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Abstract 

Background  The objective of this paper is to explore the value of a delta-radiomic model of the axillary lymph node 
(ALN) using dynamic contrast-enhanced (DCE) MRI for early prediction of the axillary pathological complete response 
(pCR) of breast cancer patients after neoadjuvant chemotherapy (NAC).

Methods  A total of 120 patients with ALN-positive breast cancer who underwent breast MRI before and after the first 
cycle of NAC between October 2018 and May 2021 were prospectively included in this study. Patients were divided 
into a training (n = 84) and validation (n = 36) cohort based on the temporal order of their treatments. Radiomic 
features were extracted from the largest slice of targeted ALN on DCE-MRI at pretreatment and after one cycle of NAC, 
and their changes (delta-) were calculated and recorded. Logistic regression was then applied to build radiomic mod-
els using the pretreatment (pre-), first-cycle(1st-), and changes (delta-) radiomic features separately. A clinical model 
was also built and combined with the radiomic models. The models were evaluated by discrimination, calibration, and 
clinical application and compared using DeLong test.

Results  Among the three radiomic models, the ALN delta-radiomic model performed the best with AUCs of 0.851 
(95% CI: 0.770–0.932) and 0.822 (95% CI: 0.685–0.958) in the training and validation cohorts, respectively. The clini-
cal model yielded moderate AUCs of 0.742 (95% CI: 0.637–0.846) and 0.723 (95% CI: 0.550–0.896), respectively. After 
combining clinical features to the delta-radiomics model, the efficacy of the combined model (AUC = 0.932) in the 
training cohort was significantly higher than that of both the delta-radiomic model (Delong p = 0.017) and the clinical 
model (Delong p < 0.001) individually. Additionally, in the validation cohort, the combined model had the highest 
AUC (0.859) of any of the models we tested although this was not statistically different from any other individual 
model’s validation AUC. Calibration and decision curves showed a good agreement and a high clinical benefit for the 
combined model.
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Conclusion  This preliminary study indicates that ALN-based delta-radiomic model combined with clinical features 
is a promising strategy for the early prediction of downstaging ALN status after NAC. Future axillary MRI applications 
need to be further explored.

Keywords  Breast neoplasms, Axillary lymph node, DCE-MRI, Radiomics, Neoadjuvant chemotherapy, Pathological 
complete response

Introduction
Neoadjuvant chemotherapy (NAC) is now widely used 
in clinically node-positive breast cancer patients to 
allow for more limited surgery in the breast and axilla 
[1]. Approximately 35–68% of positive axillary lymph 
nodes (ALN) before treatment go on to achieve axil-
lary pathologic complete response (pCR) after NAC 
[2], thus specialists might want to omit axillary lymph 
node dissection (ALND) to avoid the related complica-
tions such as limited shoulder mobility and upper arm 
lymphedema [3–5]. Sentinel lymph node biopsy (SLNB) 
has become the standard of treatment for breast can-
cer patients with clinically negative lymph nodes [6]. 
However, as a result of tumor burden, lymphatic fibrosis 
after chemotherapy, and nonuniform tumor regression 
of metastatic ALNs [7], the accuracy of SLNB is unsat-
isfactory, and this limits its widespread use in ycN0 
patients. Furthermore, false-negative rates for sentinel 
lymph node (SLN) can be in excess of 10% [8, 9] for 
women who present with clinically positive axilla but 
downstage to clinically negative axilla. Therefore, there 
is an urgent need to discover reliable, noninvasive bio-
markers capable of identifying patients whose ALNs are 
expected to respond completely after NAC.

The field of radiomics can be used to mine high-
throughput quantitative and noninvasive image fea-
tures to improve cancer diagnosis and treatment, and 
has attracted much attention in recent years. Radiomics 
based on analysis of breast MRI has already shown sat-
isfactory prediction accuracy in benign and malignant 
differentiation [10], molecular typing [11], and treatment 
response prediction [12, 13]. Additionally, radiomic mod-
els of primary tumor and ALN on DCE-MRI have been 
demonstrated to be capable of predicting ALN metasta-
sis preoperatively [14, 15] and of determining ALN status 
after NAC [16]. Delta-radiomics is an emerging field in 
cancer efficacy assessment that can provide an estima-
tion of the change in tumor heterogeneity and aggressive-
ness before and after cancer therapy [17]. This radiomics 
subfield has been found to have the ability to predict the 
response to chemotherapy of many primary tumors in 
many types of cancer [18, 19], including primary breast 
cancer [13, 20]. However, the question of whether delta-
radiomic features of the lymph nodes themselves can 

help to predict early axillary response after NAC has not 
been investigated.

In this paper, we studied whether the radiomic changes 
of ALN were able to reflect the early response of ALNs 
accurately and if they could be used as a biomarker for 
axillary pCR prediction after NAC. To do this, we built 
one clinical model and three radiomic models based on 
MRI features from baseline, after one cycle of treatment, 
and based on the changes between these two points 
(delta-radiomic features). These three ALN-based radi-
omic models were compared, and a clinical-radiomic 
combined model was developed for the purpose of early 
prediction of axillary pCR after NAC.

Materials and methods
The prospective protocol of this study was approved by 
the Scientific Research Ethics Committee of the First 
Hospital of China Medical University, and each partici-
pant provided written informed consent.

Study population and NAC protocol
We identified 158 consecutive patients treated with 
NAC followed by surgery between October, 2018 and 
May, 2021. The inclusion criteria were: (1) biopsy-proven 
ipsilateral metastatic ALNs with locally advanced breast 
cancer; (2) availability of the complete biopsy informa-
tion of the primary tumor; and (3) standard breast MRI 
conducted both before and after one cycle of NAC. A 
total of 38 patients were excluded for the following rea-
sons: (1) small ALN diameter (< 1.0 cm) on baseline MRI 
(n = 17); (2) artifacts in the axillary region on DCE-MRI 
(n = 9); (3) incomplete standard NAC cycles (n = 2); (4) 
occurrence of distant metastases during NAC (n = 4); 
(5) unfinished surgery (n = 2); and (6) surgery performed 
at other institutions (n = 4). The final patient popula-
tion (n = 120) was organized in its original temporal 
order and divided (7:3) into a training cohort (n = 84) for 
model development and a validation cohort (n = 36) for 
model validation.

The NAC regimen administered to all patients was 
according to the National Comprehensive Cancer Net-
work (NCCN) guidelines [21]. The NAC regimens in 
our institution (Table S2) were described as follows: six 
cycles of the TEC regimen (docetaxel, epirubicin and 
cyclophosphamide); four cycles of the EC regimen with 
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sequential four cycles of docetaxel (total 8 cycles) for 
HER2-negative tumors. For HER2-positive tumors, dual 
anti-HER2-targeted trastuzumab plus pertuzumab or 
single trastuzumab were added to the chemotherapy 
drugs, including TCbHP (docetaxel, carboplatin, tras-
tuzumab and pertuzumab), and TCH (docetaxel, cyclo-
phosphamide and trastuzumab). Each regimen was 
administered intravenously every 3 weeks. All patients 
underwent breast-conserving surgery or total mastec-
tomy after NAC. For axillary management, all patients 
underwent ALND after NAC.

Histopathological analysis
Clinical information was collected including patient age, 
menopausal status, estrogen receptor (ER) and proges-
terone receptor (PR), human epidermal growth factor 
receptor-2 (HER2) status, Ki-67, molecular subtypes, 
pretreatment clinical T/N stage, posttreatment patho-
logic T/N stage (ypTN). ER, PR and HER2 were evaluated 
according to ASCO/USCAP guidelines [22, 23]. The Ki-67 
index was assessed with a cut-off value of 20% [24]. The 
molecular subtype was classified into luminal A, luminal 
B, HER2-enriched and triple negative according to the 
2017 St. Gallen guidelines [25]. Clinical and pathologic 
tumor stage was assessed according to the American 
Joint Committee on Cancer TNM staging system manual, 
8th edition [26]. After NAC, axillary pCR was defined as 
the absence of any invasive residual cancer in the axil-
lary region [26]. Breast pCR was defined as the absence 
of residual invasive tumor (Miller–Payne grade 5, residual 
ductal carcinoma in situ could be present) [12].

Image acquisition
The baseline MRI was performed within 1 week prior to 
NAC, and the follow-up MRI was performed after the 
first cycle of NAC (within 72 h before the second cycle of 
NAC). Both breast MRI examinations were performed 
with a 3 T MR scanner (SIGNATM Pioneer, GE Health-
care, Milwaukee, WI, USA) with an 8-channel phased-
array breast coil. The patients were positioned prone 
with both breasts naturally draped over the middle of 
the coil. A multi-phase ultra-fast contrast enhancement 
technology, which was called Differential Subsampling 
with Cartesian Ordering (DISCO), was used to create 
the T1-weighted DCE-MRI including one pre-contrast 
and 20 post-contrasts (GE Healthcare). After the pre-
contrast scan, contrast medium (gadodiamide, 0.1 mmol/
kg body weight, GE Healthcare, Ireland) was injected 
via intravenous route with a power injector, followed by 
a 20-ml saline flush. The DCE-MRI sequence param-
eters were as follows: TR = 4.9 ms, TE = 1.7 ms, field of 
view (FOV) = 360 × 360 mm, matrix = 256 × 256, section 
thickness = 5 mm, intersection gap = 1.3 mm, number 

of sections = 120/phase, and acceleration factor = 2. The 
scan sequences and scan parameters are shown in Table 
S1.

Analysis workflow
The prediction workflow consisted of identifying the 
ALN region of interest (ROI) segmentation, radiomic 
feature extraction, feature selection, model building, and 
then model evaluation (Fig. 1).

Ipsilateral ALN segmentation
On the baseline and follow-up CE-MRI, the 2D region 
of interest (ROI) at the maximum cross-sectional area of 
one selected ALN was manually segmented on the peak 
contrast phase according to the DCE curve (obtained 
during 116–136 s after contrast injection) by using the 
open-source ITK-snap software (www.​itksn​ap.​org, ver-
sion 3.8.0). Typical features of selected ALN on DCE-
MRI were: cortical thickening, loss of fatty hilum, and 
a round shape or a long-to-short axis ratio of less than 
2 [27, 28]. If multiple enlarged lymph nodes were avail-
able, the lymph node with the longest short diameter 
according to the biopsy record was selected as the tar-
geted region of interest. The segmentations for all cases 
were performed by one radiologist with 5 years of expe-
rience in breast imaging, and then 30 randomly selected 
cases were segmented again by another radiologist with 
10 years of experience in breast imaging. Consistently, 
the long and short diameter of selected positive ALN 
before and after one cycle of NAC was also measured 
by the same radiologists. Both radiologists were blind 
to the clinical and histopathological data. The reliabil-
ity of the observations was calculated using the intra-
class correlation coefficient (ICC). Features with ICCs 
greater than 0.75 indicated satisfactory reproducibility 
and were reserved for further analysis. The representa-
tive DCE-MRI images before and after one cycle of NAC 
are shown in Fig. 2.

Radiomic features and their changes
According the 2D-ROI of the ALNs, 851 separate radi-
omic features before and after the first cycle were 
extracted from the peak phase of DCE-MRI using Anal-
ysis Kit software (A.K., GE Healthcare). The extracted 
features included: original features (n = 107), first-order 
statistics (n = 18), shape-based features (n = 14), the gray 
level co-occurrence matrix (GLCM, n = 24), the gray 
level run length matrix (GLRLM, n = 16), the gray level 
size zone matrix (GLSZM, n = 16), the neighboring gray 
tone difference matrix (NGTDM, n = 5), the gray level 
dependence matrix (GLDM, n = 14), and wavelet-trans-
formed type (n = 744). Changes in the radiomic fea-
tures (delta-radiomic features) were calculated from the 

http://www.itksnap.org
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Fig. 1  The workflow of the critical steps. DCE dynamic contrast enhanced, LASSO least absolute shrinkage and selection operator, ROC receiver 
operating characteristic

Fig. 2  Representative images segmentation. A Images from an axillary pCR breast cancer patient (aged 34 years old with invasive ductal carcinoma 
of metastasis in the left ALNs). B Images from an axillary non-pCR breast cancer patient (aged 55 years old with invasive ductal carcinoma of 
metastasis in the left ALNs). a-b and e-f were the baseline DCE-MRI; c-d and g-h were the first cycle DCE- MRI). ALN axillary Lymph node, DCE 
dynamic contrast enhanced, apCR axillary pathologic complete response
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differences between the pre-treatment features values 
(pre-radiomic features) and the feature values after one 
cycle of NAC (1st-radiomic features):

The change in the long and short diameter of ALN after 
treatment was also calculated using the same formula.

Feature selection
In the training cohort, the radiomic features were 
normalized to a Z-score to make the dynamic ranges 
comparable before radiomic feature selection. Spear-
man correlation analysis was then used to remove the 
features that were highly correlated with the other fea-
tures using a cutoff value for |r| of 0.9. To obtain the 
features that were most strongly associated with axil-
lary pCR, we performed univariate regressions analysis 
and features with p < 0.1 were selected for subsequent 
analysis. Finally, we used the least absolute shrinkage 
and selection operator (LASSO) for fine feature selec-
tion. The tuning parameter (λ) was selected by 5-fold 
cross-validation, and the value of λ was then adjusted 
to minimize the binomial deviation of the model, which 
was the point at which the efficiency of the filtered fea-
tures is optimal [29].

Building the model
The prediction models were developed by the multi-
variable regression with the Akaike’s information crite-
rion (AIC) in training cohort. The prediction Radiomic 
scores (Rad-score) was calculated for each patient using 
the linear fusion of the selected non-zero features and 
their coefficients. Our radiomics models included pre-, 
1st-, and delta-radiomic versions, that were constructed 
with the radiomic features from the baseline MRI, the 
MRI after one cycle of NAC, and from the changes 
between these two images, respectively. The clinical 
model was built by combining the independent predic-
tors among all clinical factors that were found by step-
wise multivariate logistic regression. Finally, clinical 
features were combined with each of the three radiomic 
models in order to establish combined models: the pre-
radiomic + clinical model, the 1st-radiomic + clini-
cal model, and the delta-radiomic + clinical model. To 
help us discern the optimal prediction model with the 
highest performance, we developed an individualized 
nomogram to provide a visual tool for evaluating the 
prediction of the patients’ ALN pCR.

Delta − radiomic features = (Pre− radiomic features)− (1st − radiomic features).

Model evaluation and validation
The performance of the prediction models was evalu-
ated using receiver operating characteristic (ROC) analy-

sis and was also compared with the DeLong test in both 
the training and validation cohorts. The area under the 
curve (AUC) with 95% confidence interval (CI), sensitiv-
ity, specificity, and accuracy were also calculated to assess 
model performance. The clinical utility of the models was 
determined and compared using decision curve analysis 
(DCA) to quantify the net benefit to the patients under 
different threshold probabilities in training and validation 
cohorts. The consistency between the expected probabil-
ity of axillary pCR and the actual results was shown using 
calibration curves for the nomogram.

Statistical analysis
Clinicopathological characteristics were compared 
between the two groups by using the Mann-Whitney U 
test for continuous variables and the chi-square test or 
Fisher exact test for categorical variables. Statistical anal-
ysis was performed using Med Calc (version 15.6.1) and 
R software (version 3.6.1; http://​www.r-​proje​ct.​org/). For 
all statistical tests, we considered two-sided p  < 0.05 to 
indicate statistically significant test results.

Results
Patient’s characteristics and clinical model
One hundred twenty women comprised the final study 
group (mean age ± standard deviation, 50.9 years ±10.1; 
range, 31–73 years), The training cohort included 84 
cases and the validation cohort included 36 cases. The 
agreement between the two radiologists based on nodule 
size measurements was good, with an ICC range of 0.94–
0.99. Flowchart of patient enrollment is shown in Fig. 3 
and final patients’ characteristics are listed in Table 1.

Axillary pCR was observed in 53 (44.2%) cases (train-
ing/validation, n  = 37/16). The pCR of primary breast 
tumor was observed in 37 (30.8%) cases (training/valida-
tion, n  = 22/15).The axillary pCR rate was significantly 
higher than that of the breast (p < 0.001). The pCR con-
cordance rate in axilla and breast was 25% (30/120). In 
patients with axillary pCR, only 56.5% (30/53) achieved 
breast pCR; While in breast pCR, nearly 81.2% (30/37) 
achieved axillary pCR (Fig. S1).

The ER, PR, and HER2 expression, molecular subtypes 
and breast pCR were significantly different between the 
axillary pCR group and non-pCR group in the train-
ing cohort (p  < 0.05), and HER2 expression and breast 
pCR were statistically different in the validation cohort 

http://www.r-project.org/


Page 6 of 13Liu et al. BMC Cancer           (2023) 23:15 

(p < 0.05) (Table 1). We found no statistical difference in 
any of the clinical characteristics between the training 
and validation cohorts (p > 0.05) (Table S2).

The ER, PR, and HER2 expression and molecular 
subtype (p  < 0.05) in the training cohort were initially 
included to build the clinical model, and the stepwise 
method mentioned above preserved only ER and HER2 
expression as independent predictors in the final clinical 
model (Table 2). This final clinical model yielded an AUC 
of 0.742 (95% CI: 0.637–0.846) in the training cohort, and 
0.723 (95% CI: 0.550–0.896) in the validation cohort for 
predicting axillary pCR.

Radiomic models for axillary pCR prediction
The ICCs for all radiomic features and their changes were 
greater than 0.75 between the two radiologists. Thus, 
all extracted features were included in the subsequent 
analysis. The pre-, 1st-, and delta-radiomic models were 
eventually selected for two, three, and four features for 
predicting axillary pCR, respectively. The final-selected 
key radiomic features of the three radiomic models and 
their equations are listed in Table S3. The delta-radiomic 
model had the highest AUC for predicting axillary pCR 
after NAC: 0.851 (95% CI: 0.770–0.932) in the training 

cohort and 0.822 (95% CI: 0.685–0.958) in the valida-
tion cohort. Figure 4 shows the ROC curves of the three 
radiomic models in the training (Fig. 4A) and validation 
(Fig. 4B) cohorts, and Table 3 details the models’ predic-
tive performance.

Clinical‑radiomic models for axillary pCR prediction
Figure 5 shows the ROC analysis results of the three com-
bined clinical-radiomic models (pre-radiomic + clinical, 
1st-radiomic + clinical, and delta-radiomic + clinical) in 
the training (Fig. 5A) and validation (Fig. 5B) cohorts.

The delta-radiomic + clinical model yielded the high-
est AUC of these models: 0.932 (95% CI: 0.882–0.983) in 
the training cohort and 0.859 (95% CI: 0.733–0.985) in 
the validation cohort. We developed an individualized 
nomogram for visualization (Fig. 6).

The calibration curves showed agreement between the 
predictions and actual observations of the nomogram in 
both the training (Fig. 7A) and validation cohorts (Fig. 7B).

Additionally, our DCA indicated that the clinical ben-
efit of the combined delta-radiomic + clinical model 
was greater than both the pre-radiomic + clinical 
and 1st-radiomic + clinical models in distinguishing 

Fig. 3  Flowchart of patient recruitment pathway. ALN axillary Lymph nodes, NAC neoadjuvant chemotherapy, DCE dynamic contrast enhanced
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axillary pCR when the threshold probability was 
between 0 and 0.85 in the training cohort (Fig. 8A), and 
when the threshold probability was between 0.53 and 
0.98 in the validation cohort (Fig. 8B).

Model comparison
The predictive efficiency of the delta-radiomic + clinical 
model was higher than that of the delta-radiomic, clinical, 
pre-radiomic + clinical, and 1st-radiomic + clinical models 

Table 1  Baseline characteristics for both cohorts

Age is presented as mean ± SD, and others shown as proportions (percentages)

ER Estrogen receptor, PR Progesterone receptor, HER2 Human epidermal growth factor receptor 2, TN Triple negative, apCR Axillary pathologic complete response, 
pre- pretreatment, 1st One cycle, LD Long diameter, SD Short diameter, pCR Pathologic complete response

Characteristics Training cohort (n = 84) Validation cohort (n = 36)

apCR (n = 37) non-apCR (n = 47) P apCR (n = 16) non-apCR (n = 20) p

Age (years) 50.5 ± 8.7 50.7 ± 10.9 0.928 49.8 ± 11.5 53.3 ± 9.6 0.329

Menopausal (%) 0.679 1.000

  Premenopausal 18 (48.6) 25 (53.2) 7 (43.8) 8 (40.0)

  Postmenopausal 19 (51.4) 22 (46.8) 9 (56.2) 12 (60.0)

ER status (%) 0.001 0.191

  Positive 13 (35.1) 33 (70.2) 5 (31.2) 11 (55.0)

  Negative 24 (64.9) 14 (29.8) 11 (68.8) 9 (45.0)

PR status (%) 0.022 0.500

  Positive 16 (43.2) 32 (68.1) 8 (50.0) 13 (65.0)

  Negative 21 (56.8) 15 (31.9) 8 (50.0) 7 (35.0)

HER2 status (%) 0.002 0.023

  Positive 21 (56.8) 11 (23.4) 12 (75.0) 7 (35.0)

  Negative 16 (43.2) 36 (76.6) 4 (25.0) 13 (65.0)

Ki-67 status (%) 0.659 0.764

   ≤ 20% 5 (13.5) 8 (17.0) 3 (18.8) 3 (15.0)

  > 20% 32 (86.5) 39 (83.0) 13 (81.2) 17 (85.0)

Molecular subtypes (%) 0.005 0.073

  Luminal A 1 (2.7) 5 (10.6) 0 (0.0) 1 (5.0)

  Luminal B 17 (45.9) 29 (61.7) 8 (50.0) 13 (65.0)

  HER2 enriched 12 (32.4) 2 (4.3) 6 (37.5) 1 (5.0)

  TN 7 (18.9) 11 (23.4) 2 (12.5) 5 (25.0)

Clinical T stage (%) 0.993 0.525

  T1 6 (16.2) 8 (17.0) 2 (12.5) 5 (25.0)

  T2 15 (40.5) 20 (42.6) 10 (62.5) 8 (40.0)

  T3 8 (21.6) 9 (19.1) 1 (6.2) 3 (15.0)

  T4 8 (21.6) 10 (21.3) 3 (18.8) 4 (20.0)

Clinical N stage (%) 0.317 0.273

  N1 26 (70.3) 32 (68.1) 14 (87.5) 12 (60.0)

  N2 9 (24.3) 8 (17.0) 1 (6.2) 4 (20.0)

  N3 2 (5.4) 7 (14.9) 1 (6.2) 4 (20.0)

Pre-LD (mm) 17.2 ± 6.9 18.3 ± 5.8 0.456 16.2 ± 4.9 18.9 ± 6.5 0.183

1st-LD (mm) 12.9 ± 5.2 14.5 ± 5.2 0.171 12.4 ± 4.7 14.8 ± 4.1 0.108

Pre-SD (mm) 12.9 ± 3.6 14.1 ± 4.6 0.184 12.8 ± 3.5 13.6 ± 4.1 0.547

1st-SD (mm) 9.7 ± 3.3 11.1 ± 4.6 0.130 9.4 ± 3.9 10.6 ± 2.9 0.294

Delta-LD (mm) 4.3 ± 2.5 3.8 ± 3.3 0.418 3.8 ± 2.4 4.0 ± 4.5 0.851

Delta-SD (mm) 3.2 ± 1.3 3.0 ± 2.8 0.769 3.4 ± 2.1 3.0 ± 3.4 0.665

Breast pCR (%)

  Yes 17 (45.9) 5 (10.6) < 0.001 13 (81.2) 2 (10.0) < 0.001

  No 20 (54.1) 42 (89.4) 3 (18.8) 18 (90.0)
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(Delong test: p = 0.017; p < 0.001; p = 0.002; p = 0.007) in 
the training cohort. Comparisons of the following models 
were also statistically different: pre-radiomic + clinical vs. 
pre-radiomics/clinical, 1st-radiomic + clinical vs. clinical, 
with p < 0.05 for all DeLong tests. In the validation cohort, 
the combined delta-radiomic + clinical model had the 
highest AUC (0.859) and accuracy (0.806). However, these 
values were not statistically different from those of any 
other model at the 0.05 level (Fig. S2).

Discussion
We investigated the performance of ALN-related radi-
omic models for axillary pCR prediction at baseline and 
after early-treatment and also investigate the changes 
between these two time-points. The results indicated 

Table 2  Multivariate analysis used stepwise based on logistic 
regression predicting apCR in training cohort

ER Estrogen receptor, HER2 Human epidermal growth factor receptor 2, apCR 
Axillary pathologic complete response

Characteristics OR 95%CI P

ER status (%)

  Positive 1

  Negative 3.982 1.515–10.466 0.005

HER2 status (%)

  Positive 1

  Negative 0.256 0.095–0.687 0.007

Fig. 4  The ROC curves of the separate models for predicting apCR. A Training cohort. B Validation cohort. apCR axillary pathologic complete 
response

Table 3  The performance of the radiomic models in the training cohort and validation cohort

AUC​ Area under the ROC, 95%CI 95% confidence interval, SEN Sensitivity, SPE Specificity, ACC​ Accuracy

Models Training cohort Validation cohort

SEN SPE ACC​ AUC (95% CI) SEN SPE ACC​ AUC (95% CI)

Pre-radiomic 0.703 0.702 0.702 0.734 (0.628–0.841) 0.500 0.950 0.750 0.683 (0.486–0.876)

1st-radiomic 0.648 0.829 0.750 0.790 (0.693–0.886) 0.937 0.450 0.666 0.718 (0.548–0.888)

Delta-radiomic 0.757 0.809 0.786 0.851 (0.770–0.932) 0.875 0.650 0.750 0.822 (0.685–0.958)

Clinical 0.648 0.702 0.678 0.742 (0.637–0.846) 0.562 0.900 0.750 0.723 (0.550–0.896)

Pre-radiomic +Clinical 0.837 0.702 0.761 0.829 (0.734–0.915) 0.625 0.900 0.778 0.734 (0.549–0.918)

1st-radiomic+ Clinical 0.703 0.936 0.833 0.831 (0.739–0.922) 0.750 0.800 0.778 0.809 (0.667–0.951)

Delta-radiomic + Clinical 0.865 0.894 0.881 0.932 (0.882–0.983) 0.750 0.850 0.806 0.859 (0.733–0.985)
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that the delta-radiomic model based on early changes 
of ALN features performed better among all radiomic 
models. Moreover, when combined with clinical fea-
tures, the ALN delta-radiomic + clinical model achieved 
the best diagnostic performance of any model we tested. 
The delta-radiomic model that incorporates clinical and 
ALN-MRI features may be a promising method for ALN 

pCR prediction in the initial phase of NAC and for fur-
ther treatment decisions.

Of the three radiomic models we constructed, the ALN 
delta-radiomic model showed the highest predictive 
value. Intratumor heterogeneity drives neoplastic pro-
gression and therapeutic response [30, 31] and changes 
dynamically accompanied by size changes after treatment 

Fig. 5  The ROC curves of the combined models for predicting apCR. A Training cohort. B Validation cohort. apCR axillary pathologic complete 
response

Fig. 6  Visual nomogram of the delta-radiomic + clinical model in predicting apCR. The ** represents. p value < 0.01, *** represents. p value < 0.001, 
apCR axillary pathologic complete response
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[30]. Delta-radiomics can show the heterogeneity of 
changing information, which is ignored by single time-
point models [18, 19]. Fan et  al. [13] reported that the 
performance of a delta-radiomic model after two cycles 
of NAC exceed the baseline model for pCR prediction 
based on primary breast cancer, and Gan et al. [16] found 
that a preoperative radiomic model from visible ALNs 
had higher predictive power compared with a model 

based on the MRI features of breast tumor and axillary 
region. This result implicates the importance of intro-
ducing ALN features for breast cancer model building. 
Our study advanced the predictive time-point to one-
cycle treatment and presented the early changes of ALN 
radiomic features associated with treatment response 
after NAC. Considering pCR inconsistency between the 
breast and axilla, the development of specialized axillary 

Fig. 7  Calibration curves for nomogram. A Training cohort. B validation cohort. The X-axis represents the predicted probability of apCR estimated 
by nomogram, whereas the Y-axis represents the actual apCR rates. Calibration curves show that the actual probability corresponded closely to the 
prediction of nomogram. apCR axillary pathologic complete response

Fig. 8  Decision curve analysis (DCA) of the combined models. A Training cohort. B validation cohort. The x-axis indicates the threshold probability, 
while the y-axis indicates the net benefit. The gray line indicates the hypothesis that all the patients achieved an apCR, and the black line indicates 
the hypothesis that none of the patients achieved an apCR. apCR axillary pathologic complete response
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pCR prediction models after NAC could complement the 
breast pCR prediction, rather than incorporate of breast/
axilla in the definition of pCR. The treatment adjustment 
according to the model’s prediction depends mainly on 
the breast response, while an additional axillary non-pCR 
on the basis of breast non-pCR will enhance the clini-
cian’s confidence for NAC regimen change. For our delta-
radiomic model, the first-cycle may be the only feasible 
time-point: treatment-driven ALN shrinkage makes it 
difficult to identify and obtain reliable radiomic features.

Receptor status, Ki-67 level, and breast pCR could all 
influence axillary pCR, with moderate predictive abil-
ity (AUC 0.715 to 0.804) [32–34], and our model built 
using ER and HER2 was similar to this. Breast pCR was 
not used to establish clinical models due to its delayed 
availability after surgery, rather than early treatment. 
According to the “seed and soil” hypothesis, metastasis is 
the product of interactions between selected cancer cells 
(the seeds) and specific organ microenvironments (the 
soil) [35]. However, the clinical features of the primary 
tumor cannot completely replace the ALN itself. A previ-
ous study [14] proposed that tumor radiomic signatures 
or a combination of tumor and ALN radiomic signatures 
were no better than ALN radiomic signatures alone for 
preoperative ALN metastasis prediction. In our study, we 
used radiomic features of ALNs alone to predict axillary 
pCR after NAC, and achieved satisfactory performance. 
Furthermore, we used regular breast MRI involving axil-
lary level I without entire axilla scans. Although regular 
MRI protocol limits the visualization of high-level ALNs, 
it is sufficient to exclude high-level and advanced ALN 
metastasis [36]. Both regular MRI protocol and dedicated 
axillary MRI have been shown to have comparable per-
formance in ALN metastasis evaluation [37].

Compared to the primary breast tumor, visible ALNs 
have simple physiological structure and small variation 
between patients, which is conducive to ROI delineation. 
For this reason and to simplify our workflow, we applied 
time-saving 2D single-slice delineation instead of whole-
slice delineation in this study. Single-slice analysis has 
often been considered to have the same diagnostic abil-
ity as 3D whole-slice analysis [12, 38]. To a certain extent, 
this also reduces the impact of axillary artifacts caused by 
poor field uniformity on radiomic features. Thus, in this 
paper we selected the most suspicious metastatic ALN 
to represent all the ALNs. Clinicians can easily find the 
corresponding ALN after early-treatment according to its 
original location.

The use of MRI for axilla assessment is becoming more 
popular in clinic due to its advantage of a more global 
view of the axilla that can enhance the detection of poten-
tially abnormal ALNs and allow the comparison of both 
axillary irrespective of patient body habitus [39]. Future 

axillary MRI applications still need to be explored, how-
ever, including the development of dedicated and stable 
axillary coils, the necessity of high-level axillary scan, the 
value of MRI morphology, quantification, and radiomics. 
In the current study, we used regular breast MRI to build 
radiomic models based on positive and visible ALNs. We 
mention that this result will lay the foundation for future 
radiomics studies with dedicated axillary MRI.

In the setting of invasive breast cancer with positive 
ALNs, our ALN-radiomic model can help to determine 
the presence of residual LN metastases at the initial stage 
of NAC and may even increase confidence in intended 
treatment plans or help patients and providers to decide 
among multiple available treatment modalities. As the 
trend toward less-aggressive axillary surgery continues, a 
more precise yet encompassing role for imaging might be 
required in axillary evaluation. Providing more accurate 
post-treatment response evaluation can help to minimize 
intervention and optimize patient outcomes.

The present study is not without its limitations, how-
ever. First, the sample size was relatively small, but 
larger cohorts are being recruited for future deep learn-
ing analysis. Second, NAC regimens were not uniform 
and sequential regimens were also used, such as EC-T. 
This might affect the accuracy of delta-radiomic model 
based on the first cycle treatment to some extent. 
Third, molecular subtype-specific subgroup analysis 
could not be completed due to limited patient numbers 
within each subgroup. HER2-positive and triple-neg-
ative subgroup analyses might yield higher predictive 
efficacy due to their higher axillary pCR rate [40]. Then, 
radiomic features from primary breast tumors were not 
combined with those of ALNs. However, Gan et al. [16] 
suggested that nodal features alone are sufficient for 
residual axillary cancer prediction. Finally, the inher-
ent limitations of the methodology, such as using a sin-
gle ALN, and single-slice ROI, will be addressed in our 
future study involving a large-scale axillary DCE-MRI.

In conclusion, this preliminary study indicates that 
our ALN-based delta-radiomics model combined with 
clinical features is a promising strategy for the early 
prediction of the downstaging of ALN status after 
NAC.
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