic data derived from solid biop-
sies, subclonal populations of the tumor cells may not be 

Fig. 6   Machine learning–
derived feature ranking (% 
importance) for the three classi-
fication models. a Performance 
metrics for the classification 
models include area under the 
receiver operating characteristic 
curve (AUC), accuracy (ACC), 
sensitivity (SNS), specificity 
(SPC), positive predictive value 
(PPV), and negative predictive 
value (NPV). b The heatmap 
shows the feature contribu-
tion for each model. The bar 
chart shows the importance of 
each feature as mean over the 
models. Darker colors indicate 
higher values. The dashed lines 
indicate the mean importance 
over all features belonging to 
one of the three feature catego-
ries, radiomics, genomics, and 
radiogenomics. Feature impor-
tance was calculated based on 
R-squared ranking
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adequately reflected. To overcome this issue and avoid the 
drawbacks of surgical interventions, future radiogenomic 
studies may therefore focus on the use of cell-free DNA 
(cfDNA) from liquid biopsies to obtain genetic data. Follow-
up studies involving DNA sequencing could be greatly sim-
plified, accelerated, and cheapened since panel sequencing 
focusing on senescence and nitrogen metabolism signaling 
pathways would be sufficient.

Our study is based on a limited cohort size, which 
restricted the ML approach to features selected based on 
the prognostic value in the overall cohort. Since the semi-
automated segmentation procedure led to only one segmen-
tation, we were not able to assess the segmentation’s reliabil-
ity. Furthermore, we were not able to validate our findings 
using public data since we did not find [18F]FDG PET/CT 
and matched WES data available online. The cohort used in 
this study is highly heterogeneous, including different clini-
cal subtypes and tumors from multiple locations and stages. 
Together, this presents a limitation for the translation to clin-
ics since not all findings might be true for all subgroups. 
The cohort is derived from a single center, requiring an 
independent, multi-centric validation to account for center-
specific biases introduced, for example, through different 
imaging protocols. Next to imaging protocols, radiomic 
features are generally sensitive to variations in segmenta-
tion protocols and scanner types, creating a challenge when 
applying radiomic features to other centers.

Conclusions

In this work, we compared and correlated radiomic with 
genomic data from HNSCC patients using classical statistics 
as well as machine learning and were able to find a sig-
nificant impact of genomic alterations on the corresponding 
radiomic imaging markers. We demonstrate that combining 
and unifying PET/CT radiomic and pathway-level genomic 
features into radiogenomic markers radically improves 
prognostic performance. In addition, our experiments have 
revealed the essential role of cellular senescence and derived 
radiogenomic markers in patient outcome, which may be 
essential for prognostic stratification of HNSCC patients 
in the future. Future studies can potentially validate our 
approach by induction of the presented genetic patterns 
in preclinical models to investigate the resulting imaging 
patterns found to be associated with genetic patterns. More 
research is needed focusing on the investigation of additional 
data types such as proteomic, epigenomic, and microscopy 
data to further add to a holistic, personalized picture of can-
cer patients and improve prognostic biomarkers.
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