Skip to main content
. 2022 Dec 23;16:1079357. doi: 10.3389/fnins.2022.1079357

Table 4.

Performance comparison between the proposed method and the state-of-the-art methods on different datasets.

Method SHD N-MNIST CIFAR10-DVS DVS128 Gesture
T Acc. (%) T Acc. (%) T Acc. (%) T Acc. (%)
Slayer (Shrestha and Orchard, 2018) - - 300 99.22 - - 1,600 93.4
HATS (Sironi et al., 2018) - - - 99.10 - 52.4 - -
DART (Ramesh et al., 2019) - - - 97.95 - 65.8 - -
NeuNorm (Wu et al., 2019) - - - 99.53 - 60.5 - -
Rollout (Kugele et al., 2020) - - 32 99.57 48 66.97 240 97.27
(10 classes)
DECOLLE (Kaiser et al., 2020) - - - - - - 500 95.7
LISNN (Cheng et al., 2020) - - 20 99.45 - - - -
tdBN (Zheng et al., 2021) - - - - 10 67.8 40 96.87
LIAF-Net (Wu et al., 2021) - - - 10 70.40 60 97.56
PLIF (Fang et al., 2021c) - - 10 99.61 20 74.80 20 97.57
LIF RSNN (Cramer et al., 2020) 2,000 73.3 - - - - - -
Hetero. RSNN (Perez-Nieves et al., 2021) - 83.5 - 97.5 - - - 82.9
RELU SRNN (Yin et al., 2020) 250 88.93 - - - - - -
Adaptive SRNN (Yin et al., 2021) 250 90.4 - - - - - -
SEW-ResNet (Fang et al., 2021b) - - - - 16 74.4 16 97.92
TA-SNN (Yao et al., 2021) 15 91.08 - - 10 72.00 20 98.61
Dspike (Li et al., 2021) - - - - 10 75.45 - -
SALT (Kim and Panda, 2021) - - - 20 67.1 - -
TET (Deng et al., 2022) - - - - 10 83.32 - -
DSR (Meng et al., 2022) - - - - 10 77.41 - -
TCJA (Zhu et al., 2022) - - - - 10 80.7(MSE)
83.3(TET)
20 99.0
STSC (this work) 15 92.36 10 99.64 10 81.4(MSE) 20 98.96

The bold values indicate the best outcomes for each dataset.