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Abstract

The adhesion G protein-coupled receptor BAI1/ADGRB1 plays an important role in suppressing 

angiogenesis, mediating phagocytosis, and acting as a brain tumor suppressor. BAI1 is also a 

critical regulator of dendritic spine and excitatory synapse development and interacts with several 

autism-relevant proteins. However, little is known about the relationship between altered BAI1 

function and clinically relevant phenotypes. Therefore, we studied the effect of reduced expression 

of full length Bai1 on behavior, seizure susceptibility, and brain morphology in Adgrb1 mutant 

mice. We compared homozygous (Adgrb1−/−), heterozygous (Adgrb1+/−), and wild-type (WT) 

littermates using a battery of tests to assess social behavior, anxiety, repetitive behavior, locomotor 

function, and seizure susceptibility. We found that Adgrb1−/− mice showed significant social 

behavior deficits and increased vulnerability to seizures. Adgrb1−/− mice also showed delayed 

growth and reduced brain weight. Furthermore, reduced neuron density and increased apoptosis 

during brain development were observed in the hippocampus of Adgrb1−/− mice, while levels of 

astrogliosis and microgliosis were comparable to WT littermates. These results show that reduced 
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levels of full length Bai1 is associated with a broader range of clinically relevant phenotypes than 

previously reported.
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Introduction

Brain-specific angiogenesis inhibitor (BAI1/ADGRB1) is a member of the adhesion G 

protein-coupled receptor (GPCR) family (Duman et al., 2016; Purcell and Hall, 2018). 

Besides sharing a well-conserved seven-transmembrane structure with other GPCRs, BAI1 

also features a large N-terminal extracellular domain with five thrombospondin type 1 

repeats (TSRs) and a GPCR-autoproteolysis-inducing (GAIN) domain (Cork and Van Meir, 

2011; Stephenson et al., 2014). BAI1 suppresses angiogenesis (Cork et al., 2012; Kaur 

et al., 2009; Zhu et al., 2012), mediates engulfment of apoptotic cells and gram-negative 

bacteria (Das et al., 2011; Park et al., 2007; Sokolowski et al., 2011), promotes myogenesis 

(Hochreiter-Hufford et al., 2013), and serves as a brain tumor suppressor by stabilizing 

p53 (Zhu et al., 2018). Although BAI1 was first associated with non-neuronal functions, 

the receptor is most abundantly expressed in neurons and glia in the cortex, hippocampus, 

thalamus, amygdala, and striatum (Sokolowski et al., 2011; Zhang et al., 2014). Adgrb1 
mRNA expression peaks at postnatal day 10 (P10) in rodents and expression is maintained 

into adulthood (Kee et al., 2004).

Studies during the past decade indicate that in vitro and in vivo knockdown of Bai1 leads 

to the formation of more immature and unstable dendrites (Duman et al., 2019; Duman 

et al., 2013), while overexpression of Bai1 results in dendrite retraction (Duman et al., 

2019). Mice lacking full-length Bai1 display reduced expression of post-synaptic density 95 

(PSD-95) (Zhu et al., 2015), a protein that regulates synaptic stability and plasticity (Cheng 

et al., 2006). The continuous morphological modifications of dendrites and proper PSD-95 

function are essential for learning and memory (Coley and Gao, 2018; Migaud et al., 1998) 

and are often altered in neurodevelopmental and neurological disorders (Lin and Koleske, 

2010; Penzes et al., 2011; Tsai et al., 2012), primarily those characterized by impaired social 

interaction, communication deficits, and repetitive behaviors (D’Hooge and De Deyn, 2001). 

Consistent with this observation, Adgrb1−/− mice exhibit deficits in spatial memory and 

alterations in synaptic plasticity that are reflected by enhanced long-term potential (LTP) and 

reduced long-term depression (LTD) (Zhu et al., 2015).

De novo rare variants in ADGRB1 have been identified in patients with autism spectrum 

disorder (ASD) (Satterstrom et al., 2020). A substantial percentage of individuals with 

ASD (8–24%) have epilepsy and exhibit altered brain morphology and developmental delay 

(Amiet et al., 2008; Gabis et al., 2005; Ghacibeh and Fields, 2015). These behavioral 

phenotypes are also seen in animal models of ASD (Sierra-Arregui et al., 2020; Varghese 

et al., 2017). Furthermore, BAI1 interacts with autism-relevant proteins, including BAIAP2/

IRSp53 and Neuroligin-1 (NLG1) (De Rubeis et al., 2014; Nakanishi et al., 2017; Oda et 
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al., 1999), although little is known about the functional significance of these interactions. 

Therefore, in the current study, we investigated the in vivo physiological role of BAI1 

by characterizing the behavioral and seizure phenotypes of homozygous mice lacking full-

length Bai1 (Adgrb1−/−) and heterozygous mice (Adgrb1−/−) that express approximately 

50% of wildtype levels. Our results indicate that Adgrb1−/− mice exhibit impairments in 

sociability, social discrimination, and increased seizure susceptibility. Adgrb1−/− mice also 

display increased apoptosis during brain development, reduced brain weight, and reduced 

hippocampal neuron density.

Material and methods

Animals

The generation and genotyping of mice lacking full-length Bai1 were previously described 

(Zhu et al., 2015). These mice were engineered with a deletion of exon 2 (where the 

ATG start codon is located) and fail to express full length Bai1. Heterozygous mutants 

(Adgrb1+/−) on a C57BL/6J (000664, Jackson laboratory) background were bred to generate 

wildtype (WT), heterozygous (Adgrb1+/−), and homozygous (Adgrb1−/−) offspring. Mice 

were housed in groups of 3–5 on a 12-hour light/dark cycle with standard laboratory rodent 

chow (5001, Lab Diet) and water available ad libitum. All experiments were performed 

in accordance with the Emory University Institutional Animal Care and Use Committee 

(IACUC) guidelines.

Survival and body growth curve analysis

Male and female Adgrb1−/−, Adgrb1+/− and WT littermates were weighed once every two 

days from postnatal day 7 to 24 (P7 – P24) and then once a week until P65 (n=9–15/group).

Brain weight assessment

Male and female mice of all genotypes at three different ages (P1, 3 week, 2–3 month) were 

weighed and anesthetized with isoflurane. Brains were harvested and immediately weighed 

(n=8–18/group).

Immunofluorescence staining and imaging

Brains were postfixed in 4% PFA overnight at 4°C and then transferred to 30% sucrose 

solution in phosphate-buffered saline (PBS). Coronal sections (40 μm) were stained using 

with antibodies against GFAP (1:400, 13–0300, Thermo Fischer Scientific), IBA1 (1:400, 

Ab178846, Abcam), NeuN (1:1000, MAB377, Millipore), and cleaved-caspase-3 (CC3) 

(1:200, 9664, Cell signaling Technology). Goat anti-mouse IgG (1:500, ab150114, Abcam) 

and goat anti-Rat IgG (1:500, A-21434, Thermo Fischer) were used as the secondary 

antibodies for NeuN and GFAP, respectively. Goat anti-rabbit IgG (1:500, ab150077, 

Abcam) was used as the secondary antibody for IBA1 and CC3. Slides were washed 

multiple times with PBS and incubated with appropriate fluorescently labeled secondary 

antibodies for 1 h at 37°C. For NeuN, GFAP, and IBA1 staining, confocal images 

were acquired on an Olympus FV1000 inverted microscope using the Olympus Fluoview 

v4.2 software. For CC3 staining, an upright microscope (DM6000B Leica) was used. 

Three sections per mouse containing the hippocampus and primary somatosensory cortex 
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(bregma−1.96 mm) were used for immunofluorescence staining. NeuN positive cells in 

the dentate gyrus (DG) and CA1 were counted per mm2. CC3 positive (CC3+) cells 

were counted in the DG, CA1, and primary somatosensory cortex. GFAP and IBA1 

immunoreactivity (IR) was calculated as the percentage area of the total region of interest 

(ROI) of the DG and CA1 using ImageJ. A threshold for IR was determined across all 

antibody images as previously described (Chalermpalanupap et al., 2018). The IR area 

within the ROI and the total area of the ROI were calculated using the “Measure” feature 

of ImageJ, and the percentage area of IR was determined (area of IR within ROI divided 

by the total area of ROI and multiplied by 100). Two sections per mouse containing the 

rostral hippocampus were used for P1 mice. Similarly, CC3+ cells were counted in the DG, 

CA1, and primary somatosensory cortex. The experimenter was blinded to genotype during 

quantification.

Western Blot

Whole brain was dissected from 5 month old WT, Adgrb1+/−, and, Adgrb1−/− littermates, 

and the left hemisphere was used for western blot. Tissue extracts were prepared in 

RIPA buffer (89901, Thermo) containing protease and phosphatase inhibitor mix (1861280, 

Thermo), and total protein was quantified using the BCA protein assay. Laemmli sample 

buffer (1610747, BIORAD) was added after the BCA protein assay. Protein samples (75 μg) 

were loaded without boiling on a 10 % SDS-PAGE gel, resolved at 100 V/cm for 2.5 hours, 

and transferred to a PVDF membrane (1620177, BIORAD). Membranes were blocked 

with 5 % milk and incubated overnight at 4 °C with an anti C-terminal BAI1 antibody 

(1:1000, AP8170a, Abcepta; epitope: amino acids 1537–1567), followed by an anti-rabbit 

HRP-conjugated secondary antibody (1:5000; 31460, Thermo Fischer). The intensity of the 

Bai1 band was quantified using ImageJ (NIH) as previously described (Zhu et al., 2018) 

(n=3/genotype).

Behavioral analysis

Behavioral analysis was performed on 3–5 month old male Adgrb1−/−, Adgrb1+/−, and WT 

littermates. All behavioral assessments were videotaped and scored using the ANY-Maze 

Video Tracking System (Stoelting Co.) by an experimenter blinded to genotype. Behavioral 

analyses were conducted one week apart in the following order: open field, novel object 

recognition, novel cage, and three-chamber social interaction.

Open field and novel object recognition

Novel object recognition was performed over 4 days as previously described (Dutton et al., 

2017; Sawyer et al., 2016; Wong et al., 2021a; Wong et al., 2018). The apparatus consisted 

of an arena with opaque Plexiglas walls (60 cm x 60 cm x 60 cm). The center zone was a 

30 cm x 30 cm area in the center of the chamber. On day 1, each mouse was placed in the 

empty arena and allowed to explore for 10 min. Locomotor activity, total distance traveled, 

average speed, and time spent in the center zone were scored. On days 2 and 3, two identical 

objects (cube or sphere) were placed in the center of the arena, and each mouse explored the 

arena for 10 min (n=13/genotype). On day 4, one of the objects was replaced with a novel 

object (cube was replaced with the sphere or vice versa). The objects and the location of the 

novel versus familiar object were counterbalanced. The time spent exploring each object was 
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used to calculate a discrimination ratio (time exploring the novel object/ (time exploring the 

novel object + time exploring the familiar object) (n=7–8/genotype).

Three-chamber social interaction

Sociability and social discrimination were examined using the three-chamber social 

interaction paradigm (Dutton et al., 2017; Sawyer et al., 2016; Wong et al., 2021b). A 

partition separated each chamber (20 cm x 40 cm x 20 cm) with an opening to allow the 

mouse to move freely between them. The experiment consisted of three 10-minute sessions. 

The test mouse was first placed in the center chamber, with an empty cylindrical wire cage 

in the left and right chambers, and the mouse was allowed to freely explore for 10 minutes. 

In the second 10-minute session, an age- and sex-matched C57BL/6J mouse (stranger) was 

placed under one of the wire cages while the wire cage on the opposite side remained empty 

(object). The test mouse was again placed in the center chamber and allowed to explore 

freely. Time interacting with the ‘stranger’ mouse vs. the empty cage was calculated as a 

measure of ‘sociability’. For the third 10-minute session, a second age- and sex-matched 

C57BL/6J mouse (novel mouse) was placed under the previously empty wire cage. The 

test mouse was again placed in the center chamber and allowed to explore freely. Time 

interacting with either the first (now ‘familiar’) mouse from the second session or the novel 

mouse introduced in the third session was calculated as a measure of ‘social discrimination’ 

(n=7–8/genotype).

Novel cage

Each mouse was placed into a novel standard mouse cage (33 cm × 18 cm× 15 cm) and 

observed for stereotyped behaviors for 10 minutes. The time spent grooming, digging, 

rearing, and circling was recorded (n=13/genotype).

Nestlet shredding

Nesting behavior was performed as previously described (Lustberg et al., 2020). Each mouse 

was placed into a novel standard mouse cage with a cotton nestlet square (5 cm × 5 cm, 

approximately 3 g). Nestlets were weighted before the experiment to calculate the percent 

shredded at the end of the task. Mice were left undisturbed between 1 pm and 3 pm, after 

which they were returned to their home cages. The weight of the remaining non-shredded 

nestlet material was recorded (n=13/genotype).

Buried food Test

Olfactory function was examined using the buried food test as previously described (Yang 

and Crawley, 2009). Two days prior to assessment of olfactory function, chocolate-flavored 

pellets (F05472–1, Bio-Serv) were introduced into the home cage to habituate animals to 

the novel but highly palatable stimulus. Twenty-four hours prior to behavioral testing, all 

standard mouse chow and chocolate pellets were removed from the home cage. Mice were 

tested in the same room in which they were housed. On test day, chocolate pellets were 

placed in a randomly-selected corner of a clean mouse cage and buried under 3 cm of 

standard bedding. The latency for the mouse to find and eat (grasp and bite) the chocolate 
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pellets was recorded. Mice that did not feed within 15 min were assigned a maximum 

feeding latency score of 900 s (n=13/genotype).

Seizure induction

Susceptibility to induced seizures was tested in 3–5monthold male and female Adgrb1−/−, 

Adgrb1+/−, and WT littermates.

6 Hz induced seizures

6 Hz psychomotor seizures were induced as previously described (Giddens et al., 2017; 

Shapiro et al., 2021; Wong et al., 2016; Wong et al., 2021b). Mice were given a 

topical analgesic to the cornea (0.5% tetracaine hydrochloride) before stimulation. Corneal 

electrical stimulation (6 Hz, 3 sec, 17 mA for male and 13 mA for female) was applied 

through a constant current device (ECT Unit 57800; Ugo Basile), and the mouse was moved 

immediately into a clean cage for behavioral seizure observation. Resulting seizures were 

scored on a modified Racine scale: RS0 = no abnormal behavior; RS1 = immobile ≥ 3 sec, 

RS2 = forelimb clonus, paw waving, RS3 = rearing and falling (n=9–11/group).

Flurothyl induced seizures

Seizure induction using flurothyl was performed as previously described (Martin et al., 

2007; Shapiro et al., 2021; Shapiro et al., 2019; Wong et al., 2021a). Each mouse was 

placed in a plexiglass chamber (34 cm x 20 cm x 15 cm and exposed to flurothyl (bis[2,2,2-

trifluoroethyl] ether, 287571–5G, Sigma-Aldrich) at a rate of 20 μL/min. Latencies to the 

first myoclonic jerk (MJ) and generalized tonic-clonic seizure (GTCS) were recorded (n=8–

11/group).

Statistical analysis

Prism v8.1.2 software (GraphPad) was used for statistical analyses. A 2-way ANOVA 

followed by Sidak’s multiple comparisons test was used to compare the bodyweight of 

each genotype at the different time points of the growth curve, the time spent interacting 

with the stranger mouse and novel mouse, total entries into each side chamber during 

the three-chamber social interaction task, and brain/body weight measurements. For novel 

object recognition, a one-sample parametric t-test was used to compare the time spent 

with the novel object against 50% chance. A 1-way ANOVA followed by Tukey’s multiple 

comparisons test was used to analyze the total distance traveled, speed, total time spent 

in the center of the open field, the latency to the MJ and GTCS during flurothyl seizure 

induction, the amount of nestlet shredded, the latency to grasp and bite the chocolate 

pellets in the buried food test, latencies to the first interactions in the three-chamber social 

interaction task, and immunofluorescence data. For the 6 Hz seizure induction paradigm, an 

unpaired nonparametric Mann-Whitney U-test was used to compare Racine scores between 

each genotype. Male and female mice were analyzed separately unless stated. All results are 

presented as mean ± SEM and a p-value <0.05 was considered significant.
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Results

Adgrb1−/− mice show delayed growth and reduced brain weights

Western blot analysis showed that Adgrb1−/− mice lack full length Bai1, and Adgrb1+/− 

mutants express approximately 50% of WT levels. (Supplementary Fig. 1A–B). We next 

examined the developmental profile of Adgrb1 mutants. We observed that Adgrb1−/− 

mice weighed significantly less than their WT littermates beginning at P15 for males 

(p=0.0097) (Supplementary Fig. 2A) and P9 for females (p=0.0112) (Supplementary Fig. 

2B); however, by P37, the body weights of Adgrb1−/− mice were comparable to same-sex 

WT littermates. In contrast, there were no significant differences in average body weights 

between Adgrb1+/− and WT littermates at any age.

As Bai1 is highly expressed in brain, we next focused on brain development. We compared 

brain weights of male and female mice with each genotype at three time points: P1, 3 

weeks, and 2–3 months (Fig. 1). At P1, no significant differences were observed in either 

brain (p=0.3326) or body weight (p=0.6) (Fig. 1A–B). However, at 3 weeks of age, average 

brain weights of Adgrb1−/− mice of both sexes were significantly less than sex-matched 

Adgrb1+/− and WT littermates (p<0.001) (Fig. 1C). The average body weight of Adgrb1−/− 

mice was also significantly less than sex-matched Adgrb1+/− mice and WT littermates 

(p=0.0107) (Fig. 1D). At 2–3 months of age, no significant differences in average body 

weights between same-sex mice across all three genotypes were found (p=0.998) (Fig. 1F); 

however, average brain weights of Adgrb1−/− mice of both sexes were significantly less 

than same-sex Adgrb1+/− mice and WT littermates (p<0.0001) (Fig. 1E). In contrast to the 

other time points, at 2–3 months of age, the average brain weight of Adgrb1+/− mice was 

significantly lower than same-sex WT littermates (p<0.05) (Fig. 1E).

2–3 month old Adgrb1−/− mice exhibit reduced neuron density in the dentate gyrus and 
CA1

Since brain weight was lower in 2–3 month old Adgrb1−/− mice, we next examined whether 

brain morphology was altered. We focused on the hippocampus since Adgrb1−/− mice were 

previously shown to exhibit altered hippocampal LTP and LTD, and deficits in hippocampal 

dependent spatial memory (Zhu et al., 2015). We quantified neuron density in 2–3 month 

old male mice of each genotype in two hippocampal regions: the dentate gyrus (DG) and 

CA1. Adgrb1−/− male mice displayed significantly lower neuron density in both the DG 

(p=0.0402) (Fig. 2A–D) and CA1 (p=0.0103) (Fig. 2E–H) compared to WT littermates. 

We also compared the levels of GFAP (astrocyte marker) and IBA1 (microglia marker) 

expression in the DG and CA1 between male mice of each genotype (2–3 months old), and 

observed no significant differences (p>0.05) (Supplementary Fig. 3).

Adgrb1−/− mice exhibit higher levels of cleaved caspase-3-positive cells in the 
hippocampal CA1 and primary somatosensory cortex during early postnatal development

To determine whether the reduced neuron density observed in Adgrb1−/− mice was 

associated with a higher level of apoptosis, we used the cleaved casepase-3 antibody (Porter 

and Janicke, 1999) to compare apoptosis levels in all three genotypes at P1, 3 weeks, and 

2–3 months of age. As expected, levels of cleaved caspase-3-positive (CC3+) cells were 
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higher in P1 mice compared to 3 week old and 2–3 month old mice due to the greater level 

of programmed cell death (PCD) during early neurodevelopment (Yamaguchi and Miura, 

2015). At P1, comparable levels CC3+ cells were observed in the DG of Adgrb1−/− mice 

and WT littermates (p=0.6801) (Fig. 3A–D); however, we observed a significantly greater 

number of CC3+ cells in the CA1 region of Adgrb1−/− mice (p=0.0186) (Fig. 3E–H). No 

significant differences were detected between Adgrb1+/− mice and WT littermates. We also 

examined CC3+ cell levels in the primary somatosensory cortex, a region in which Bai1 is 

also highly expressed (Sokolowski et al., 2011). Similarly, we observed a greater number of 

CC3+ cells in the somatosensory cortex of P1 Adgrb1−/− mice compared to WT littermates 

(p=0.023) (Supplementary Fig. 4). Comparable levels of CC3+ cells were observed in the 

CA1, DG, and primary somatosensory cortex of 3 week old and 2–3 month old mice of each 

genotype (Supplementary Fig. 5).

Adgrb1−/− mice exhibit deficits in social behavior and learning and memory

We used the three-chamber social interaction paradigm to examine sociability and social 

discrimination as BAI1 interacts with the autism relevant proteins, NLG1 and IRSp53, and 

mice lacking Nlg1 or Irsp53 show altered social behavior (Blundell et al., 2010; Chung et 

al., 2015). WT littermates and Adgrb1+/− mice spent significantly more time exploring the 

stranger mouse than the empty cage (p=0.0008 for WT littermates, p=0.0099 for Adgrb1+/− 

mice). In contrast, Adgrb1−/− mice did not discriminate between the stranger mouse and 

empty cage (p=0.6627), suggesting a deficit in sociability (Fig. 4A). When presented with 

the choice between interacting with a novel or familiar mouse, WT littermates showed a 

significant preference for the novel mouse compared to the familiar mouse (p=0.0097). In 

contrast, Adgrb1+/− and Adgrb1−/− mice did not show a statistically significant preference 

for the novel mouse (Adgrb1+/−, p=0.0984; Adgrb1−/−, p=0.7451), suggesting a deficit in 

social discrimination (Fig. 4B). There were no differences in total entries into each side 

chamber, or the latencies to the first interaction with the stranger mouse or the novel 

mouse in the ‘sociability’ and ‘social discrimination’ components of the task, respectively 

(Supplementary Fig. 6). The similar performance of the mice of all three genotypes in the 

buried food test (Fig. 4C) demonstrates that the observed impairment in social interaction is 

unlikely to be due to olfactory dysfunction.

In addition to abnormalities in social behavior, deficits in learning and memory have 

been described in patients and animal models of ASD (Pasciuto et al., 2015; Silverman 

et al., 2010). Therefore, we used the novel object recognition task to examine long-term 

recognition memory. WT littermates and Adgrb1+/− mice spent significantly more time 

exploring the novel object compared to 50% chance (WT, p<0001; Adgrb1+/−, p=0.0019) 

(Fig. 4D). In contrast, Adgrb1−/− mice did not show a significant preference for the novel 

object (p=0.7765), suggesting a deficit in long-term recognition memory.

We also subjected the mice to the open field paradigm to examine locomotor activity and 

anxiety-like behaviors. Distance traveled (p=0.187) (Supplementary Fig. 7A) and average 

speed (p=0.1865) (Supplementary Fig. 7B) were found to be comparable between the three 

genotypes. Adgrb1−/− mice spent more time than WT littermates in the center of the open 

field (p=0.012), suggesting that loss of full length Bai1 is not associated with increased 
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anxiety-like behavior (Supplementary Fig. 7C). Lastly, we examined nesting behavior 

(Supplementary Fig. 7D) and stereotypical behaviors (Supplementary Fig. 7E) and found 

that all three genotypes performed similarly (p= 0.294 and 0.328, respectively).

Adgrb1−/− mice are susceptible to induced seizures

Along with social deficits, many mouse models of ASD exhibit an increased vulnerability 

to seizures, an observation that is consistent with clinical observations that epilepsy is often 

comorbid with ASD (Ghacibeh and Fields, 2015; Hughes and Melyn, 2005). Therefore, 

we explored whether Adgrb1 mutants might exhibit alterations in seizure susceptibility. In 

the 6 Hz paradigm, seizures were observed in all Adgrb1−/− mice (male: 3 RS1, 7 RS2; 

p=0.0185, female: 6 RS2, 2 RS3; p=0.0039) (Fig. 5A and D). In contrast, only 25% and 

33% of male and female WT littermates seized, respectively (male: 6 RS0, 2 RS2; female: 6 

RS0, 3 RS2). Additionally, when exposed to the proconvulsant flurothyl, Adgrb1−/− mutants 

displayed shorter average latencies to the first myoclonic jerk (MJ) (male, p<0.0001; female, 

p=0.0002) (Fig. 5B and E) and generalized tonic-clonic seizure (GTCS) (male, p=0.0004; 

female, p=0.0014) when compared to same-sex WT littermates (Fig. 5C and F). In contrast, 

there were no differences in the average latency to the MJ or GTCS between same-sex 

heterozygous mutants and WT littermates.

Discussion

In the current study, we identified a wide range of phenotypes, including delayed growth, 

reduced brain weight, higher levels of apoptosis, deficits in social behavior, and increased 

seizure susceptibility in mice lacking full length Bai1 expression. These observations expand 

the clinical features that could be potentially associated with BAI1 dysfunction.

We found that 3 week old Adgrb1−/− mice weighed significantly less than Adgrb1+/− and 

WT littermates; however, body weight was comparable between genotypes at 2–3 months 

of age. Lower body weight during early development has been previously reported for 

several mouse models of autism (Portmann et al., 2014; Yang et al., 2016). It is possible 

that competition with the WT littermates prior to weaning could have reduced milk intake 

in the mutants, thereby contributing to the slower initial weight gain. In contrast, at both 

the 3 week and 2–3 month time points, the average brain weight of Adgrb1−/− mutants 

was significantly less than WT littermates. Thus, the lower brain weight in Adgrb1−/− 

mutants was not simply due to the overall smaller size of the mutant mice. Consistent 

with the lower brain weights, we observed reduced neuron density in the DG and CA1 

regions of 2–3 month old Adgrb1−/− mice. Since Bai1 is known to mediate the clearance 

of apoptotic cells (Mazaheri et al., 2014) (Sokolowski et al., 2011), we speculated that the 

absence of full-length Bai1 during early brain development may result in increased levels of 

uncleared apoptotic cells. In turn, this could contribute to secondary necrosis, neuron loss, 

and lower brain weight (Elliott and Ravichandran, 2010; Glass et al., 2010). In support of 

this prediction, we observed increased CC3+ cells in the CA1 region and somatosensory 

cortex of P1 Adgrb1−/− mice. Interestingly, the number of CC3+ cells in these regions 

were comparable between the three genotypes at the 3 week and 2–3 month time points, 

suggesting that Bai1 might play a greater role in the clearance of apoptotic cells early in 
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brain development, a period that has the highest levels of apoptosis due to programmed cell 

death (Ahern et al., 2013; Yamaguchi and Miura, 2015).

While we observed reduced neuron density in both CA1 and DG of 2–3 month old 

Adgrb1−/− mice, similar levels of CC3+ cells were detected in the DG of P1 Adgrb1−/− 

mice and WT littermates. This suggests reduced clearance of apoptotic cells during 

early development is unlikely to be solely responsible for the observation of reduced 

neuron density. Thus, additional studies will be required to fully resolve the underlying 

mechanisms.

Recent sequence analyses of ASD patients identified several de novo BAI1 variants 

(Satterstrom et al., 2020), suggesting that BAI1 might also play a role in ASD. BAI1 also 

interacts with autism-associated proteins, such as NLG1 and BAIAP2/IRSp53 (Nakanishi 

et al., 2017; Shiratsuchi et al., 1998; Toma et al., 2011; Tu et al., 2018). Nlg1−/− and 

Irsp53−/− mice also show abnormal social behavior, memory deficits, and altered synaptic 

plasticity (Blundell et al., 2010; Chung et al., 2015; Kim et al., 2009). However, while the 

phenotypes of Adgrb1−/− mutants overlap with Nlg1−/− and Irsp53−/− mice, the underlying 

mechanisms for the observed phenotypes might not be identical. Lack of full-length Bai1 

leads to rapid degradation of Psd-95 due to the activation of the E3 ubiquitin ligase Mdm2 

(Zhu et al., 2015), and mice lacking Psd-95 similarly demonstrate sociability and memory 

deficits (Coley and Gao, 2019; Migaud et al., 1998). However, no changes in Psd-95 protein 

levels were reported in Irsp53−/− and Nlg1−/− mice (Blundell et al., 2010; Kim et al., 2009), 

indicating other pathways might exist that cause the similar deficits observed in Nlg1−/− and 

Irsp53−/− mice.

In addition to the memory and social behavior deficits observed in the Adgrb1 mutants, we 

also found that these mice are more seizure susceptible. While the mechanistic basis for 

this observation is currently unknown, it may be due, in part, to disrupted protein-protein 

interactions. For example, BAI1 interacts with BAI1 associated protein 3 (BAIAP3), which 

mediates endosome fusion within the trans-Golgi network (Zhang et al., 2017). BAIAP3 can 

modulate GABAergic neuronal firing (Wojcik et al., 2013), and Baiap3−/− mice also exhibit 

increased seizure susceptibility (Wojcik et al., 2013). Furthermore, Adgrb1 mutants exhibit 

enhanced NMDA mediated long-term potential (LTP), which can also be an underlying 

cause of increased seizure susceptibility (Kapur, 2018).

While the alterations in social behavior, seizure susceptibility, and body weight were 

only observed in homozygous Adgrb1−/− mutants, brain weight was reduced in both 

the Adgrb1+/− and Adgrb1−/− mutants. These observations demonstrate that Bai1 

haploinsufficiency can influence biological processes, and that some disease phenotypes 

associated with Bai1 dysfunction may be affected by gene dosage. The current study reveals 

previously undescribed roles for BAI1 in regulating social behavior, seizure vulnerability, 

and CNS development, thus implicating BAI1 in a range of clinically challenging 

neurological disorders, including ASD and epilepsy.
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Highlights

• BAI1/ADGRB1 is an adhesion GPCR that interacts with autism-relevant 

proteins.

• Adgrb1−/− mice show deficits in sociability and increased seizure 

susceptibility.

• Adgrb1−/− mice display reduced brain weight and neuron density.

• Loss of full length Bai1 is associated with a range of clinically relevant 

features.
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Figure 1. Adgrb1−/− mice exhibit reduced brain and body weight.
(A-B). Adgrb1−/− male and female mice (P1) had comparable brain (A) and body weights 

(B). Male: WT, n = 11; Adgrb1+/−, n = 19; Adgrb1−/−, n = 19, Female: WT, n = 10; 

Adgrb1+/−, n = 15; Adgrb1−/−, n = 10. (C-D). Adgrb1−/− male and female mice (3 weeks 

old) had lower average brain (C) and body weights (D) compared to same-sex Adgrb1+/− 

mutants and WT littermates. Male: WT, n = 10; Adgrb1+/−, n = 14; Adgrb1−/−, n = 12, 

Female: WT, n = 8; Adgrb1+/−, n = 9; Adgrb1−/−, n = 8. (E) Adgrb1−/− and Adgrb1+/− 

male and female mice (2–3 months old) had lower average brain weights compared to WT 

littermates. (F) Body weights were comparable in 2–3 month old mice across all three 

genotypes. Male: WT, n = 14; Adgrb1+/−, n = 11; Adgrb1−/−, n = 14, Female: WT, n = 

8; Adgrb1+/−, n = 8; Adgrb1−/−, n = 9. Mean ± SEM. *p<0.05, **p<0.01, ***p<0.001, 

****p<0.0001.
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Figure 2. Reduced neuron density in 2–3 month old Adgrb1−/− mice.
Representative images of NeuN positive cells in the DG (A-C) and CA1 region (E-G). 
Adgrb1−/− mice had significantly lower neuron density in the DG (D) and CA1 (H) than 

Adgrb1+/− and WT littermates. WT, n = 6; Adgrb1+/−, n = 6; Adgrb1−/−, n = 6. Mean ± 

SEM. *p<0.05.
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Figure 3. P1 Adgrb1−/− mice have more of CC3+ cells in the CA1.
(A-C) Representative images of CC3+ cells in the DG. (D) Comparable numbers of CC3+ 

cells in the DG were observed across all three genotypes. (E-G) Representative images 

of CC3+ cells in the CA1. (H) Adgrb1−/− mice had more CC3+ cells in the CA1 than 

WT littermates. Dashed lines show the boundaries of the DG and CA1 regions. Examples 

of CC3+ cells are indicated with arrows. Mean ± SEM. WT, n = 6; Adgrb1+/−, n = 6; 

Adgrb1−/−, n = 6. *p<0.05.
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Figure 4. Male Adgrb1−/− mice exhibit deficits in sociability, social discrimination, and novel 
object recognition.
(A) Adgrb1−/− mice did not significantly discriminate between a stranger mouse and an 

empty cage, demonstrating a sociability deficit. (B) Adgrb1+/− and Adgrb1−/− mutants did 

not exhibit a significant preference for a novel vs. a familiar mouse, indicating a deficit 

in social discrimination. WT, n = 8; Adgrb1+/−, n = 8; Adgrb1−/−, n = 7. (C) Adgrb1−/− 

mice spent similar amount of time to find buried food. WT, n = 13; Adgrb1+/−, n = 13; 

Adgrb1−/−, n = 13 (D) Adgrb1−/− mice did not discriminate between the novel and familiar 

object, suggesting a deficit in long-term recognition memory. WT, n = 8; Adgrb1+/−, n = 8; 

Adgrb1−/−, n = 7. Mean ± SEM. *p<0.05, **p<0.01, ***p<0.001.
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Figure 5. Adgrb1−/− mice are susceptible to induced seizures.
(A and D) Adgrb1−/− male and female mice were more susceptible to 6 Hz seizures 

when compared to Adgrb1+/− and WT littermates. Male: WT, n = 8; Adgrb1+/−, n = 

11: Adgrb1−/−; n = 10, Female: WT, n = 9; Adgrb1+/−; n = 18, Adgrb1−/−, n = 8. (B 
and E) Adgrb1−/− male and female mutants exhibited shorter latencies to the flurothyl-

induced myoclonic jerk (MJ) and (C and F) the first generalized tonic-clonic seizure 

(GTCS) compared to Adgrb1+/− and WT littermates. Male: WT, n = 8; Adgrb1+/−, n = 11; 

Adgrb1−/−, n = 10, Female: WT, n = 8; Adgrb1+/−, n = 9; Adgrb1−/−, n = 9. Mean ± SEM. 

*p<0.05, **p<0.01, ***p<0.001, ****p<0.0001.
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