Skip to main content
. 2022 Dec 21;15(1):42. doi: 10.3390/cancers15010042

Table 1.

Studiesincluded in the systematic review, divided into the four previously defined categories, along with their main parameters. Mag.: magnification level. n/a: not available. #: Number. xAI: studies that provide elements for explainable AI, e.g., GradCAMs or attention mechanism.

Study Year Studied Structures Mag. # WSIs Patch Size Pre-Processing DL Method GPU Used # Sources Metadata xAI
Comparison vs. pathologists Ba et al. [42] 2021 Tumor 40× 781 256 × 256 Image quality review CNN and random forest n/a 2 no yes
Bao et al. [36] 2022 Tumor 40× 981 224 × 224 Random patch selection, structure-preserving color normalization ResNet-152 NVIDIA GTX 2080Ti 3 no no
Brinker et al. [43] 2022 Tumor n/a 100 n/a n/a ResNeXt50 n/a n/a no yes
Hekler et al. [14,15] 2019 Tumor 10× 695 n/a n/a ResNet50 n/a 1 no no
Phillips et al. [27] 2019 Tumor, dermis, and epidermis 40× 50 512 × 512 Subtraction Modified FCN NVIDIA GTX 1080 Ti 10 † no yes
Sturm et al. [16] 2022 Mitosis 20× 102 n/a n/a n/a n/a 1 yes no
Wang et al. [37] 2020 Tumor 20× 155 256 × 256 Random cropping to 224 × 224, data enhancement, and augmentation VGG16 n/a 2 no yes
Xie et al. [28] 2021 Tumor, dermis, and epidermis 20× 701 224 × 224 Discard blank patches (Otsu) ResNet50 n/a 3 † yes no
Xie et al. [17] 2021 Tumor n/a 841 256 × 256 Discard blank patches (Otsu) ResNet50 NVIDIA TITAN RTX 1 no yes
Diagnosis Del Amor et al. [19] 2021 Tumor 10× 51 512 × 512 Discard blank patches (Otsu) VGG16 with attention NVIDIA DGX A100 1 no yes
Del Amor et al. [18] 2022 Tumor 5×, 10×, 20× 43 512 × 512 Discard blank patches and with less than 20% of tissue (Otsu) ResNet18 with late fusion of multiresolution feature maps NVIDIA GP102 TITAN Xp 1 no yes
Hart el al. [34] 2019 Tumor 40× 300 299 × 299 n/a InceptionV3 4 NVIDIA GeForce GTX 1080 n/a no yes
Höhn et al. [38] 2021 Tumor n/a 431 512 × 512 Remove patches with more than 50% of background, random selection of 100 tiles per slide ResNeXt50 with fusion model to combine patient data and image features NVIDIA GeForce GTX 745 2 yes yes
Li et al. [29] 2021 Tumor, dermis, and epidermis 20× 701 224 × 224 Discard blank patches (Otsu) ResNet50 n/a 2 † yes yes
Van Zon et al. [20] 2020 Tumor 40× 563 256 × 256 Data augmentation U-Net NVIDIA 2080 1 no no
Xie et al. [21] 2021 Tumor 40× 312 500 × 500 Filter out background tiles Transfer learning vs fully trained: InceptionV3, ResNet50, MobileNet n/a 1 no no
Prognosis Brinker et al. [13] 2021 Tumor n/a 415 256 × 256 n/a ResNeXt50 n/a 3 yes no
Kim et al. [30] 2022 Tumor, inflammatory cells, and other 20× 305 299 × 299 n/a Inception v3 with fivefold cross-validation n/a 2 † yes no
Kulkarni et al. [40] 2020 Tumor, inflammatory cells, and other 40× n/a 500 × 500 Downsample to 100 × 100, nuclear segmentation with watershed cell detection n/a n/a 2 yes no
Moore et al. [41] 2021 Tumor, inflammatory cells, and other 40×, 20× n/a 100 × 100 n/a QuIP TIL CNN [44] NVIDIA GP102GL [Quadro P6000] 2 yes no
Zormpas-Petridis et al. [31] 2019 Tumor, inflammatory cells, and other 20×, 5×, 1.25× 105 2000 × 2000 (20× WSIs) n/a Spatially constrained CNN with spatial regression, neighboring ensemble with softmax NVIDIA Tesla P100-PCIE-16GB 1 † yes no
ROI/histological features Alheejawi et al. [22] 2021 Tumor, inflammatory cells, and epidermis 40× 4 960 × 960 Divide patches into 64 × 64 blocks ResNet50 NVIDIA GeForce GTX 745 1 no no
De Logu et al. [39] 2020 Tumor and healthy tissues 20× 100 299 × 299 Data augmentation, discard patches with more than 50% background Inception-ResNet-v2 n/a 3 no yes
Kucharski et al. [23] 2020 Tumor 10× 70 128 × 128 Data augmentation, overlapping only for minority class to balance data set Autoencoders n/a 1 no yes
Liu et al. [24] 2021 Tumor 10× 227 ROIs ‡ 1000 × 1000 Downscale magnification to 5× Mask R-CNN 4 NVIDIA GeForce GTX 1080 1 no no
Nofallah et al. [25] 2021 Mitosis 40× 22 101 × 101 Data augmentation ESPNet, DenseNet, ResNet, and ShuffleNet NVIDIA GeForce GTX 1080 1 no no
Zhang et al. [26] 2021 Tumor n/a 30 1024 × 1024 Data augmentation, color analysis for tissue-contained patch selection, normalization of patches to a uniform size, resize patches to 512 × 512 CNN, feature fusion NVIDIA RTX 2080-12G 1 no no

† At least one of the source institutions is open source, i.e., TCGA or NCI. ‡ Images are ROIs extracted from initial WSIs.