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Abstract 

Background  Animal and human studies suggest the gut microbiome is linked to diabetes but additional data are 
needed on the associations of the gut microbiome to specific diabetes characteristics. The aim of this study was to 
examine the associations of gut microbiome composition to insulin resistance [Homeostatic Model Assessment of 
Insulin Resistance (HOMA-IR)], duration of diabetes, and 4 stages of diabetes [normoglycemia, pre-diabetes, and dia‑
betes with (+) and without (−) medication for diabetes].

Methods  Data are from a sub-sample (n = 605) of Black and White participants from the 30-year follow-up exam of 
the prospectively followed community-based Coronary Artery Risk Development in Young Adults cohort (2015–2016; 
aged 48–60 years). Stool samples were collected and sequenced using the 16S ribosomal RNA method. Microbial 
measures included: α diversity (within-person), β diversity (between-person), and taxonomies. All analyses were 
adjusted for demographic, clinical, lifestyle factors, and use of relevant medications (full adjustment). Multivariate 
linear regression models were used to assess the association of diabetes characteristics with α diversity and genera 
abundance, while the association with β diversity was analyzed using permutational multivariate analysis of variance. 
Statistical significance was set to p-value < 0.05 for α and β diversity analyses and to q-value < 0.1 for genera abun‑
dance analyses.

Results  There were 16.7% of participants with pre-diabetes, and 14.4% with diabetes (9% diabetes+) with median 
(interquartile range) diabetes duration of 5 (5–10) years. In the fully adjusted models, compared to those with no 
diabetes, longer diabetes duration and the diabetes + group had a lower α diversity. There were significant differences 
in β diversity across diabetes-related characteristics. A significantly reduced abundance of butyrate-producing genera 
was associated with higher HOMA-IR (ex., Anaerostipes and Lachnospiraceae_UCG.004), longer diabetes duration (ex., 
Agathobacter and Ruminococcus), and diabetes + (ex., Faecalibacterium and Romboutsia).

Conclusions  Our results suggest that an adverse alteration of gut microbiome composition is related to higher 
insulin resistance, longer diabetes duration, and is present in those persons with diabetes using medications. These 
diabetes-related characteristics were also associated with lower levels of certain butyrate-producing bacteria that 
produce health-promoting short‐chain fatty acids. Understanding the role of gut microbiota in glucose regulation 
may provide new strategies to reduce the burden of diabetes.
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Background
The diverse species of bacteria in the gut microbiome 
have been suggested to play a role in a variety of meta-
bolic disorders including type 2 diabetes (T2D) [1, 2]. 
The microbiome, together with dietary-derived microbial 
metabolites, bears the potential to affect adiposity, glu-
cose metabolism, and insulin sensitivity [3–5]. A growing 
number of animal models support mechanisms through 
which the gut microbiome may influence the develop-
ment of insulin resistance and T2D [6, 7]. However, there 
is also evidence that the host metabolic state, as well as 
pharmacologic treatments, may impact the gut micro-
biota [5, 8, 9]. Understanding the role of gut microbiota 
in insulin resistance and glucose regulation may provide 
new and more individualized strategies for clinical pre-
vention and management of T2D [10].

Community-based studies with a wide range of micro-
biome profiles and diabetes characteristics can contrib-
ute further insight into possible clinical implications 
of how microbiota may be influenced by, or influence 
T2D. The majority of previous human observational 
studies were conducted in patient populations or using 
case–control designs or inclusion of participants with a 
narrow range of diabetes stages, thereby narrowing the 
range of T2D and microbiome exposure [8, 11–14]. Fur-
ther, extant studies do not account for duration of diabe-
tes, which may be a factor in the strength of associations 
between diabetes and the microbiome [2]. Additionally, 
it is important to understand the association of diabetes 
to the microbiome, controlling for the socio-demograph-
ically diverse population with T2D, as other factors may 
influence both T2D and the microbiota.

The current study is based on a population-based pro-
spective cohort of Black and White men and women 
followed for 30  years as a part of the Coronary Artery 
Risk Development in Young Adults (CARDIA) study. 
We investigate associations of diabetes-related char-
acteristics with gut microbial diversity and taxonomic 
composition.

Research design and methods
Study design
The CARDIA study is a multicenter, longitudinal cohort 
study of 5115 White and Black men and women from 
four US metropolitan areas: Birmingham, AL; Chicago, 
IL; Minneapolis, MN; and Oakland, CA. The details 
of its design are described elsewhere [15]. Participants 
were aged 18 to 30 years at baseline in 1985–1986 (Y0) 
and attended follow-up exams in years 2, 5, 7, 10, 15, 20, 

25, and 30 (Y2–Y30) after baseline, with 71% retention 
among the surviving cohort at Y30. As part of the ongo-
ing cohort study, 615 participants were recruited into a 
microbiome sub-study at Y30, described briefly below 
and in detail elsewhere [16]. The comparison in sample 
characteristics between those included and not included 
in the microbiome study is presented in Additional 
file 1: Table S1. All CARDIA field centers received their 
respective institutional review board approvals, and par-
ticipants provided written informed consent to all study 
components at each exam.

Gut microbiome data collection, assay, and preprocessing
Briefly, we followed standard protocols for collection 
and processing of stool samples [17, 18], as previously 
described [16]. Participants completed the stool collec-
tion in their home using collection tubes pre-filled with 
RNAlater, along with a short survey pertaining to covari-
ates relevant for the microbiome study, and shipped their 
samples with provided ice packs and insulated shipping 
containers and completed questionnaire overnight to the 
study lab at the Nutrition Research Institute at the Uni-
versity of North Carolina, Chapel Hill, where samples 
were stored at − 80 °C until processing.

DNA was extracted from 0.2 g of stool using the MoBio 
PowerSoil kit (or Qiagen DNeasy PowerSoil after the 
purchase of MoBio by Qiagen). The V3–V4 hypervari-
able regions were amplified and sequenced using the Illu-
mina MiSeq platform (2 × 300). Forward sequences were 
processed (quality trimming, denoising, and chimera-
removal) through the divisive amplicon denoising algo-
rithm (DADA2) package in R14. The DADA2-formatted 
Silva database (silva_nr_v138_train_set.fa.gz) was used to 
assign taxonomy [19].

Assessment of diabetes‑related characteristics
Insulin resistance, diabetes duration, and stages of dia-
betes were the primary diabetes-related characteristics 
in the present study (Additional file 1: Fig. S1). We used 
the Homeostatic Model Assessment of Insulin Resistance 
(HOMA-IR) as a surrogate measure for insulin resist-
ance. HOMA-IR was calculated as follow: [fasting insulin 
(uU/mL) × fasting glucose (mmol/L)]/22.5 [20]. The aver-
age of Y25 and Y30 HOMA-IR was used in the analyses.

Pre-diabetes and T2D were identified according to 
American Diabetes Association (ADA) criteria [21]. T2D 
was determined based on the presence of any of the fol-
lowing: a fasting serum glucose (FSG) ≥ 126 mg/dL (avail-
able at Y0, Y7 and afterward), or a 2-h (2  h) post-load 
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glucose (2 h-PG) ≥ 200 mg/dL during a 75-g oral glucose 
tolerance test (available at Y10, Y20 and Y25), or a hemo-
globin A1C (HbA1c) ≥ 6.5% (available at Y20 and Y25), or 
self-report of diabetes medications (e.g., oral hypoglyce-
mic medications or insulin) use [22]. Similarly, pre-dia-
betes was defined as having a FSG of 100–125 mg/dL, or 
a 2 h-PG 140–199 mg/dL, or an HbA1c 5.7–6.4% in both 
Y25 and Y30 and no report of diabetes and no use of dia-
betes medications across 9 exams.

The duration of diabetes was indicated by the number 
of years of diabetes and calculated based upon the pres-
ence of diabetes at each exam beginning at Y2 [22]. For 
example, a participant who developed diabetes at Y10 
was assigned a total of 20 years as the cumulative dura-
tion of diabetes, while a half of year was assigned to 
participants who developed diabetes at Y30. We char-
acterized diabetes stages into four groups (1) normal; 
(2) pre-diabetes, (3) diabetes patients without treat-
ment (T2D−, who did not receive treatment at both Y25 
and Y30), and (4) diabetes with treatment (T2D+, who 
received treatment at either Y25 or Y30).

Covariates and confounders
Possible confounders of the associations between gut 
microbiome and aforementioned diabetes characteristics 
were identified from the literature [2, 12]. The majority of 
covariate measures were collected at the Y30 exam, with 
missing values replaced by Y25 covariates. Age, sex, race, 
highest educational attainment (high school or less, col-
lege, or graduate school), current smoking status (yes/
no), current alcohol use (yes/no), and medication use 
(yes/no), including proton pump inhibitor (PPIs), anti-
hypertensive and lipid-lowering, were assessed through 
self-reported questionnaires. Body mass index (BMI), 
resting systolic blood pressure (SBP), and resting dias-
tolic blood pressure (DBP) were collected by trained staff 
according to a standard protocol. A total physical activity 
score was calculated based on the Physical Activity Ques-
tionnaire [23]. Diet quality score was derived from the 
interviewer-administered Diet History at the Y20 Exam, 
as previously described [24].

Participants in the current analyses
In the microbiome sub-cohort of the 615 participants, 
607 had viable DNA samples for sequencing. From 
these 607 participants, we excluded one participant who 
had diabetes at baseline and one participant with miss-
ing smoking status at both Y25 and Y30 exams, result-
ing in 605 participants for analyses on gut microbiome 
and diabetes duration and stages of diabetes. For analy-
ses of insulin resistance, we additionally excluded one 
participant without data on insulin resistance at Y25 or 

Y30, yielding an analytic sample of 604 (Additional file 1: 
Fig. S2).

Statistical analyses
We examined associations between gut microbiome 
composition, measured by within-person α diversity and 
between-person β diversity, and insulin resistance, diabe-
tes duration, and stages of diabetes and specific taxa with 
the set of diabetes-related characteristics. We focused 
our primary analysis on genera, the lowest level of tax-
onomy from our data.

The α diversity (Shannon index and richness) and β 
diversity (Bray–Curtis index) at the genus level were cal-
culated using the R package vegan [25]. The α diversity 
represents the complexity of composition within mem-
bers of a group. In general, high α diversity is favorable 
to our health. We calculated α diversity measures using 
raw genera counts. The β diversity represents the simi-
larity of microbial composition between groups of inter-
est, with high β diversity indicating low similarity. For β 
diversity analysis, raw genera counts were transformed as 
log10[(RC/n)(x/N) + 1], where RC is the total raw count 
for a participant, n is the total count across all genera 
for a participant, x is the total across all taxa and par-
ticipants, and N is the total number of participants, as 
previously described [16, 26]. To investigate difference 
in β diversity between groups, HOMA-IR was reclassi-
fied into two groups based on the median (i.e., ≤ median 
[2.19], and > median), while diabetes duration was reclas-
sified into three groups (i.e., normal/pre-diabetes, newly 
diagnosed diabetes [duration < 5  years], and established 
diabetes [duration ≥ 5 years]).

The associations of α diversity measures with insu-
lin resistance, diabetes duration, and stages of diabetes 
were assessed by linear regression, adjusting for four 
sets of covariates sequentially. In model 1, we adjusted 
for the sequencing run. In model 2, age, sex, race, edu-
cation level, and field center were added. In model 3, 
we additionally adjusted for smoking, alcohol use, BMI, 
physical activity, and diet quality score. Last, in model 
4 (the fully adjusted model), we additionally adjusted 
for the use of PPIs and lipid-lowering drugs. We ana-
lyzed associations of β diversity with newly categorized 
insulin resistance, diabetes duration, and stages using 
permutational multivariate analysis of variance (PER-
MANOVA) with covariate adjustment; a p-value was 
generated through 1000 permutations. To examine post 
hoc pairwise comparisons, we conducted additional 
PERMANOVA tests for each pair within categorized 
diabetes duration and stages. For visualization, prin-
cipal coordinates analysis (PCoA) based on the Bray–
Curtis dissimilarity matrix was applied. We present the 
first two dimensions from the PCoA according to two 
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groups of HOMA-IR, three categories of diabetes dura-
tion, and four diabetes stages. In both α and β diversity 
analyses, statistical significance was set at a two-tailed 
p < 0.05.

To limit the possibility of spurious findings due to rare 
taxa, we restricted analyses to those individual taxa with 
non-zero counts in at least 75% of participants [16]. As a 
result, the taxa-specific analysis was based on 107 out of 
initially 375 genera. The log-transformed genera counts 
(described above) were used for the analyses. Multi-
variable linear regression models with the same sets of 
covariates (described above), were conducted to exam-
ine the association of diabetes-related characteristics 
with microbial taxa abundance. To adjust the p-value for 
multiple comparisons, we used the Benjamini–Hochberg 
method for false discovery rate (FDR). In the taxa-specific 
analysis, statistical significance was set to FDR-adjusted 
p-value (q-value) < 0.1 [27]. Data analysis was conducted 
in RStudio version 1.3.959 with R version 4.1.0 (http://​
www.r-​proje​ct.​org) and SAS version 9.4 (SAS Institute 
Inc, Cary, NC).

Sensitivity analyses
We conducted two sets of sensitivity analyses based on 
model 4. First, we added SBP, DBP, and antihypertensive 
medication use (binary) (model 5). For insulin resist-
ance and diabetes duration analyses, we also investigated 
whether diabetes medication use (binary) attenuated the 
main associations of interest by additionally adjusting for 
use of diabetes medicines (model 6); while for diabetes 
stages analysis, we further adjusted for diabetes duration 
(model 6).

Results
Baseline characteristics
Among 605 participants, 417 (68.9%) had no diabetes 
(normoglycemic), 101 (16.7%) had pre-diabetes, 56 (9.3%) 
persons with diabetes who were on diabetes treatment 
(T2D+), and 31 (5.1%) persons with diabetes not on dia-
betes treatment (T2D−). Fasting glucose concentrations 
and HOMA-IR scores increased with diabetes stage, 
with the lowest level in the normoglycemic group {means 
[standard deviations] (SDs) = 91.9 (7.7) and 2.2 (1.5) for 
fasting glucose and HOMA-IR, respectively} and the 
highest level in diabetes + [means (SDs) = 131.7 (53.5) 
and 5.4 (3.8), respectively]. Participants with treated dia-
betes had a longer diabetes duration, with a mean (SD) 
of 8.3 (5.8) years versus 7.5 (6.8) years in T2D−; 50% of 
T2D+ had been diagnosed with diabetes for 10 years or 

longer (upper quartile). Characteristics of the study pop-
ulation are shown in Table 1.

Insulin resistance and gut microbiota diversity 
and composition
Higher HOMA-IR was associated with lower genus 
richness {β [95% confidence interval (CI)] =  − 0.04 
[− 0.08, − 0.01]} (Table 2, Model 1). The inverse associa-
tion between insulin resistance and richness attenuated 
to non-significant after adjusting for behavioral factors 
(Table 2, Model 3). Insulin resistance was significantly 
associated with β diversity based on PERMANOVA 
tests (p-values < 0.001) at all levels of multivariable 
adjustment. The PCoA of gut microbiota plot also 
showed that the gut microbiota community composi-
tion differed between HOMA-IR groups (dichotomized 
by median) (Fig. 1A; Additional file 1: Table S3).

For taxa-specific analysis, we observed three genera 
(Anaerostipes, Lachnospiraceae_UCG.004, and Veil-
lonella) inversely associated with HOMA-IR after 
adjusting for the complete set of covariates and mul-
tiple comparisons (Fig.  2A, M4). However, these asso-
ciations became non-significant after adjusting for 
diabetes medication use (Additional file  1: Table  S2a, 
M6).

Diabetes stages and gut microbiota diversity 
and composition
Compared with normoglycemic participants, 
T2D + had lower genera Shannon diversity index (β 
[95% CI] =  − 0.3 [− 0.6, − 0.01]) and richness (β [95% 
CI] =  − 0.5 [− 0.06, − 0.02]) (Table  2, Model 4); while 
lower richness levels were found in pre-diabetes and 
T2D−, these associations were attenuated after adjust-
ing for behavioral factors (Table 2, Model 3; Additional 
file 1: Table S4). There were significant differences in β 
diversity over the four stages of diabetes (Fig. 1B; Addi-
tional file 1: Table S3).

In the fully adjusted model, we observed three genera 
(Agathobacter, Faecalibacterium, and Romboutsia) sig-
nificantly negatively associated with diabetes + (Fig. 2B, 
DIAB4_M4), compared with normoglycemic par-
ticipants. The number and type of taxa significantly 
associated with pre-diabetes and diabetes was modu-
lated after adjusting for behavioral factors. When we 
relaxed our FDR cut-off from < 0.1 to FDR < 0.2, with 
full adjustment, we found one genus (Eggerthellaceae 
[DNF00809]) (Fig. 2B, DIAB2) was associated with pre-
diabetes and two genera (Butyricicoccus and Colidextri-
bacter) were associated with diabetes (Fig. 2B, DIAB3). 
Further adjustment for SBP, DBP, and antihypertensive 
medication did not change the conclusions for α and β 

http://www.r-project.org
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Table 1  Descriptive statistics of analytic sample by stages of diabetes—CARDIA cohort: Year 30 Exam

Data source: The Coronary Artery Risk Development in Young Adults (CARDIA), 1985–2016

All covariates were collected at the Y30 Exam. Missing covariates were updated using Y25 Exam information

N/A, not applicable; HOMA-Insulin resistance, Homeostatic Model Assessment for Insulin Resistance; IQR, interquartile range
a Data is reported as mean and SD
b Valid sample size for insulin resistance was 604
c Statistics were calculated among participants with diabetes
d Total activity intensity in the past year
e Derived variable from the diet history at the Y20 Exam
f p-value was based on the chi-square test for male, race, education level, field center, smoking, alcohol use, or medication use; analysis of variance was used to 
estimate p-value for the remaining variables

Overall 
(n = 605)
n(%)/M(SD)

Stages of diabetes (n = 605) pg

Normal Pre-diabetes Diabetes without 
treatment

Diabetes with 
treatment

(n = 417, 68.9%) (n = 101, 16.7%) (n = 31, 5.1%) (n = 56, 9.3%)

n (%)/M(SD) n(%)/M(SD) n(%)/M(SD) n(%)/M(SD)

1. Diabetes-related 
variables

Fasting glucose (mg/dL)a 100.2 (24.8) 91.9 (7.7) 107.5 (6.1) 130.5 (47.1) 131.7 (53.5) < 0.01

HOMA-insulin 
resistancea,b

2.9 (2.3) 2.2 (1.5) 3.8 (2.4) 5.0 (2.9) 5.4 (3.8) < 0.01

Diabetes duration, 
median (IQR)c

5 (5–10) N/A N/A 5 (5–10) 10 (5–10) N/A

Metformin use (%) 43 (7.1) N/A N/A N/A 43 (76.8) N/A

2. Socio-demographics

Agea 55.2 (3.5) 55.1 (3.4) 55.4 (3.5) 54.9 (4.4) 55.8 (3.6) 0.32

Male (%) 272 (45.0) 168 (40.3) 63 (62.4) 18 (58.1) 23 (41.1) 0.30

Black race (%) 275 (45.5) 167 (40.0) 50 (49.5) 16 (51.6) 42 (75.0) < 0.01

Highest education (%) 0.36

High school or less 206 (34.1) 132 (31.7) 39 (38.6) 14 (45.2) 21 (37.5)

College 261 (43.1) 181 (43.4) 40 (39.6) 14 (45.2) 26 (46.4)

Graduate school 138 (22.8) 104 (24.9) 22 (21.8) 3 (9.6) 9 (16.1)

Field center (%) 0.72

Birmingham, AL 98 (16.2) 69 (16.5) 17 (16.8) 4 (12.9) 8 (14.3)

Chicago, IL 295 (48.8) 194 (46.5) 51 (50.5) 16 (51.6) 34 (60.7)

Minneapolis, MN 110 (18.2) 77 (18.5) 18 (17.8) 6 (19.4) 9 (16.1)

Oakland, CA 102 (16.8) 77 (18.5) 15 (14.9) 5 (16.1) 5 (8.9)

3. Clinical measuresa

BMI 29.4 (6.2) 28.1 (5.8) 31.6 (6.0) 31.9 (3.6) 33.4 (7.3) < 0.01

Systolic blood pressure 
(mmHg)

119.3 (16.1) 117.2 (15.7) 124.1 (14.5) 124.8 (16.4) 123.5 (18.5) < 0.01

Diastolic blood pressure 
(mmHg)

72.9 (11.0) 71.5 (11.0) 76.8 (9.6) 77.3 (10.9) 74.2 (11.2) < 0.01

4. Health behavior

Current smoker (%) 81 (13.4) 42 (10.1) 18 (17.8) 12 (38.7) 9 (16.1) < 0.01

Alcohol use (%) 469 (77.5) 318 (76.3) 86 (85.1) 26 (83.9) 39 (69.6) 0.29

Physical activity, median 
(IQR)d

267 (128–504) 280 (144–536) 276 (116–510) 300 (120–426) 170 (82.5–332.5) < 0.01

5. Medication use (%)

Proton pump inhibitor 47 (7.8) 23 (5.5) 12 (11.9) 4 (12.9) 8 (14.3) < 0.05

Lipid-lowering 123 (20.3) 67 (16.1) 19 (18.8) 6 (19.4) 31 (55.4) < 0.01

High blood pressure 180 (29.8) 91 (21.8) 37 (36.6) 15 (48.4) 37 (66.1) < 0.01

6. Diet quality score 
(standardized), median 
(IQR)e

 − 0.07 (− 0.70 to 0.70)  − 0.06 (− 0.68 to 0.85)  − 0.37 (− 0.99 to 0.39)  − 0.62 (− 0.99 to 0.16)  − 0.37 (− 0.84 to 0.24) < 0.01
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diversity or taxa abundance (Additional file 1: Table S4 
and Additional file 1: Table S2c, Model 5).

Diabetes duration and gut microbiota diversity 
and composition
Compared those with normoglycemic or prediabetes 
levels, we found duration (as continuous with 0 includ-
ing normal and prediabetes) with the disease was nega-
tively associated with both α diversity measures (βs [95% 
CIs] =  − 0.03 [− 0.05, − 0.005] and − 0.04 [− 0.06, − 0.02] 
for Shannon index and richness, respectively) (Table  2, 
Model 4), which was strongest for the comparison of nor-
moglycemic/prediabetes group compared to those with 
diabetes ≥ 5 yrs (Additional file 1: Table S4). The associa-
tion remained statistically significant after adjustment for 
SBP, DBP, and the use of antihypertensive and diabetes 
medications (Additional file 1: Table S3). PERMANOVA 
test showed differences in β diversity across diabetes 
duration groups (Fig. 1C).

After multivariable and FDR adjustment, we observed 
22 genera were significantly associated (including two 
positive associations) with diabetes duration (Fig.  2C, 
M4). This finding survived adjustment for SBP, DBP, and 
antihypertensive medication (Additional file 1: Table S2b, 
Model 4 and 5), but was attenuated to not significant 
after further adjusting for diabetes medication use (Addi-
tional file 1: Table S2b, Model 6).

Discussion
In this community-based study of middle-aged Black and 
White Americans, our findings indicate significant asso-
ciations of diabetes duration and diabetes stages with 
microbial diversity measures, but in several analyses, 
conclusions were sensitive to adjustment for socio-demo-
graphics, health behaviors, clinical risk factors and use of 
diabetes-regulating medications. Compared to the nor-
moglycemic group, we found insulin resistance and those 
with T2D had less unique genus of the gut microbiome 
(alpha diversity) and a different gut microbial composi-
tion (beta diversity), although the results of alpha diver-
sity and HOMA-IR were attenuated with adjustment for 
covariates. We also found a lower abundance of butyrate-
producing gut bacteria in T2D with longer duration, par-
ticularly in those who were receiving diabetes treatment, 
compared with the normoglycemic group.

Previous community-based studies have shown that 
gut microbiota diversity was associated with diabetes [11, 
12]. Similar to our study, Wu et al. found significant dif-
ferences in β diversity in pre-diabetes or newly diagnosed 
T2D (assuming diabetes-treatment-naïve in the study), 
compared with the normal glycemic group [11]. Our 
genera-specific results are generally consistent with find-
ings from animal models and human studies [2, 5, 11, 12]. 
However, our results might not be directly comparable to 
previously published human studies due to the research 
design (i.e., case–control vs. cohort or cross-sectional, 

Table 2  Multivariable-adjusted associations of α diversity measures with insulin resistance, diabetes duration, and stages of diabetes

Data source: The Coronary Artery Risk Development in Young Adults (CARDIA), 1985–2016

HOMA-IR and diabetes duration were treated as continuous variables

Model 1adjusted for sequencing run. Model 2 additionally adjusted for age, sex, race, field center, and education. Model 3 additionally adjusted for physical activity, 
smoking status, alcohol use, and diet quality score. In Model 4, medication use, such as proton pump inhibitor and lipid-lowering, was added

HOMA-IR, Homeostatic Model Assessment for Insulin Resistance

*Significance based on p-value < 0.05

HOMA-IR Diabetes duration Stages of diabetes (reference: normal, n = 417)

Pre-diabetes Diabetes without 
treatment

Diabetes with treatment

(n = 604) (n = 605) (n = 101) (n = 31) (n = 56)

β 95% CI β 95% CI β 95% CI β 95% CI β 95% CI

Shannon index

Model 1  − 0.02  − 0.05, 0.01  − 0.02*  − 0.05, − 0.003  − 0.18  − 0.40, 0.04  − 0.18  − 0.54, 0.19  − 0.28*  − 0.56, − 0.003

Model 2  − 0.02  − 0.05, 0.02  − 0.03*  − 0.05, − 0.004  − 0.18  − 0.40, 0.05  − 0.16  − 0.52, 0.21  − 0.28  − 0.56, 0.01

Model 3 0.003  − 0.04, 0.04  − 0.02*  − 0.05, − 0.0004  − 0.13  − 0.35, 0.10  − 0.04  − 0.42, 0.33  − 0.23  − 0.52, 0.07

Model 4  − 0.003  − 0.05, 0.04  − 0.03*  − 0.05, − 0.005  − 0.15  − 0.37, 0.08  − 0.06  − 0.44, 0.31  − 0.30*  − 0.60, − 0.01

Richness

Model 1  − 0.04*  − 0.08, − 0.01  − 0.04*  − 0.06, − 0.02  − 0.26*  − 0.48, − 0.05  − 0.43*  − 0.79, − 0.07  − 0.51*  − 0.78, − 0.23

Model 2  − 0.04*  − 0.08, − 0.01  − 0.04*  − 0.07, − 0.02  − 0.28*  − 0.50, − 0.07  − 0.42*  − 0.78, − 0.06  − 0.53*  − 0.82, − 0.25

Model 3  − 0.004  − 0.05, 0.04  − 0.04*  − 0.06, − 0.02  − 0.21  − 0.43, 0.01  − 0.26  − 0.62, 0.11  − 0.44*  − 0.72, − 0.15

Model 4  − 0.01  − 0.05, 0.03  − 0.04*  − 0.06, − 0.02  − 0.22  − 0.44, 0.004  − 0.27  − 0.63, 0.10  − 0.50*  − 0.79, − 0.20
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heterogeneity of race/ethnicity groups and health status), 
sample size of individuals with diabetes, the inclusion of 
persons with diabetes who were at different stages in the 
disease, and the inconsistent adjustment for potential 
confounders [2, 11, 12].

Our findings suggest there is a decrease in abundance 
of butyrate-producing gut bacteria among those with 
T2D+ (Agathobacter [28], Faecalibacterium [29], and 
Romboutsia [12]), but not between those with pre-dia-
betes and T2D−after adjusting for behavioral factors. 
When FDR was set to < 0.2, a few genera showed a lower 

Fig. 1  Principal coordinates analysis (PCoA) biplots of associations of microbial dissimilarity with insulin resistance (less than or equal to median, 
above median), diabetes duration (Normal/pre-diabetes, newly diagnosed diabetes [< 5 years, median], and established diabetes [≥ 5 years]), 
and stages of diabetes. A Homeostatic Model Assessment for Insulin Resistance (HOMA-IR); B Stages of diabetes (4 stages including normal, 
pre-diabetes, diabetes without treatment, and diabetes with treatment); C Diabetes duration. PCoA, principal coordinates analysis; MDS, 
multidimensional scaling. The circles and error bars indicate the centroid and standard errors. The log-transformed genera counts were used for the 
analyses and visualizations. P-values for the comparison of gut microbiota composition were estimated from permutation multivariate analysis of 
variance (PERMANOVA) with 1000 permutations. All p-value were less than 0.05 for all diabetes-related characteristics in the multivariable-adjusted 
models. Data source: The Coronary Artery Risk Development in Young Adults (CARDIA), 1985–2016
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abundance in pre-diabetes (Eggerthellaceae [DNF00809], 
not butyrate-producing gut bacteria) or diabetes without 
treatment (Butyricicoccus [30] and Colidextribacter [31]) 
relative to normoglycemia. Butyrate, is a short‐chain fatty 
acid that has been suggested to induce beneficial meta-
bolic effects in both mice and humans [32–34], and lower 
levels of butyrate-producing bacteria have been linked to 
diabetes [11, 12]. It should be noted that the use of diabe-
tes medication is associated with diabetes duration. In a 
sensitivity analysis, we found that adjusting for diabetes 
duration in diabetes stages model attenuated most of the 
significant association. Only Romboutsia and Escherichia 
remained statistically significant with diabetes + after 
adjustment for diabetes duration (Additional file  1: 
Table  S2e, M6). Likewise, no genera remained statisti-
cally significant with diabetes duration after adjustment 
for diabetes treatment (Additional file 1: Table S2b, M6).

Previous studies have reported inconsistent results on 
the effect of diabetes medication on microbiota [2]. Tak-
ing antihyperglycemic medications improves human 
physiology, which may have potential positive effects 
on gut microbiota [2]. However, metformin has also 
been shown to adversely alter gut microbiome com-
position [9, 35], which is consistent with our finding of 
relatively higher abundance Escherichia among T2D+. 
We also found that two butyrate-producing bacteria 
(i.e., Clostridium sensu stricto 1 [36] and Lachnospria 
[37]) showed lower abundance in T2D+, compared to 
T2D− (Additional file 1: Fig. S3). In addition, taking anti-
hyperglycemic medications attenuated the associations 
of genus abundance with insulin resistance (Anaerostipes, 
Lachnospiraceae [UCG.004], and Veillonella) and diabe-
tes duration (Candidatus Soleaferrea, Colidextribacter, 
Lachnospiraceae [NK4A136 group], Oscillibacter, and 
Romboutsia) to non-significant. Anti-hypertension use 
also modulated diabetes duration results. This suggests 
that taking blood pressure or glycemic control medica-
tions may change the gut microbiota abundance induced 
by hyperglycemia [2, 16].

Strengths
Our study has several strengths. CARDIA has collected 
objective assessment of diabetes-related characteristics 

variables and extensive covariates over 30  years using 
standardized protocols and validated methods. There-
fore, we had an extensive medical history and could 
examine the impact of different sets of covariates on the 
gut microbiota with respect to these diabetes-related 
characteristics. In addition, a population-based, socio-
demographically-diverse cohort strongly supports our 
findings’ external generalizability compared to clinical 
studies of patients. However, it should be noted that our 
sample was middle-aged and gut microbiota will change 
with age.

Limitations
Even though the diabetes-related characteristics were 
measured over time, gut microbiota measures were based 
on a single stool sample collected at Y30, the latest avail-
able data in CARDIA. Therefore, we cannot study transi-
tions from pre-diabetes to clinical diabetes in relation to 
shifts in microbiome, which would be an important fol-
low-up to our findings. Cases of diabetes may be missed 
because we did not have available HbA1c or OGTT for 
the total sample. However, the diabetes status was ascer-
tained by participant’s clinical measures and disease 
history over a 30-year follow-up period, which may mini-
mize the misidentification issue. Likewise, we defined 
participants as having pre-diabetes who met ADA crite-
ria at both the Y25 and the Y30 exams (Additional file 1: 
Fig.  S1). This definition of pre-diabetes is more stable 
than one measure which does not account for the known 
probability of pre-diabetes reversing to normal glucose 
regulation [38]. Our cohort represents a relatively young 
population (mean age: 55.2 at the time of stool sam-
ple collected) in terms of T2D development [39]. Given 
the prevalence of diabetes increases with age, we will 
have more clinically heterogeneous diabetes patients 
and power to detect the associations between diabetes 
characteristics and microbiome composition in the next 
follow-up. We used 16S ribosomal RNA sequencing to 
evaluate changes in the gut microbiota composition and 
taxonomic differences at the genus level. Future analysis 
based on whole-metagenomics sequencing would enable 
the assessment of association of functional profiles of gut 
microbiome and taxonomic association at lower levels.

(See figure on next page.)
Fig. 2  Heat maps show the associations of 107 gut microbial genus (log-transformed counts) with insulin resistance, stages of diabetes, and 
diabetes duration. A Homeostatic Model Assessment for Insulin Resistance (continuous); B Stages of diabetes (4 stages including normal, 
pre-diabetes, diabetes without treatment, and diabetes with treatment); C Diabetes duration (continuous). Data source: The Coronary Artery 
Risk Development in Young Adults (CARDIA), 1985–2016. Only genus with significant association (q-value < 0.1) in at least one of the 4 
multivariable-adjusted linear regression models were displayed. The log-transformed genera counts were used for the analyses. Positive beta 
coefficients indicate greater abundance and vice versa. The q-value was calculated using the Benjamini–Hochberg method. Model 1 adjusted for 
sequencing run. Model 2 additionally adjusted for age, sex, race, field center, and education. Model 3 additionally adjusted for physical activity, 
smoking status, alcohol use, and diet quality score. In Model 4, medication use, such as proton pump inhibitor and lipid-lowering, was added
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Fig. 2  (See legend on previous page.)
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Conclusions
In summary, our findings from a Black and White mid-
dle-aged population-based cohort showed significantly 
lower microbial diversity and butyrate-producing gen-
era in those with treated diabetes and those with longer 
diabetes duration than in the normal glucose group. 
Our data are consistent with the hypothesis that the gut 
microbiome is linked to insulin resistance as well as an 
individual’s history of diabetes. However, the results 
are sensitive to lifestyle and risk factor levels, suggest-
ing the gut microbiota is potentially modifiable through 
health behaviors. Our study also highlights the need to 
take health behavior differences into account when com-
paring studies based on diverse samples. We also show 
associations are modified by the use of medications, 
which is a long-recognized modifier of the gut micro-
biome [2]. Understanding the role of gut microbiota in 
glucose regulation may provide new strategies to reduce 
the burden of diabetes. Longitudinal studies are required 
to assess temporality of gut microbiota changes and the 
subsequent effect on glucose metabolism. Future studies 
of the microbiome and diabetes should consider the dis-
ease duration, and differences in associations within and 
across demographic sub-groups.
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