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Abstract

We report a trifluoromethylarene reductive coupling method that dramatically expands the scope 

of difluorobenzylic substructures accessible via C–F bond functionalization. Catalytic quantities 

of a Lewis base, in conjunction with a disilane reagent in formamide solvent, leads to the 

replacement of a single trifluoromethyl fluorine atom with a silylated hemiaminal functional 

group. The reaction proceeds through a difluorobenzyl silane intermediate that can also be 

isolated. Together, these defluorinated products are shown to provide rapid access to over 20 

unique difluoroalkylarene scaffolds.

Graphical Abstract

The α,α-difluorobenzylic substructure (ArCF2R) is often studied in pharmaceutical and 

agrochemical research as a means to modulate bioavailability and metabolic stability, 

amongst other potential benefits of fluorine incorporation.1 A key feature of an aromatic 

difluoroalkyl substituent is the structural modularity possible via the R group, allowing 

further optimization of a compound’s desired properties. The challenge of exploring this 

chemical space lies in the lack of general methods to access derivatives from a single 

precursor, typically requiring the synthesis of a unique reagent for each target of interest.2 

For example, carbonyl deoxyfluorination3,4 and cross-coupling5 reactions are commonly 
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used to access such motifs, but these routes first require access to the carbonyl or 

RCF2X coupling partner, respectively.6 Therefore, a method that can access valuable α,α-

difluorobenzylic frameworks in a diversifiable fashion could greatly accelerate investigation 

of this substructure.7

The C–F functionalization of trifluoromethylarenes is an ideal route to α,α-difluorobenzylic 

compounds due to the wide availability of trifluoromethylarenes and their prevalence in 

late-stage settings.8 The impact of such methodology hinges on the ability to access 

α,α-difluorobenzylic derivatives that reflect the structural diversity found in bioactive 

compounds (Figure 1).9 A major challenge for the single C–F substitution of a 

trifluoromethyl group is the fact that the C–F bonds become weaker as defluorination 

proceeds10, typically resulting in overfunctionalization.11 Early efforts to address this 

challenge using electrochemical12 and metal13 reducing conditions are either limited 

to simple trifluoromethylbenzenes or are unselective. Recent reports by König, Jui, 

and Gouverneur use photoredox catalysis to achieve monoselective C–F reduction and 

hydroalkylation on a wide range of trifluoromethylarenes.14 An alternative strategy reported 

by Young employs frustrated Lewis pairs to form C–F substituted pyridinium and 

phosphonium salts, primarily used as electrophilic difluorobenzylic reagents.15,16 Despite 

these impressive advancements, there is still the need for a unified method that accesses a 

greater breadth of α,α-difluorobenzylic substructures from trifluoromethylarenes.

Our group recently reported a fluoride-initiated protocol for the selective defluoroallylation 

of trifluoromethylarenes using allyltrimethylsilane coupling partners (Figure 2a).17,18 While 

practical, this reaction can only access difluoroalkyl substituents that map onto the allyl 

coupling fragment. To address this limitation, we herein report the development of a base-

initiated, silane-mediated, reductive coupling platform of trifluoromethylarenes (Figure 2b). 

This method expands the C–F transformations accessible from trifluoromethylarenes by 

providing a versatile silylated hemiaminal synthon that possesses the reactivity of both 

an aldehyde and an iminium ion. The identification of a difluorobenzyl silane as the key 

intermediate for the reductive coupling reaction also allowed for its isolation and use as a 

general difluorobenzylic pronucleophile.

This work began with the goal of discovering a single silane reagent that couples 

with trifluoromethylarenes to generate synthetically versatile difluorobenzylic products. 

While investigating disilane19 coupling partners, we observed that catalytic activation of 

commercially available tris(trimethylsilyl)silane (TTMSS) with Lewis basic salts in DMF 

generates silylated hemiaminal adduct 2 (Scheme 1). Given that a silylated hemiaminal 

could potentially serve as a branching point for a wealth of derivatization reactions, 

we sought to further optimize this reaction. Notably, similar silylated hemiacetal and 

hemiaminal adducts were proposed as intermediates in Lalic’s dual Pd/Cu-catalyzed 

selective trifluoromethylarene reduction protocol that is conducted with triphenylsilane in 

DMF.20 Strong Lewis bases, such as fluoride and alkoxide salts, provide low yields of 2, 

while carboxylate salts lead to significantly higher yields (entries 1–3). Ultimately, we found 

18-crown-6-ligated cesium formate to be the optimal catalyst system (76% yield, entry 4). 

The reaction proceeds in slightly lower yield without 18-crown-6 (63%, entry 5) or using 

tetrabutylammonium acetate (69%, entry 6). Other commercial disilanes are less effective 
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at promoting this reaction (entries 7 and 8). Unfortunately, all attempts to isolate product 

2 via chromatography resulted in decomposition. Evaluation of other formamides led to 

the identification of 4-formylmorpholine (4FM) in NMP (1:1 mixture) as a satisfactory 

substitute for DMF, providing chromatographically stable 3 in 66% isolated yield (Scheme 

1b, entry 10). Benzotrifluoride can also be used as a cosolvent (entry 11) and, for some 

substrates, results in improved yields (vide infra).

Table 1 shows representative trifluoromethylarenes that are amenable to the base-promoted 

coupling reaction. 1,3-Bis(trifluoromethyl)arenes are effective substrates, including when 

scaled to 10 mmol (3) or with free phenolic O–H (4) and terminal alkene (5) functional 

groups. Sulfonamide (6, characterized by X-ray crystallography) and phosphonate ester (7) 

aryl substituents also sufficiently activate the trifluoromethylarene towards functionalization. 

Heteroaryl and drug-like trifluoromethylarenes are also effective, including 2-, 3- and 

4-trifluoromethylpyridines (8–11), a benzylated aprepitant precursor (12) and a fluoxetine-

trifluoromethylpyrimidine derivative (13) that selectively couples at the electron-deficient 

heteroarene. Under the current reaction conditions, trifluoromethylbenzenes that lack an 

electron-withdrawing group do not react, while substrates with electrophilic functional 

groups (e.g. ketone) undergo competitive side reactions with the silane.21

We expected these silylated hemiaminal products to be versatile synthetic intermediates 

based on their resemblance to reported trifluoromethyl formamide adducts.22 The 

diversity of difluorobenzylic frameworks accessible from the silylated hemiaminal unit is 

demonstrated in Scheme 2, with sixteen transformations shown starting from product 3 
(prepared on multigram scale). These reactions employ common reagents and require one 

purification step, with detailed procedures described in the Supporting Information (Section 

VII, pages S14–25). Numerous reactions can be conducted directly with the silylated 

hemiaminal (Scheme 2a), including cleavage to a deuterated difluoromethylarene (14), 

condensation to an oxime (15), condensation-dehydration to a nitrile (16), a Petasis-type 

styrenylation process (17), oxidation to an amide (18), reduction to a tertiary amine (19), 

and a Mannich-type addition reaction (20). Conversion of 3 into a hemiacetal is facile with 

catalytic acid in ethanol without the need for isolation.23,24 From this intermediate, many 

transformations are possible (Scheme 2b), including reduction (21), reductive amination 

(22), Wittig (23, 24), heterocycle condensation (25), Henry (26), oxidation (27), cyanide 

addition (28) and silylation (29) reactions.

An additional application of this method is its use for late-stage C–F functionalization via 
sequenced reductive coupling and derivatization. A series of pharmaceutical derivatives and 

drug-like structures are shown in Scheme 3 that underwent defluorofunctionalization using 

one total purification step. This includes trifluoromethylaryl derivatives of apriprazole (30 
and 31), fluoxetine (34) and bepotastine (35), as well as an aprepitant precursor (32 and 

33) and a trifluoromethylquinoline substrate (36). These examples demonstrate the ability to 

modify trifluoromethyl substituents of bioactive compounds, as well as the ability to carry 

the typically inert trifluoromethyl group through multistep syntheses before derivatization.

Insight into the mechanism of this reductive coupling process first came while varying 

the reaction conditions. We observed the product identity to be dependent on the solvent 
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used; in NMP, the major product is difluorobenzylsilane 37, and in MeCN, the major 

product is difluoromethylarene 38 (Figure 3a).25 We reasoned that formation of the 

benzylsilane (37) and subsequent in situ base-promoted desilylation could explain the 

solvent dependence.26 Subjection of benzylsilane 37 to cesium formate in MeCN or DMF 

provides difluoromethylarene 38 or silylated hemiaminal 2, respectively (Figure 3b).27 A 

profile of the model reaction in DMF shows the concurrent formation of benzylsilane 37 
and the silylated hemiaminal 2, and once the trifluoromethylarene has been consumed, 

the remaining benzylsilane is converted to the silylated hemiaminal (Figure 3c). These 

observations support defluorosilylation as the key process en route to the formamide 

addition product 2. Each reaction of this sequence generates an anion (fluoride or oxyanion) 

that could regenerate the formate anion or propagate silane activation via an anionic chain 

process, explaining why only catalytic quantities of formate salt are required (Figure 3d).28

Defluorosilylation likely occurs via initial formation of a silicate29 or silyl anion from 

TTMSS30,31, and we have obtained evidence that both TMS and HSi(TMS)2 anions 

may be generated under the reaction conditions.32,33 As silyl anions are known to be 

potent reductants34, bases35 and halophilic nucleophiles36, numerous mechanistic pathways 

for defluorosilylation seem plausible. Interestingly, when TTMSS is replaced with other 

disilane reagents (e.g. Si2Me6 or Si(TMS)4) for the model reaction, consumption of the 

trifluoromethylarene is observed but with little formation of the hemiaminal product.37 

These comparisons indicate TTMSS strikes the right balance of Lewis acidity and capability 

of silyl anion generation to mediate the selective reductive coupling reaction. Details of 

these control studies and a discussion of possible pathways for the initiation of this reaction 

are provided in the Supporting Information. Investigations are underway to gain more 

insight into the defluorosilylation process and to identify disilanes that can activate a wider 

scope of trifluoromethylarenes.38,39

The discovery of a defluorosilylation pathway provides an opportunity to expand the scope 

of accessible C–F coupling products. Use of the α,α-difluorobenzylsilane as a masked 

carbanion can access derivatives that are challenging to prepare from the hemiaminal 

intermediates.26 The model defluorosilylation product 37 was first isolated from a reaction 

conducted in NMP on a 5 mmol scale in 40% yield. From 37, our recently reported 

fluoride-promoted protocol for benzylsilane cross-coupling to aryl nitriles can be used to 

generate defluoroarylation products (Scheme 4a).40 This route provides an alternative to 

Zhang’s recently developed light-promoted Pd-catalyzed trifluoromethylarene C–F arylation 

method.41

We also sought to show how defluorosilylation could serve as an entry to assembling 

difluoroalkylarene libraries with minor structural differences (Scheme 4b). Fluoride-

activation of 37 promotes facile substitution with alkyl iodides, providing the 

defluoromethylation product (41), its isotopologues (42 and 43), and the ethyl derivative 

(44). Substitution using Togni reagent II42 provides pentafluoroethyl product 45, thus 

accomplishing a net extension of a trifluoromethyl substituent into a pentafluoroethyl group.

In summary, this reductive coupling platform expands the scope of α,α-difluorobenzylic 

substructures accessible from trifluoromethylarenes to better reflect the structural diversity 
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found in bioactive compounds (Figure 1). The reaction leverages the continuous generation 

of anionic intermediates to propogate a disilane-mediated defluorosilylation and formamide 

addition sequence. This ensemble allows a trifluoromethyl C–F bond to formally serve as a 

masked nucleophile, thus delivering new difluoroalkylarene synthetic linchpins.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Goals for defluorofunctionalization methodology.
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Figure 2. 
Overview of base-promoted ArCF3 functionalization.
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Figure 3. 
Studies and observations into reaction mechanism. Yields determined by 1H or 19F NMR 

spectroscopy. a Under alternative conditions, the yield of 38 is 86% if the reaction is 

conducted at 80 °C and 80% if CsF is used at rt in place of HCO2Cs.
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Scheme 1. Development of ArCF3 reductive coupling reaction.
a Yields determined by 1H NMR spectroscopy. b Yields in parentheses are isolated yields by 

column chromatography.
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Scheme 2. Synthetic utility of hemiaminal adduct.a
a Isolated product yields; see Supporting Information for full synthetic details for each 

derivatization reaction.
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Scheme 3. Divergent late-stage ArCF3 C–F functionalization.a
a Isolated product yields starting from trifluoromethylarene; see Supporting Information for 

full synthetic details for each entry.
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Scheme 4. Isolation and utility of α,α-difluorobenzylsilane.a
a Isolated product yields; see Supporting Information for full synthetic details for each 

entry. b 53% 19F NMR yield; isolated yield reduced due to coelution with protodesilylated 

compound 38. c 76% 1H NMR yield; isolated yield reduced due to coelution with 

protodesilylation side product.
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Table 1.

Substrate Scope of Trifluoromethylarenes.
a

a
Yields are of purified product on a 0.25–1 mmol scale; see Supporting Information for full details.

b
Isolated as adduct with NEt3.

c
PhCF3 used in place of NMP.

d
Reaction conducted at 80 °C.

e
Additional base (20 mol%) and TTMSS (1.2 equiv) added after 16 h.
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