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Spinal cord injury (SCI) is a devastating central nervous system injury that leads to severe 
disabilities in motor and sensory functions, causing significant deterioration in patients’ 
quality of life. Owing to the complexity of SCI pathophysiology, there has been no effective 
treatment for reversing neural tissue damage and recovering neurological functions. Several 
novel therapies targeting different stages of pathophysiological mechanisms of SCI have 
been developed. Among these, treatments using stem cells have great potential for the re-
generation of damaged neural tissues. In this review, we have summarized recent preclini-
cal and clinical studies focusing on neural stem cells (NSCs). NSCs are multipotent cells 
with specific differentiation capabilities for neural lineage. Several preclinical studies have 
demonstrated the regenerative effects of transplanted NSCs in SCI animal models through 
both paracrine effects and direct neuronal differentiation, restoring synaptic connectivity 
and neural networks. Based on the positive results of several preclinical studies, phase I and 
II clinical trials using NSCs have been performed. Despite several hurdles and issues that 
need to be addressed in the clinical use of NSCs in patients with SCI, gradual progress in 
the technical development and therapeutic efficacy of NSCs treatments has enhanced the 
prospects for cell-based treatments in SCI.

Keywords: Spinal cord injury, Neural stem cells, Clinical trials, Cell-based therapies, 
Transplantation, Regenerative medicine

INTRODUCTION

Traumatic spinal cord injury (SCI) is a catastrophic event with 
a high mortality rate and causes physical and emotional diffi-
culties in patients.1-5 It is defined as injury to the spinal cord, 
nerve roots, osseous structures, and disco-ligamentous compo-
nents.6 The subsequent formation of reactive tissue scarring 
and cystic cavitation results in the development of molecular 
and physical barriers to regenerative axonal growth and long-
term neurological deficits in SCI. The prevalence and incidence 
of SCI vary according to geopolitical and economic conditions, 

and approximately 1,000 new cord injury cases occur every year 
in South Korea.7 Although the global incidence is similar be-
tween sexes, men have a higher incidence than women aged 
20–40 years.8 Moreover, as the global population tends to grow 
and health care systems improve, an increase in the absolute 
number of people living with SCI is expected.1,3,4

Anti-inflammatory methylprednisolone sodium succinate is 
the first-line drug treatment for patients with SCI.9 After initial 
management, clinicians surgically decompress the spinal cord 
and control the lesion site if needed.10 Many studies have been 
conducted to prevent or reduce the effects of secondary injury; 
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among them, research on steroids and neuroprotective alterna-
tives has been discussed for a long time. For the regeneration of 
damaged neural cells in SCI, various types of stem cells includ-
ing Schwann cells, olfactory ensheathing cells, embryonic stem 
cells (ESCs), mesenchymal stem cells (MSCs), and neural stem 
cells (NSCs), have been examined preclinically and in animal 
models of SCI.

Recently, transplantation of NSCs has been shown to promote 
the repair or regeneration of damaged spinal cords. In this re-
view article, we have discussed the characteristics, origin, and 
recent developments of NSCs in clinical trials of SCI.

BASIC CHARACTERISTIC OF STEM CELLS

Stem cells exhibit 2 characteristics: self-renewal and multipo-
tency. ESCs that are established from fertilized eggs can satisfy 
the definition of stem cells because ESCs can proliferate indefi-
nitely and differentiate into whole body.11 Recently, induced plu-
ripotent stem cells (iPSCs) have been suggested to exhibit char-
acteristics similar to those of ESCs.12 These 2 types of stem cells 
are called pluripotent stem cells (PSCs). In contrast, adult stem 
cells (ASCs) reside in organs and regenerate their tissues when 
damaged.13 Therefore, ASCs usually have limited lifespan and 
differentiation potential. In clinical trials to regenerate the dam-
aged central nervous system (CNS), 2 types of ASCs have been 
used: MSCs and NSCs. The key feature of MSCs is their differen-
tiation potential into mesodermal tissues, such as osteoblasts, 
adipocytes, chondrocytes, and even other lineages.14 Moreover, 
MSCs produce various paracrine factors that have beneficial ef-
fects on regeneration and immune modulation.15 However, sev-
eral studies have concluded that their beneficial effects are due to 
functional modulation, and not by direct neuronal regeneration 
and integration into the injured CNS.16,17 NSCs are characterized 
by the expression of typical markers, such as Nestin or Sox2.18 
Generally, they reside in the subventricular zone and the sub-
granular zone,19,20 which are specialized niches where young 
neurons for the olfactory bulb and hippocampus, respectively, 
are generated.21 NSCs can self-renew and play a role in neuro-
genesis in the adult brain.22,23 NSCs preferentially differentiate 
into neural lineages such as neurons, astrocytes, and oligoden-
drocytes, which are attractive for clinical use in CNS diseases.24 
NSCs also secrete beneficial paracrine factors that can help re-
generate the damaged CNSs.25-27 Such characters make NSCs a 
potent and versatile cellular drug candidate for the treatment of 
the CNS injuries.

ESTABLISHMENT OF NSCs

NSCs have been established from several sources.28 Among 
them, the conventional source of NSCs is the fetal CNS.8,26,29 
Fetal NSCs (fNSCs) have self-renewal potential and neural dif-
ferentiation capacity.30 The therapeutic potential of fNSCs has 
been demonstrated in a model of SCI,8,29,31 and interestingly, 
human fNSCs showed neurogenesis after injection into immu-
nodeficient mice in vivo.8,32 fNSCs can differentiate into neu-
rons, which can connect with surrounding neurons.8,29,31 With 
promising data from several preclinical studies, most clinical 
trials have used NSCs derived from the human fetal CNS, in-
cluding the brain and spinal cord.33 However, unavoidable ethi-
cal issues using fetal CNS are critical for commercial develop-
ment, and they provide a strong motivation for other cellular 
sources.

One candidate is the adult NSCs (aNSCs), which can be iso-
lated from the adult CNS. The adult olfactory bulb is the source 
of NSCs. The olfactory bulb core is an extension of the rostral 
migratory stream and is thus a potential source of neural pro-
genitors and NSCs.34 Human spine is another option for aNSCs 
transplantation.35-37 Through several preclinical studies, the ben-
eficial effects of aNSCs have been proven in SCI models.32,38-43 
These studies suggested that the beneficial effects of aNSCs come 
not only from their paracrine effects in neural tissue repair and 
regeneration, but also from their direct differentiation into vari-
ous neuronal lineage cells that are integrated and form neuro-
nal networks with the host CNS. This multiple recovery mech-
anism implies that aNSCs could be an optimal choice in the 
treatment of SCI.

Despite these advantages, technical difficulties remain to be 
solved in order to utilize these cells in real-world clinical prac-
tice. For the appropriate use of aNSCs, they must be properly 
isolated and effectively increased in number. Compared with 
other stem cells, aNSCs reside in relatively restricted areas of 
the adult CNS.44 In addition, they have limited and different 
proliferation capacities according to the lesion type and loca-
tion.45 To address the technical difficulties in primary isolation 
and stable in vitro expansion of aNSCs, several research teams 
have suggested various scientific and technical approaches.46 
Surgical samples from adult CNS are usually very small (1–2 
mL) and the number of resident aNSCs within the tissue is also 
very small. Therefore, aNSCs isolation techniques have been 
optimized to increase the success rate of primary isolation. First, 
CNS tissues were physically minced and enzymatically digested 
into single cells. Enzymatic digestion is a critical step because it 
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directly affects NSC survival. Papain, trypsin, and collagenase 
have been commonly used, and in some reports, papain disso-
ciation was suggested to be optimal for the primary isolation of 
aNSCs.47,48 After mechanical and enzymatic dissociation of CNS 
tissues, isolated single cells expand in number. There are 2 al-
ternative culture methods in use: the neurosphere and adherent 
culture methods. Conventionally, the neurosphere culture meth-
od has been used for in vitro culture of NSCs.20,49-57 However, 
difficulties in stable in vitro expansion of aNSCs using suspen-
sion culture methods require the development of other culture 
methods. Moreover, a single neurosphere may not be derived 
from a single NSC.58 The possible heterogenic origin of neuro-
spheres could not guarantee the homogeneity of in vitro-expand-
ed aNSCs in suspension culture conditions.59-61 To overcome 
the limitations of the neurosphere culture method, an alterna-
tive adherent culture methods for NSCs, was developed.52,62-64 
In this method, each group used its coating plates to attach NSCs 
to the plates and various culture medium compositions. Lam-
inin and poly-L-ornithine (PLO) have been used to coat plate 
frequently, which increase the adherent efficiency of NSCs. To 
maintain stemness and proliferation of NSCs, the amount of 
epidermal growth factor (EGF) and basic fibroblast growth fac-
tor (bFGF) have been optimized.65 For example, we expanded 
aNSCs from temporal lobectomy samples of epilepsy patients 
without any neoplastic diseases on PLO-coated dishes in a DM
EM/F12 media supplemented with 1% B27, 1% penicillin/strep-
tomycin cocktail, EGF (50 ng/mL), bFGF (50 ng/mL), and 0.5% 
fetal bovine serum.62 Using the adherent culture method, aN-
SCs were expanded in vitro from 104 to 1012 cells within 8 sub-
cultures for 2 months. Moreover, expression of NSC markers 
such as nestin and SOX2 maintained stably.62 If the number of 
aNSCs required for transplantation is 107 per patient, at least 
one hundred thousand patients could be treated with a primary 
culture of aNSCs.

Recently, technical developments have resulted in the estab-
lishment of NSCs from ESCs or iPSCs.26 When ESCs and iPSCs 
are induced to differentiate into NSCs by several inducers, such 
as growth factors and cytokines,34 these NSCs have similar char-
acteristics to fNSCs, which can induce neurogenesis in the CNS 
of immunodeficient mice.66,67 In several preclinical studies, the 
therapeutic potential of NSCs derived from ESCs or iPSCs has 
been demonstrated in animal models of SCI.8,26,29,31 To date, hu-
man clinical data using ESCs or iPSCs for SCI treatment are 
scarce. Only 2 clinical trials (one in each ESCs and iPSCs) are 
ongoing right now. Compared to the other cellular sources, iP-
SCs have great advantages in ethical issues and immune rejec-

tion.8 Therefore, interests in NSCs from iPSCs will continuously 
increase with the advances with iPSCs technology.

PRECLINICAL STUDY OF NSC FOR SCI 

Preclinical studies should be designed to address the activity 
and safety of stem cell-based products for clinical use. Informa-
tion about the potential mechanism of action of stem cells in 
the disease indication, the timing of intervention with respect 
to disease course, and the mode of delivery to the site of action 
must be investigated in preclinical models. Many preclinical 
studies using NSCs in animal models of SCI have been report-
ed in the literature,8,26,29,31 and the therapeutic potential, safety, 
and several technical aspects of NSCs transplantation have been 
tested under various conditions.

The characteristics of experimental studies using NSCs are 
summarized in Table 1. NSCs treatments have been tested at 
various stages of SCI: acute, subacute and chronic. Mice and 
rats are the most used animals. In a few studies, human NSCs 
have been tested in non-human primates.68-70 The thoracic spi-
nal cord has been the most frequently studied region, where the 
injury is made by mechanical trauma, such as dropping weight 
or clip compression. As sudden contusive injury to the cervical 
spinal cord can be life-threatening, hemitransection is the pre-
ferred method for models of cervical SCI. Functional testing 
scales are somewhat standardized according to animal model 
species. In mice and rats, the Basso mouse scale or Basso-Beat-
tie-Bresnahan test and CatWalk gait analysis are the most fre-
quently used scales. In addition, many studies have used the 
von Frey test to evaluate the sensory function. Several studies 
have also reported functional recovery after transplantation of 
NSCs as well as graft survival, differentiation and axonal regen-
eration.40,42,43,68-81

Although a number of studies have reported promising re-
sults of NSCs treatment in SCI, we still have a long way to go to 
use NSCs in real-world clinical practice. To move from bench 
to bedside, determining the differences between the animal mod-
el and human SCI and closing the gap caused by inherent limi-
tations of the model should be the first step. In general, there 
are no reliable animal models that can predict human diseases. 
Under such circumstances, using a model that most closely rep-
resents the critical features of the intended indication is the best 
alternative. Most human SCI cases are caused by mechanical 
injury. Consequently, we have developed several animal models 
of SCI using mechanical trauma to the spinal cord. However, 
the regenerative potential and physical size of the spinal cord 
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differs among species. Considering that our knowledge regard-
ing the pathophysiological mechanism of SCI is limited, there 
is a need for multiple animal models to properly address the 
delivery, efficacy, toxicity and tumorigenicity of NSCs in SCI 
treatments.

STRATEGIES FOR CLINICAL 
TRANSITION OF NSCs

In addition to the general consideration of clinical transition 
from preclinical studies, more knowledge of NSCs needs to be 
elucidated. The key questions that remain unanswered are as fol-
lows: (1) What is the optimal timing for treatment? (2) What are 
the optimal combinatory or supplementary measures for success-
ful treatment? (3) What is the optimal route of administration? 
(4) How many cells should be transplanted? (5) Which cellular 
source should be used, with regard to efficacy, utility, and safety?

1. Optimal Timing for NSC Treatment
Since glial scarring is one of the major barriers to axonal growth 

and reintegration into neural circuits at the lesion site, cell graft-
ing in the acute phase of SCI might be more beneficial than treat-
ment in chronic-phase SCI. Cheng et al.82 tested 3 different tim-
ings of human NSCs injection (acute, subacute, and chronic) in 
a T10 contusion injury rat model. The subacute group showed 
more prominent functional improvements than the chronic 
group, which supports the idea of the early treatment of SCIs. 
Furthermore, several studies have suggested that NSCs exert 
beneficial effects by suppressing neuroinflammation.27,40 These 
findings imply that NSC transplantation may benefit the acute 
to subacute phase of SCI, the period during which the most ac-
tive inflammatory process takes place. However, several studies 
have reported contradictory findings. Nguyen et al.83 injected 
human NSCs into mice immediately after T9 contusive SCI, and 
the donor cells showed astroglial differentiation near the lesion 
but failed to produce functional improvements. In contrast, Sala-
zar et al.43 transplanted human NSCs into mice 1 month after 
T9 spinal cord contusive injury, and NSC transplanted mice dem-
onstrated significantly improved locomotor recovery. There-
fore, it is difficult to determine that which time window would 
be the most beneficial for transplanting NSCs after SCI, and we 
need more data for validation. Many preclinical studies have 
shown that grafted NSCs survive, migrate and integrate into the 
injured spinal cord, and differentiate into 3 CNS cell lineages. 
This suggests that data is insufficient to set specific time win-
dow for successful NSCs treatment, and more studies are re-

quired to verify the effective treatment timing for NSCs therapy.

2. �Considered Combinatory or Supplementary Measures 
for Successful NSC Treatment
Since SCI is a complicated process with multiphasic cellular 

and molecular responses that vary over time,8 testing various 
strategies in patients with different injury time windows and 
situations is important along with efforts to find the best time 
window for the treatment of SCI patients. It is clear that a single 
treatment modality is not effective in SCI treatment. Several 
combinatory treatments to enhance grafted cell survival, migra-
tion, differentiation and axonal regeneration along with func-
tional recovery have been studied. Synergic treatments with neu-
rotrophic factors such as EGF, bFGF, platelet-derived growth 
factor, and neurotrophin-3 by implanting genes in NSCs.41,76 In 
addition, mixing other cells such as fibroblasts or neuroepithe-
lial-like stem cells with transplanted NSCs to enhance structur-
al repair84,85; cotreatment with growth factor cocktail42,77,86,87; and 
adding rehabilitation exercise81 also showed promising results. 
In chronic-phase SCI, pretreatment with chondrotinase ABC 
(ChABC) before transplantation of NSCs seemed to unlock scar 
tissue around the injury sites and produce a microenvironment 
conducive for NSCs regeneration. Several preclinical studies 
that have tested the efficacy of ChABC pretreatment in chronic 
SCI have also shown locomotor improvements.41,88-90 These stud-
ies are in progress. In the future, there is a need to develop a com-
prehensive protocol by combining effective strategies according 
to the injury timeline.

One of the most promising combinatory treatments for NSCs 
is the use of tissue-engineered scaffolds. The use of scaffolds 
may act as a bridge that fills the lesion gap and helps reconnect 
and recover neural networks. Several scaffold types have been 
developed and tested in preclinical studies. Günther et al.91 re-
ported that anisotropic alginate hydrogel scaffolds promote ax-
onal regrowth and guided regenerated axons. Huang et al.92 had 
used similar scaffolds and demonstrated axonal regrowth through 
these scaffolds in chronic SCI after the lesion scar was removed. 
In addition, they have shown significant improvements in func-
tional outcomes and electrophysiological conductivity. Nguyen 
et al.83 reported 3-dimensional aligned nanofiber-hydrogel scaf-
folds could be effective. Furthermore, several other types of scaf-
folds, such as taxol-modified collagen scaffolds,93 graphene ox-
ide scaffolds,94 nanostructured composite scaffolds,95 have shown 
efficacy in axonal regeneration. Several studies have tested com-
binatory treatment with NSCs, and several types of scaffolds 
have reported reductions in lesion cavities, enhanced grafted 
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cell survival and axonal regeneration, and functional improve-
ments.42,69 However, the results have not been consistent in oth-
er studies.72,96 Clearly, various types of scaffolds have shown their 
efficacy in providing anatomical, structural, and histological 
framework which can guide and promote axonal regeneration. 
These scaffolds can replace the injured tissue gap, which would 
not be possible for regenerating axons to pass through and may 
help the axons to overpass the lesion site. Future studies are re-
quired to verify the role of scaffolds in combination with stem 
cell-based treatments for SCI.

3. Administration Routes
The issue of NSCs administration routes is also a complicated 

question that needs to be addressed. Three injection routes are 
possible for SCI treatment and have been tested: intrathecal, in-
traspinal, and intravenous. As shown in Table 1, most preclinical 
studies using NSCs used the intraspinal route for cell transplan-
tation. Amemori et al.97 compared the intrathecal and intraspi-
nal administration routes in an acute contusive SCI model. Both 
the methods facilitated functional locomotor recovery; however, 
cell graft survival at the lesion stie was better in the intraspinal 
injection group, and they concluded that intraspinal transplan-
tation would be more helpful for long-term spinal cord tissue re-
generation. Nevertheless, evidence favoring intrathecal injection 
as an administration route is also available. Cheng et al.98 trans-
planted human NSCs into a contusive rat model of SCI both lo-
cally and distally, and significant functional recovery was ob-
served in the distally injected group. Most researchers agree that 
these beneficial effects arise mainly from the paracrine effects of 
NSCs. Although these administration routes are clearly disad-
vantageous in terms of direct neuronal differentiation and tissue 
regeneration, the intrathecal or intravenous route is a more mini-
mally invasive approach than intraspinal injection, and it can be 
performed much easier in real-world clinical settings, especially 
for treating patients in the acute stage of SCI. In summary, the 
most effective administration route for NSCs transplantation 
seems to be intraspinal injection. More studies to standardize 
intraspinal injection procedure and verify its efficacy. In addi-
tion, there is also a need for seeking the potential utility of intra-
thecal or intravenous cell injection in SCI treatment.

4. Number of Cells Needed for Transplantation
The number of cells that should be transplanted to obtain a 

positive result is another unanswered question. Preclinical stud-
ies typically provide the basis for determining the starting hu-
man dose. The dose of stem cells is dependent on their stability 

because effective number of stem cells should be maintained 
before administration. The number of transplanted cells in pre-
clinical studies presented in the literature ranged between 1×  
105 and 4× 107 cells per kilogram of animal body weight.99 Re-
ferring to Table 1, most preclinical studies NSCs have used ap-
proximately 5× 105 to 1× 106 cells for intraspinal cell transplan-
tation. Yousefifard et al.99 suggested that higher cell doses (> 3 
× 106 cells/kg) are optimal for transplantation. However, a few 
studies suggest that there is a certain threshold for the number 
of transplanted stem cells to survive, and there is no correlation 
between the number of transplanted cells and functional recov-
ery.26 Further studies are needed to determine the optimal range 
of transplanted cell numbers, not only in animal models but 
also in humans.

5. Issues in Cellular Sources of NSCs
Finally, the cellular source that should be used to obtain NSCs 

is also an important question in stem cell treatment in SCI. Vari-
ous cellular sources have been tested. Graft survival, neuronal 
differentiation and functional recovery have been demonstrat-
ed in most preclinical studies where allogeneic NSCs from the 
fetal brain and spinal cord, as well as human NSCs were trans-
planted in mouse and rat models.40,75,77,78,81,86,87,100-102 So far, it seems 
no specific NSC line showed significant comparative advantage 
over others. This means that all of NSCs from different cellular 
sources and lineages should be explored further for their effica-
cy and safety.

Tumorigenicity and immune rejection are the 2 most impor-
tant concerns regarding cellular sources. In terms of tumorige-
nicity, there are numerous experimental design parameters to 
consider, including the choice of animal model, study duration, 
route of administration, number of cells tested, positive control 
selection, and the definition of a positive result. The selected 
animal model should allow sufficient survival of the stem cell 
product to enable the assessment of potential tumorigenicity. 
Therefore, immunocompromised rodents are frequently used 
for this purpose. Likewise, the study duration should be suffi-
cient to permit the detection of potential tumors. Tumorigenic-
ity studies lasting 9–12 months have been requested by regula-
tory agencies. To date, reports of tumor formation in NSCs treat-
ments in animal models of SCI are scarce. However, Salewski et 
al.80 reported that primitive NSCs derived from ESCs could be 
transformed into teratomas. Tumorigenicity potential may also 
reside in NSC lineages and should be closely monitored in fu-
ture studies.

Ready-made NSCs, which are usually obtained from alloge-
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neic brains or spinal cords, have been used in most preclinical 
studies.40,41,72,74-78,102-104 This may be due to limitations in time 
and autologous source tissue to obtain a sufficient number of 
NSCs for transplantation. Human NSCs were tested in several 
animal models with promising results.39,70,71,77,79,80,83,86,98,101 Long-
term survival of grafted cells is necessary for locomotor func-
tional recovery.32 For graft survival, either immunosuppres-
sants were administered after transplantation or nude mice 
and nude rats were used. Such conditioning for experimental 
purposes is possible at a preclinical level. However, the use of 
immunosuppressants in human patients with acute or sub-
acute stage SCI might be risky. SCIs are usually combined with 
severe multiple traumatic injuries affecting multiple organs 
and musculoskeletal regions and using immunosuppressants 
in such conditions poses high risk for sepsis. Transplanted 
NSCs have paracrine effects which help SCI recovery, even in 
the absence of graft survival.25 Nonetheless, considering that 
grafted cell survival with neuronal differentiation and integra-
tion into the host neuronal network would be a favorable long-
term outcome, issues regarding immune rejection should be 
thoroughly studied. The immune rejection issue has brought 
iPSCs into the spotlight. With the advantage of avoiding ethical 
issues, autologous iPSCs have become one of the most attrac-
tive cell sources for human NSCs. However, a vast number of 
studies are required to ensure the efficacy, feasibility, and safety 
of iPSCs in SCI treatment.

CLINICAL TRIALS USING NSCs

In contrast to the relative abundance of preclinical studies on 
NSCs transplantation in animal models of SCI, clinical trials of 
NSCs treatment in patients with SCI, which have been published 
in the literature have been scarce (Table 2). It is encouraging 
that several studies reported its procedural safety as well as par-
tial success in functional recovery after NSCs transplantation in 
patients with SCI.105-108 However, since the number of enrolled 
patients was small, and only patients in the subacute (within 1 
week to 6 months from the injury) and chronic (over 6 months 
from the injury) phases of SCI were included in most trials, it is 
quite difficult to conclude therapeutic efficacy of NSCs, espe-
cially in acute phase SCI.

The paucity of clinical trials implies difficulty in translation 
from bench to bedside in SCI research. The fundamental limi-
tation of translational research is the anatomical difference be-
tween experimental animal models and humans. In addition, 
stem cell therapy in animal models had shown inconsistent re-
sults regarding functional recovery. The therapeutic potential 
of NSCs in SCI treatment was observed, but the absence of a 
certain, reliable modality resulted in numerous exploratory stud-
ies that were far from standardization. Consequently, practical 
questions such as the location and route of cell transplantation, 
adequate number of transplanted cells, assessment tools and 
protocols and variability in NSCs generation are still unknown. 
Furthermore, real-world problems, such as setting a reliable and 
safe logistic to obtain, store and deliver NSCs for clinical use, 

Table 2. Summary of published clinical trials using neural stem cells in spinal cord injury patients in literature

Study Coun-
try

Clinical 
phase

Injury  
location

Treatment 
timing Cell type Cell source Administra-

tion route Results

Moviglia  
et al.107 2009

Argen-
tina

Phase I Cerivcal/ 
thoracic

Chronic* Autologous 
NSCs

Feeding artery 
infusion

Functional recovery was 
shown in 5/8 patients.

Shin et al.108 
2015

South 
Korea

Phase I/II Cervical 22–213 days 
after SCI

hNSPCs Human fetal 
brain

Intralesional 
injection

Partial improvements in 
sensorimotor function

Ghobrial  
et al.105 2017

USA Phase II Cervical/ 
thoracic

At least 4 
months after 
SCI

NSCs 
(HuCNS-SC)

Human fetal 
brain

Intralesional 
injection

Improvements in overall 
mean functional out-
comes measures

Levi et al.112 
2018

USA Phase I Cervical/ 
thoracic

4–24 months 
after SCI

NSCs 
(HuCNS-SC)

Human fetal 
brain

Intralesional 
injection

A manual injection tech-
nique are safe and feasible

Curtis et al.113 
2018

USA Phase I Thoracic 1–2 years after 
SCI

NSCs (NSI-
566)

Human fetal 
spinal cord

Intralesional 
injection

Can be transplanted safely

Levi et al.106 
2019

USA Phase II Cervical 4–24 months 
after SCI

NSCs 
(HuCNS-SC)

Human fetal 
brain

Intralesional 
injection

Motor functional gains in 
the treated participants

HuCNS-SC, human fetal-derived central nervous system neural stem cell; NSCs, neural stem cells; NSI-566, NSI-566 cell line human spinal-
cord-derived neural stem cell; hNSPCs, human neural stem/progenitor cells; SCI, spinal cord injury; USA, United States of America.
*Specific treatment timing after spinal cord injury was not described.
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recruiting patients, and running clinical trials, would be expen-
sive. Several ongoing clinical trials have been attempted despite 
of hurdles mentioned above.8,29 However, extensive efforts to 
find major breakthroughs in SCI treatment are still needed.

CONCLUSION

NSCs are self-renewing and multipotent stem cells that can 
differentiate into neural lineage cells. For the past 2 decades, 
many preclinical studies have tested efficacy and safety of NSCs 
in several animal models of SCI. Successful neuronal differenti-
ation, replacing damaged neural tissue, and functional improve-
ment were observed in several studies. In addition, NSCs secrete 
neurotropic factors that help protect or regenerate injured spi-
nal cord. In preclinical level, transplantation of NSCs has been 
proved as a promising therapeutic approach for SCI treatment. 
However, some of clinical trials of NSCs did not show enough 
efficacy as expected. These results suggest that a need for fur-
ther assessment, and the exact mechanism by which NSCs trans-
plantation improves outcomes after SCI should be explored fur-
ther.

For future perspective, further data such as treatment bene-
fits in terms of neuronal regeneration and functional recovery, 
adjustments in dose and administration period, optimal injec-
tion route, safety, and the most promising cell source for obtain-
ing NSCs should be acquired and verified through future stud-
ies. Moreover, matching preclinical animal models and human 
SCI is another major hurdle to overcome. Finally, it is also im-
portant to highlight that a single treatment modality alone may 
not be sufficient to treat SCI. In addition to cellular transplanta-
tion, combinatory therapies such as neurotrophic and growth 
factors, the use of scaffolds, and neurorehabilitation may be nec-
essary. Their optimal combination and efficacy should also be 
verified in future studies. Despite these uncertainties, numer-
ous preclinical studies and clinical trials have reported promis-
ing results with NSCs treatment for SCI. We are convinced that 
NSCs have a potential to make a major breakthrough in SCI 
treatment in the near future.
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