Skip to main content
. 2023 Jan 6;13:261. doi: 10.1038/s41598-022-27266-9

Table 1.

Comparison of our proposed method with existing state-of-the-art methods using COVIDx dataset, the best performances are indicated in bold.

Method Accuracy (%) Sensitivity (%) Specificity (%) Precision (%)
Zhong et al.66 86.94 76.38 95.83 78.01
Deep-COVID18 82.83 71.18 93.95 69.49
CoroNet68 89.02 90.62 95.36 79.09
EDL-COVID67 95.0 96.0 95.35 94.1
PbCNN17 91.9 92.5 96.4 76.9
Ismael et al.19 91.3 95.0 94.0 88.8
COVID-Net.9 93.3 91.0 99.4 98.9
Brunese et al.69 84.6 67.0 95.5 88.1
nCOVnet70 87.3 82.0 96.0 91.1
DarkCovidNet40 88.6 89.0 97.5 94.6
Rajaraman et al.71 82.6 64.0 96.0 88.8
DAM-Net 97.22 96.87 99.12 95.54