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INTRODUCTION

Traumatic spinal cord injury (SCI) is a catastrophic event with

Neurospine |

Check for

PISSN 2586-6583 eISSN 2586-659] | Peates

Advances in Neural Stem Cell Therapy
for Spinal Cord Injury: Safety, Efficacy,
and Future Perspectives

Sungjoon Lee', Hyun Nam"***, Kyeung-Min Joo>***, Sun-Ho Lee"*?

'Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul,
Korea

*Stem Cell and Regenerative Medicine Institute, Research Institute for Future Medicine, Samsung Medical
Center, Seoul, Korea

*Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, Korea
‘Department of Anatomy & Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Korea
*Department of Health Sciences and Technology, SATHST, Sungkyunkwan University, Seoul, Korea

Spinal cord injury (SCI) is a devastating central nervous system injury that leads to severe
disabilities in motor and sensory functions, causing significant deterioration in patients’
quality of life. Owing to the complexity of SCI pathophysiology, there has been no effective
treatment for reversing neural tissue damage and recovering neurological functions. Several
novel therapies targeting different stages of pathophysiological mechanisms of SCI have
been developed. Among these, treatments using stem cells have great potential for the re-
generation of damaged neural tissues. In this review, we have summarized recent preclini-
cal and clinical studies focusing on neural stem cells (NSCs). NSCs are multipotent cells
with specific differentiation capabilities for neural lineage. Several preclinical studies have
demonstrated the regenerative effects of transplanted NSCs in SCI animal models through
both paracrine effects and direct neuronal differentiation, restoring synaptic connectivity
and neural networks. Based on the positive results of several preclinical studies, phase I and
II clinical trials using NSCs have been performed. Despite several hurdles and issues that
need to be addressed in the clinical use of NSCs in patients with SCI, gradual progress in
the technical development and therapeutic efficacy of NSCs treatments has enhanced the
prospects for cell-based treatments in SCI.

Keywords: Spinal cord injury, Neural stem cells, Clinical trials, Cell-based therapies,
Transplantation, Regenerative medicine

and approximately 1,000 new cord injury cases occur every year
in South Korea.” Although the global incidence is similar be-
tween sexes, men have a higher incidence than women aged
20-40 years.® Moreover, as the global population tends to grow

a high mortality rate and causes physical and emotional diffi-
culties in patients."” It is defined as injury to the spinal cord,
nerve roots, osseous structures, and disco-ligamentous compo-
nents.® The subsequent formation of reactive tissue scarring
and cystic cavitation results in the development of molecular
and physical barriers to regenerative axonal growth and long-
term neurological deficits in SCI. The prevalence and incidence
of SCI vary according to geopolitical and economic conditions,
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and health care systems improve, an increase in the absolute
number of people living with SCI is expected.**
Anti-inflammatory methylprednisolone sodium succinate is
the first-line drug treatment for patients with SCL® After initial
management, clinicians surgically decompress the spinal cord
and control the lesion site if needed.” Many studies have been

conducted to prevent or reduce the effects of secondary injury;
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among them, research on steroids and neuroprotective alterna-
tives has been discussed for a long time. For the regeneration of
damaged neural cells in SCI, various types of stem cells includ-
ing Schwann cells, olfactory ensheathing cells, embryonic stem
cells (ESCs), mesenchymal stem cells (MSCs), and neural stem
cells (NSCs), have been examined preclinically and in animal
models of SCI.

Recently, transplantation of NSCs has been shown to promote
the repair or regeneration of damaged spinal cords. In this re-
view article, we have discussed the characteristics, origin, and
recent developments of NSCs in clinical trials of SCI.

BASIC CHARACTERISTIC OF STEM CELLS

Stem cells exhibit 2 characteristics: self-renewal and multipo-
tency. ESCs that are established from fertilized eggs can satisfy
the definition of stem cells because ESCs can proliferate indefi-
nitely and differentiate into whole body." Recently, induced plu-
ripotent stem cells (iPSCs) have been suggested to exhibit char-
acteristics similar to those of ESCs."”” These 2 types of stem cells
are called pluripotent stem cells (PSCs). In contrast, adult stem
cells (ASC:s) reside in organs and regenerate their tissues when
damaged.” Therefore, ASCs usually have limited lifespan and
differentiation potential. In clinical trials to regenerate the dam-
aged central nervous system (CNS), 2 types of ASCs have been
used: MSCs and NSCs. The key feature of MSCs is their differen-
tiation potential into mesodermal tissues, such as osteoblasts,
adipocytes, chondrocytes, and even other lineages." Moreover,
MSCs produce various paracrine factors that have beneficial ef-
fects on regeneration and immune modulation."” However, sev-
eral studies have concluded that their beneficial effects are due to
functional modulation, and not by direct neuronal regeneration
and integration into the injured CNS.'*"” NSCs are characterized
by the expression of typical markers, such as Nestin or Sox2."
Generally, they reside in the subventricular zone and the sub-

granular zone,"?

which are specialized niches where young
neurons for the olfactory bulb and hippocampus, respectively,
are generated.” NSCs can self-renew and play a role in neuro-
genesis in the adult brain.”»* NSCs preferentially differentiate
into neural lineages such as neurons, astrocytes, and oligoden-
drocytes, which are attractive for clinical use in CNS diseases.”
NSCs also secrete beneficial paracrine factors that can help re-
generate the damaged CNSs.”* Such characters make NSCs a
potent and versatile cellular drug candidate for the treatment of

the CNS injuries.

https://doi.org/10.14245/ns.2244658.329

ESTABLISHMENT OF NSCs

NSCs have been established from several sources.® Among
them, the conventional source of NSCs is the fetal CNS.***
Fetal NSCs (fNSCs) have self-renewal potential and neural dif-
ferentiation capacity.”® The therapeutic potential of fNSCs has
been demonstrated in a model of SCL***' and interestingly,
human fNSCs showed neurogenesis after injection into immu-
nodeficient mice in vivo.>** fNSCs can differentiate into neu-
rons, which can connect with surrounding neurons.***' With
promising data from several preclinical studies, most clinical
trials have used NSCs derived from the human fetal CNS, in-
cluding the brain and spinal cord.”® However, unavoidable ethi-
cal issues using fetal CNS are critical for commercial develop-
ment, and they provide a strong motivation for other cellular
sources.

One candidate is the adult NSCs (aNSCs), which can be iso-
lated from the adult CNS. The adult olfactory bulb is the source
of NSCs. The olfactory bulb core is an extension of the rostral
migratory stream and is thus a potential source of neural pro-
genitors and NSCs.** Human spine is another option for aNSCs
transplantation.”*” Through several preclinical studies, the ben-
eficial effects of aNSCs have been proven in SCI models.”>***
These studies suggested that the beneficial effects of aNSCs come
not only from their paracrine effects in neural tissue repair and
regeneration, but also from their direct differentiation into vari-
ous neuronal lineage cells that are integrated and form neuro-
nal networks with the host CNS. This multiple recovery mech-
anism implies that aNSCs could be an optimal choice in the
treatment of SCI.

Despite these advantages, technical difficulties remain to be
solved in order to utilize these cells in real-world clinical prac-
tice. For the appropriate use of aNSCs, they must be properly
isolated and effectively increased in number. Compared with
other stem cells, aNSCs reside in relatively restricted areas of
the adult CNS.* In addition, they have limited and different
proliferation capacities according to the lesion type and loca-
tion.” To address the technical difficulties in primary isolation
and stable in vitro expansion of aNSCs, several research teams
have suggested various scientific and technical approaches.*
Surgical samples from adult CNS are usually very small (1-2
mL) and the number of resident aNSCs within the tissue is also
very small. Therefore, aNSCs isolation techniques have been
optimized to increase the success rate of primary isolation. First,
CNS tissues were physically minced and enzymatically digested
into single cells. Enzymatic digestion is a critical step because it
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directly affects NSC survival. Papain, trypsin, and collagenase
have been commonly used, and in some reports, papain disso-
ciation was suggested to be optimal for the primary isolation of
aNSCs.”*® After mechanical and enzymatic dissociation of CNS
tissues, isolated single cells expand in number. There are 2 al-
ternative culture methods in use: the neurosphere and adherent
culture methods. Conventionally, the neurosphere culture meth-
od has been used for in vitro culture of NSCs.****” However,
difficulties in stable in vitro expansion of aNSCs using suspen-
sion culture methods require the development of other culture
methods. Moreover, a single neurosphere may not be derived
from a single NSC.* The possible heterogenic origin of neuro-
spheres could not guarantee the homogeneity of in vitro-expand-
ed aNSCs in suspension culture conditions.”*" To overcome
the limitations of the neurosphere culture method, an alterna-
tive adherent culture methods for NSCs, was developed.®>**®
In this method, each group used its coating plates to attach NSCs
to the plates and various culture medium compositions. Lam-
inin and poly-L-ornithine (PLO) have been used to coat plate
frequently, which increase the adherent efficiency of NSCs. To
maintain stemness and proliferation of NSCs, the amount of
epidermal growth factor (EGF) and basic fibroblast growth fac-
tor (bFGF) have been optimized.®® For example, we expanded
aNSCs from temporal lobectomy samples of epilepsy patients
without any neoplastic diseases on PLO-coated dishes in a DM-
EM/F12 media supplemented with 1% B27, 1% penicillin/strep-
tomycin cocktail, EGF (50 ng/mL), bFGF (50 ng/mL), and 0.5%
fetal bovine serum.” Using the adherent culture method, aN-
SCs were expanded in vitro from 10* to 10'* cells within 8 sub-
cultures for 2 months. Moreover, expression of NSC markers
such as nestin and SOX2 maintained stably.** If the number of
aNSCs required for transplantation is 107 per patient, at least
one hundred thousand patients could be treated with a primary
culture of aNSCs.

Recently, technical developments have resulted in the estab-
lishment of NSCs from ESCs or iPSCs.** When ESCs and iPSCs
are induced to differentiate into NSCs by several inducers, such
as growth factors and cytokines,* these NSCs have similar char-
acteristics to fNSCs, which can induce neurogenesis in the CNS
of immunodeficient mice.***” In several preclinical studies, the
therapeutic potential of NSCs derived from ESCs or iPSCs has
been demonstrated in animal models of SCL.3*****! To date, hu-
man clinical data using ESCs or iPSCs for SCI treatment are
scarce. Only 2 clinical trials (one in each ESCs and iPSCs) are
ongoing right now. Compared to the other cellular sources, iP-
SCs have great advantages in ethical issues and immune rejec-
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tion.® Therefore, interests in NSCs from iPSCs will continuously
increase with the advances with iPSCs technology.

PRECLINICAL STUDY OF NSC FOR SCI

Preclinical studies should be designed to address the activity
and safety of stem cell-based products for clinical use. Informa-
tion about the potential mechanism of action of stem cells in
the disease indication, the timing of intervention with respect
to disease course, and the mode of delivery to the site of action
must be investigated in preclinical models. Many preclinical
studies using NSCs in animal models of SCI have been report-

ed in the literature %!

and the therapeutic potential, safety,
and several technical aspects of NSCs transplantation have been
tested under various conditions.

The characteristics of experimental studies using NSCs are
summarized in Table 1. NSCs treatments have been tested at
various stages of SCI: acute, subacute and chronic. Mice and
rats are the most used animals. In a few studies, human NSCs
have been tested in non-human primates.®®”* The thoracic spi-
nal cord has been the most frequently studied region, where the
injury is made by mechanical trauma, such as dropping weight
or clip compression. As sudden contusive injury to the cervical
spinal cord can be life-threatening, hemitransection is the pre-
ferred method for models of cervical SCI. Functional testing
scales are somewhat standardized according to animal model
species. In mice and rats, the Basso mouse scale or Basso-Beat-
tie-Bresnahan test and CatWalk gait analysis are the most fre-
quently used scales. In addition, many studies have used the
von Frey test to evaluate the sensory function. Several studies
have also reported functional recovery after transplantation of
NSCs as well as graft survival, differentiation and axonal regen-
eration.40,42,43,68—81

Although a number of studies have reported promising re-
sults of NSCs treatment in SCI, we still have a long way to go to
use NSCs in real-world clinical practice. To move from bench
to bedside, determining the differences between the animal mod-
el and human SCI and closing the gap caused by inherent limi-
tations of the model should be the first step. In general, there
are no reliable animal models that can predict human diseases.
Under such circumstances, using a model that most closely rep-
resents the critical features of the intended indication is the best
alternative. Most human SCI cases are caused by mechanical
injury. Consequently, we have developed several animal models
of SCI using mechanical trauma to the spinal cord. However,
the regenerative potential and physical size of the spinal cord
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differs among species. Considering that our knowledge regard-
ing the pathophysiological mechanism of SCI is limited, there
is a need for multiple animal models to properly address the
delivery, efficacy, toxicity and tumorigenicity of NSCs in SCI

treatments.

STRATEGIES FOR CLINICAL
TRANSITION OF NSCs

In addition to the general consideration of clinical transition
from preclinical studies, more knowledge of NSCs needs to be
elucidated. The key questions that remain unanswered are as fol-
lows: (1) What is the optimal timing for treatment? (2) What are
the optimal combinatory or supplementary measures for success-
ful treatment? (3) What is the optimal route of administration?
(4) How many cells should be transplanted? (5) Which cellular
source should be used, with regard to efficacy, utility;, and safety?

1. Optimal Timing for NSC Treatment

Since glial scarring is one of the major barriers to axonal growth
and reintegration into neural circuits at the lesion site, cell graft-
ing in the acute phase of SCI might be more beneficial than treat-
ment in chronic-phase SCI. Cheng et al.* tested 3 different tim-
ings of human NSCs injection (acute, subacute, and chronic) in
a T10 contusion injury rat model. The subacute group showed
more prominent functional improvements than the chronic
group, which supports the idea of the early treatment of SCIs.
Furthermore, several studies have suggested that NSCs exert
beneficial effects by suppressing neuroinflammation.””** These
findings imply that NSC transplantation may benefit the acute
to subacute phase of SCI, the period during which the most ac-
tive inflammatory process takes place. However, several studies
have reported contradictory findings. Nguyen et al.** injected
human NSCs into mice immediately after T9 contusive SCI, and
the donor cells showed astroglial differentiation near the lesion
but failed to produce functional improvements. In contrast, Sala-
zar et al.® transplanted human NSCs into mice 1 month after
T9 spinal cord contusive injury, and NSC transplanted mice dem-
onstrated significantly improved locomotor recovery. There-
fore, it is difficult to determine that which time window would
be the most beneficial for transplanting NSCs after SCI, and we
need more data for validation. Many preclinical studies have
shown that grafted NSCs survive, migrate and integrate into the
injured spinal cord, and differentiate into 3 CNS cell lineages.
This suggests that data is insufficient to set specific time win-
dow for successful NSCs treatment, and more studies are re-
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quired to verify the effective treatment timing for NSCs therapy.

2. Considered Combinatory or Supplementary Measures
for Successful NSC Treatment

Since SCI is a complicated process with multiphasic cellular
and molecular responses that vary over time,® testing various
strategies in patients with different injury time windows and
situations is important along with efforts to find the best time
window for the treatment of SCI patients. It is clear that a single
treatment modality is not effective in SCI treatment. Several
combinatory treatments to enhance grafted cell survival, migra-
tion, differentiation and axonal regeneration along with func-
tional recovery have been studied. Synergic treatments with neu-
rotrophic factors such as EGF, bFGE, platelet-derived growth
factor, and neurotrophin-3 by implanting genes in NSCs.*”* In
addition, mixing other cells such as fibroblasts or neuroepithe-
lial-like stem cells with transplanted NSCs to enhance structur-
al repair®*®; cotreatment with growth factor cocktail*>””%%; and
adding rehabilitation exercise® also showed promising results.
In chronic-phase SCI, pretreatment with chondrotinase ABC
(ChABC) before transplantation of NSCs seemed to unlock scar
tissue around the injury sites and produce a microenvironment
conducive for NSCs regeneration. Several preclinical studies
that have tested the efficacy of ChABC pretreatment in chronic
SCI have also shown locomotor improvements.*"** These stud-
ies are in progress. In the future, there is a need to develop a com-
prehensive protocol by combining effective strategies according
to the injury timeline.

One of the most promising combinatory treatments for NSCs
is the use of tissue-engineered scaffolds. The use of scaffolds
may act as a bridge that fills the lesion gap and helps reconnect
and recover neural networks. Several scaffold types have been
developed and tested in preclinical studies. Giinther et al.”' re-
ported that anisotropic alginate hydrogel scaffolds promote ax-
onal regrowth and guided regenerated axons. Huang et al.”> had
used similar scaffolds and demonstrated axonal regrowth through
these scaffolds in chronic SCI after the lesion scar was removed.
In addition, they have shown significant improvements in func-
tional outcomes and electrophysiological conductivity. Nguyen
et al” reported 3-dimensional aligned nanofiber-hydrogel scaf-
folds could be effective. Furthermore, several other types of scaf-
folds, such as taxol-modified collagen scaffolds,” graphene ox-
ide scaffolds,” nanostructured composite scaffolds,” have shown
efficacy in axonal regeneration. Several studies have tested com-
binatory treatment with NSCs, and several types of scaffolds
have reported reductions in lesion cavities, enhanced grafted
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cell survival and axonal regeneration, and functional improve-
ments.*® However, the results have not been consistent in oth-
er studies.”>* Clearly, various types of scaffolds have shown their
efficacy in providing anatomical, structural, and histological
framework which can guide and promote axonal regeneration.
These scaffolds can replace the injured tissue gap, which would
not be possible for regenerating axons to pass through and may
help the axons to overpass the lesion site. Future studies are re-
quired to verify the role of scaffolds in combination with stem
cell-based treatments for SCL

3. Administration Routes

The issue of NSCs administration routes is also a complicated
question that needs to be addressed. Three injection routes are
possible for SCI treatment and have been tested: intrathecal, in-
traspinal, and intravenous. As shown in Table 1, most preclinical
studies using NSCs used the intraspinal route for cell transplan-

tation. Amemori et al.”

compared the intrathecal and intraspi-
nal administration routes in an acute contusive SCI model. Both
the methods facilitated functional locomotor recovery; however,
cell graft survival at the lesion stie was better in the intraspinal
injection group, and they concluded that intraspinal transplan-
tation would be more helpful for long-term spinal cord tissue re-
generation. Nevertheless, evidence favoring intrathecal injection
as an administration route is also available. Cheng et al.”® trans-
planted human NSCs into a contusive rat model of SCI both lo-
cally and distally, and significant functional recovery was ob-
served in the distally injected group. Most researchers agree that
these beneficial effects arise mainly from the paracrine effects of
NSCs. Although these administration routes are clearly disad-
vantageous in terms of direct neuronal differentiation and tissue
regeneration, the intrathecal or intravenous route is a more mini-
mally invasive approach than intraspinal injection, and it can be
performed much easier in real-world clinical settings, especially
for treating patients in the acute stage of SCI. In summary, the
most effective administration route for NSCs transplantation
seems to be intraspinal injection. More studies to standardize
intraspinal injection procedure and verify its efficacy. In addi-
tion, there is also a need for seeking the potential utility of intra-
thecal or intravenous cell injection in SCI treatment.

4. Number of Cells Needed for Transplantation

The number of cells that should be transplanted to obtain a
positive result is another unanswered question. Preclinical stud-
ies typically provide the basis for determining the starting hu-
man dose. The dose of stem cells is dependent on their stability

954 Www.e-neurospine.org

because effective number of stem cells should be maintained
before administration. The number of transplanted cells in pre-
clinical studies presented in the literature ranged between 1 x
10° and 4 x 107 cells per kilogram of animal body weight.” Re-
ferring to Table 1, most preclinical studies NSCs have used ap-
proximately 5 x 10° to 1x 10° cells for intraspinal cell transplan-
tation. Yousefifard et al.” suggested that higher cell doses (>3
x 10° cells/kg) are optimal for transplantation. However, a few
studies suggest that there is a certain threshold for the number
of transplanted stem cells to survive, and there is no correlation
between the number of transplanted cells and functional recov-
ery.” Further studies are needed to determine the optimal range
of transplanted cell numbers, not only in animal models but
also in humans.

5. Issues in Cellular Sources of NSCs

Finally, the cellular source that should be used to obtain NSCs
is also an important question in stem cell treatment in SCI. Vari-
ous cellular sources have been tested. Graft survival, neuronal
differentiation and functional recovery have been demonstrat-
ed in most preclinical studies where allogeneic NSCs from the
fetal brain and spinal cord, as well as human NSCs were trans-

40,75,77,78,81,86,87,100-102 SO far lt seems
>

planted in mouse and rat models.
no specific NSC line showed significant comparative advantage
over others. This means that all of NSCs from different cellular
sources and lineages should be explored further for their effica-
cy and safety.

Tumorigenicity and immune rejection are the 2 most impor-
tant concerns regarding cellular sources. In terms of tumorige-
nicity, there are numerous experimental design parameters to
consider, including the choice of animal model, study duration,
route of administration, number of cells tested, positive control
selection, and the definition of a positive result. The selected
animal model should allow sufficient survival of the stem cell
product to enable the assessment of potential tumorigenicity.
Therefore, immunocompromised rodents are frequently used
for this purpose. Likewise, the study duration should be suffi-
cient to permit the detection of potential tumors. Tumorigenic-
ity studies lasting 9-12 months have been requested by regula-
tory agencies. To date, reports of tumor formation in NSCs treat-
ments in animal models of SCI are scarce. However, Salewski et
al.* reported that primitive NSCs derived from ESCs could be
transformed into teratomas. Tumorigenicity potential may also
reside in NSC lineages and should be closely monitored in fu-
ture studies.

Ready-made NSCs, which are usually obtained from alloge-
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neic brains or spinal cords, have been used in most preclinical
studies.**41727478102:104 This may be due to limitations in time
and autologous source tissue to obtain a sufficient number of
NSCs for transplantation. Human NSCs were tested in several

animal models with promising results.*7%7"777>80.83869%,

101 Long_
term survival of grafted cells is necessary for locomotor func-
tional recovery.”” For graft survival, either immunosuppres-
sants were administered after transplantation or nude mice
and nude rats were used. Such conditioning for experimental
purposes is possible at a preclinical level. However, the use of
immunosuppressants in human patients with acute or sub-
acute stage SCI might be risky. SCIs are usually combined with
severe multiple traumatic injuries affecting multiple organs
and musculoskeletal regions and using immunosuppressants
in such conditions poses high risk for sepsis. Transplanted
NSCs have paracrine effects which help SCI recovery, even in
the absence of graft survival.*® Nonetheless, considering that
grafted cell survival with neuronal differentiation and integra-
tion into the host neuronal network would be a favorable long-
term outcome, issues regarding immune rejection should be
thoroughly studied. The immune rejection issue has brought
iPSCs into the spotlight. With the advantage of avoiding ethical
issues, autologous iPSCs have become one of the most attrac-
tive cell sources for human NSCs. However, a vast number of
studies are required to ensure the efficacy, feasibility, and safety
of iPSCs in SCI treatment.

CLINICAL TRIALS USING NSCs

In contrast to the relative abundance of preclinical studies on
NSCs transplantation in animal models of SCI, clinical trials of
NSCs treatment in patients with SCI, which have been published
in the literature have been scarce (Table 2). It is encouraging
that several studies reported its procedural safety as well as par-
tial success in functional recovery after NSCs transplantation in
patients with SCL'*>'® However, since the number of enrolled
patients was small, and only patients in the subacute (within 1
week to 6 months from the injury) and chronic (over 6 months
from the injury) phases of SCI were included in most trials, it is
quite difficult to conclude therapeutic efficacy of NSCs, espe-
cially in acute phase SCI.

The paucity of clinical trials implies difficulty in translation
from bench to bedside in SCI research. The fundamental limi-
tation of translational research is the anatomical difference be-
tween experimental animal models and humans. In addition,
stem cell therapy in animal models had shown inconsistent re-
sults regarding functional recovery. The therapeutic potential
of NSCs in SCI treatment was observed, but the absence of a
certain, reliable modality resulted in numerous exploratory stud-
ies that were far from standardization. Consequently, practical
questions such as the location and route of cell transplantation,
adequate number of transplanted cells, assessment tools and
protocols and variability in NSCs generation are still unknown.
Furthermore, real-world problems, such as setting a reliable and
safe logistic to obtain, store and deliver NSCs for clinical use,

Table 2. Summary of published clinical trials using neural stem cells in spinal cord injury patients in literature

Study Coun- Clinical In]u.ry Tre.atr.nent Cell type Cell source Ac.lmlnlstra- Results
try phase location timing tion route

Moviglia Argen- Phasel Cerivcal/  Chronic* Autologous Feeding artery Functional recovery was
etal.'” 2009 tina thoracic NSCs infusion shown in 5/8 patients.

Shinetal.'  South PhaseI/II Cervical = 22-213days hNSPCs Human fetal  Intralesional — Partial improvements in
2015 Korea after SCI brain injection sensorimotor function

Ghobrial USA  Phasell Cervical/  Atleast 4 NSCs Human fetal —Intralesional ~Improvements in overall
etal.'® 2017 thoracic months after (HuCNS-SC) brain injection mean functional out-

SCI comes measures

Levietal'? USA  Phasel Cervical/  4-24 months NSCs Human fetal  Intralesional A manual injection tech-
2018 thoracic after SCI (HuCNS-SC)  brain injection nique are safe and feasible

Curtisetal."® USA  Phasel Thoracic ~ 1-2 years after NSCs (NSI-  Human fetal Intralesional ~Can be transplanted safely
2018 SCI spinal cord  injection

Levietal’®  USA  Phasell Cervical 4-24 months NSCs Human fetal  Intralesional ~Motor functional gains in
2019 after SCI (HuCNS-SC)  brain injection the treated participants

HuCNS-SC, human fetal-derived central nervous system neural stem cell; NSCs, neural stem cells; NSI-566, NSI-566 cell line human spinal-
cord-derived neural stem cell; hANSPCs, human neural stem/progenitor cells; SCI, spinal cord injury; USA, United States of America.

*Specific treatment timing after spinal cord injury was not described.
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recruiting patients, and running clinical trials, would be expen-
sive. Several ongoing clinical trials have been attempted despite
of hurdles mentioned above.** However, extensive efforts to
find major breakthroughs in SCI treatment are still needed.

CONCLUSION

NSCs are self-renewing and multipotent stem cells that can
differentiate into neural lineage cells. For the past 2 decades,
many preclinical studies have tested efficacy and safety of NSCs
in several animal models of SCI. Successful neuronal differenti-
ation, replacing damaged neural tissue, and functional improve-
ment were observed in several studies. In addition, NSCs secrete
neurotropic factors that help protect or regenerate injured spi-
nal cord. In preclinical level, transplantation of NSCs has been
proved as a promising therapeutic approach for SCI treatment.
However, some of clinical trials of NSCs did not show enough
efficacy as expected. These results suggest that a need for fur-
ther assessment, and the exact mechanism by which NSCs trans-
plantation improves outcomes after SCI should be explored fur-
ther.

For future perspective, further data such as treatment bene-
fits in terms of neuronal regeneration and functional recovery,
adjustments in dose and administration period, optimal injec-
tion route, safety, and the most promising cell source for obtain-
ing NSCs should be acquired and verified through future stud-
ies. Moreover, matching preclinical animal models and human
SCI is another major hurdle to overcome. Finally, it is also im-
portant to highlight that a single treatment modality alone may
not be sufficient to treat SCI. In addition to cellular transplanta-
tion, combinatory therapies such as neurotrophic and growth
factors, the use of scaffolds, and neurorehabilitation may be nec-
essary. Their optimal combination and efficacy should also be
verified in future studies. Despite these uncertainties, numer-
ous preclinical studies and clinical trials have reported promis-
ing results with NSCs treatment for SCI. We are convinced that
NSCs have a potential to make a major breakthrough in SCI
treatment in the near future.
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