
Citation: Nolano, A.; Medugno, A.;

Trombetti, S.; Liccardo, R.; De Rosa,

M.; Izzo, P.; Duraturo, F. Hereditary

Colorectal Cancer: State of the Art in

Lynch Syndrome. Cancers 2023, 15, 75.

https://doi.org/10.3390/

cancers15010075

Academic Editor:

Yutaka Midorikawa

Received: 22 November 2022

Revised: 13 December 2022

Accepted: 18 December 2022

Published: 23 December 2022

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

cancers

Review

Hereditary Colorectal Cancer: State of the Art in Lynch
Syndrome
Antonio Nolano 1, Alessia Medugno 2 , Silvia Trombetti 2,3 , Raffaella Liccardo 2 , Marina De Rosa 1,2 ,
Paola Izzo 1,2 and Francesca Duraturo 1,2,*

1 CEINGE Advanced Biotechnologies Scarl, “Francesco Salvatore” Napoli, Department of Molecular Medicine
and Medical Biotechnologies, University of Naples Federico II, 80131 Naples, Italy

2 Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II,
80131 Naples, Italy

3 Department of Veterinary Medicine and Animal Productions, University of Naples Federico II,
80137 Naples, Italy

* Correspondence: francesca.duraturo@unina.it; Tel.: +39-0817463136

Simple Summary: Lynch syndrome is the most common form of hereditary colorectal cancer asso-
ciate to variants in Mismatch Repair (MMR) genes. Unfortunately, a large amount of variants identified
in these genes remain of uncertain significance. Therefore, many individuals with a clinical suspicion
of LS receive a diagnosis of Lynch-like syndrome. This review summarizes the main aspects of Lynch
syndrome and recent advances in the molecular diagnosis and, in particular the main factors that
determine the loss of expression of MMR genes.

Abstract: Hereditary non-polyposis colorectal cancer is also known as Lynch syndrome. Lynch
syndrome is associated with pathogenetic variants in one of the mismatch repair (MMR) genes. In
addition to colorectal cancer, the inefficiency of the MMR system leads to a greater predisposition
to cancer of the endometrium and other cancers of the abdominal sphere. Molecular diagnosis
is performed to identify pathogenetic variants in MMR genes. However, for many patients with
clinically suspected Lynch syndrome, it is not possible to identify a pathogenic variant in MMR
genes. Molecular diagnosis is essential for referring patients to specific surveillance to prevent the
development of tumors related to Lynch syndrome. This review summarizes the main aspects of
Lynch syndrome and recent advances in the field and, in particular, emphasizes the factors that can
lead to the loss of expression of MMR genes.

Keywords: Lynch syndrome; MMR genes; VUS MMR genes; MSI-status; molecular diagnosis;
Lynch-like syndrome

1. Introduction

Lynch syndrome (LS) is the most common form of hereditary colorectal cancer, with
an incidence of between 2% and 3% of all colorectal cancers (CRCs) [1], followed by familial
adenomatous polyposis (FAP), which accounts for less than 1% of total CRCs [2] and other
inherited syndromes, such as hamartomatous polyposis [3], Table 1. LS is also known as
hereditary non-polyposis colorectal cancer (HNPCC); however, colorectal cancer develops
due to a malignant transformation of adenomatous polyps, but they are not numerous and
widespread as instead observed in FAP, which is characterized by 100–1000 polyps [4].

Although the incidence of early-onset colorectal cancer, which occurs in individuals
<50 years of age, has been increasing worldwide and particularly in high-income coun-
tries [5], LS patients generally develop colorectal cancer at an early age (on average about
45 years), with a predominance of 70% in the proximal/right colon [6].
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Table 1. Hereditary syndromes with known genetic predisposition to CRC.

Syndrome Genes Hereditary Incidence Lifetime crc Risk

Lynch Syndrome
LS

MLH1, MSH2, MSH6,
PMS2, EPCAM AD 3–5% 15–90%

Familial
Adenomatous

Polyposis
FAP

APC AD 1%
Classic forms 100%;

Attenuated forms until
70%

Mutyh-Associated Polyposis
MAP MUTYH AR 1% 43–99%

Peutz-jeghers
Syndrome

PJS
STK11 AD <1% 39%

Juvenile
Polyposis

JPS
SMAD4, BMPR1A AD <1% 39–69%

Affected patients also present with synchronous tumors (multiple malignant tumors)
and metachronous tumors (the appearance of a second tumor in one or more colorectal
segments in patients who have already undergone resection surgery for cancer).

The precursor lesion of CRC in individuals with LS is an adenoma, which occasionally
may be flat rather than raised or polypoid. Compared to patients with attenuated polyposis
syndromes, patients with LS develop fewer colorectal adenomas by 50 years of age (usually
less than three neoplasms) [6]. Colorectal adenomas in patients with LS exhibit accelerated
carcinogenesis, leading to transition to carcinoma within 2 to 3 years, in contrast to the 8 to
10 years this process may take in the general population [7].

In addition to CRC, patients with LS have a significantly increased risk for a wide
variety of cancers in other body sites, such as the endometrium, ovary, stomach, small
intestine, hepatobiliary tract, pancreas, urinary tract, prostate, brain, and skin [7,8].

CRC associated with LS has clinical features distinct from those of sporadic CRC,
often showing a combination of the presence of prominent tumor-infiltrating lymphocytes
with marked lymphocytic inflammation that resembles the “Crohn’s-like reaction,” poor
differentiation, and presence of mucinous and/or ring-like cells [9,10].

Although fewer studies have been published on non-colorectal LS-associated cancers,
LS-associated endometrial cancers may be seen more frequently than their sporadic coun-
terparts in the lower uterine segment; the majority are of the endometrioid type and often
show poor differentiation, with tumor-infiltrating lymphocytes [11].

A systematic literature search was conducted in the literature to identify the studies
describing clinicopathologic characteristics, functions of MMR system, variants in MMR
genes and genotype–phenotype correlations, MMR protein immunohistochemistry and/or
MSI, genetic testing in Lynch syndrome cancer patients, and the studies on Lynch-like
syndromes. In this manuscript, the information from both original articles and reviews
were reported.

2. MMR Genes

LS is inherited in an autosomal dominant fashion and develops due to a germline
mutation in one allele of one of the DNA MMR genes.

In the human mismatch repair (MMR) system, MSH2, MSH3, and MSH6 proteins
associate in two heterodimeric complexes as MSH2-MSH6 (MutSα) and MSH2-MSH3
(MutSβ), which is homologous to the bacterial MutS protein [12], Table 2.
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Table 2. MMR proteins and their functions.

Bacterial MMR System Yeast MMR System Human MMR System Functions

MutS

MutSα
(MSH2/MSH6)

MutSβ
(MSH2/MSH3)

MutSα
(MSH2/MSH6)

MutSβ
(MSH2/MSH3)

Mismatch
recognition

MUTL

MutLα
(MLH1/PMS1)

MutLβ
(MLH1/MLH2)

MutLγ
(MLH1/MLH3)

MutLα
(MLH1/PMS2)

MutLβ
(MLH1/PMS1)

MutLγ
(MLH1/MLH3)

Match making

MutH
PCNA PCNA

Strand incisionRFC RFC
MutLα

(MLH1/PMS1)
MutLγ

(MLH1/MLH3)

MutLα
(MLH1/PMS2)

MutLγ
(MLH1/MLH3)

RecJ

EXO1 EXO1
Strand excision
(exonuclease)

ExoI
ExoVII
ExoX

UvrD - - Strand excision
(helicase)

DNA
polymerase III DNA polymerase δ DNA polymerase δ Repair synthesis

On the one hand, the first complex is able to recognize and bind DNA at the site
of a mismatch due to substitution, insertion, or deletion of a single base. On the other
hand, the second complex is responsible for the identification of insertions or deletions of a
few nucleotides (2–4 bases). MSH2 protein is essential for the functional constitution of
both complexes.

The heteroduplex formed by MLH1 and PMS2 (MutLα) or by MLH1 and MLH3
(MutLγ) interacts with the MutSα or MutSβ complex and stimulates the excision and
resynthesis of DNA [13]. As already pointed out for the role of MSH2 protein within the
MutSα–MutSβ complex, MLH1 protein is essential for the functional constitution of the
MutLα and MutLγ complexes.

As a result, the MutLα–MutLγ complex coordinates the reciprocal action between
the “mismatch” recognition complex and the other proteins necessary for the excision and
resynthesis of the wrong strand. These additional proteins include DNA polymerases δ
and ε (Polδ and Polε), the proliferating cell nuclear antigen factor (PCNA), an exonuclease
(EXO1), and a replication factor C (RFC), Table 2.

The ATPase activity of the MutSα complex is important for the interaction with the
unpaired DNA and the initiation of repair activity. MutSα binding stimulates the hydrolysis
of ATP, leading to a conformational change that consequently triggers the recruitment of the
MutLα complex. The tetrameric complex moving along the DNA looks for the mismatch
present on the newly synthesized strand, which in turn activates the PCNA factor and
RFC. MutLα possesses intrinsic ATP-mediated endonuclease activity, which is activated by
PCNA. This activation causes an incision in the newly synthesized strand containing the
error. This is followed by the recruitment of EXO1, which removes the newly synthesized
strand containing the pairing error, in order that the strand can be synthesized again by
DNA polymerase δ, while ligase 1 joins the previously created ends [14,15], Figure 1.
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3. Other Functions of MMR Genes

In addition to fulfilling their role in repairing DNA damage, MMR proteins perform other
highly relevant functions in carcinogenesis [13]. As shown in Figure 2, these roles include:

• prevention of reparative recombination (gene conversion) between non-identical se-
quences [16];

• promotion of meiotic cross-over, which involves the MLH1, PMS2, and MLH3 proteins
in particular [16,17];

• protection against intergenerational instability resulting from the phenomenon of
trinucleotide repeat expansion, which is the basis of the pathogenesis of various
neurodegenerative diseases [18];

• the immunoglobulin (Ig) differentiation process based on “somatic hypermutation”,
regulated by the MutSα–MutLα complex in combination with two other proteins, AID
(activation-induced cytidine deaminase) and Polµ (error-prone DNA polymerase) [19];

• modulation of microRNA (miRNA) biogenesis through the interaction of MMR pro-
teins with the microprocessor complex; in particular, MutLα specifically binds to pri-
miRNAs and the Drosha–DGCR8 complex to stimulate the processing of pri-miRNAs
into pre-miRNAs in a manner dependent on the ATPase activity of MutLα [20];

• reporting of DNA damage caused by exogenous carcinogens (heterocyclic amines,
oxidizing agents, and UV radiation) obtained through a synergistic action between
the homologous proteins of p53 (p53, p63, and p73) and the MutSα–MutLα complex.
Moreover, in response to exogenous damage, MLH1 interacts with the MRE11 protein,
a component of the BRCA1-associated surveillance complex (BASC), and regulates
the cell cycle and the apoptotic pathway; indeed, there is a correlation between the
MMR system and the G2/M phase of the cell cycle [21].

In particular, during carcinogenesis, the apoptotic mechanism is deregulated and thus
the cells tend to escape the programmed death process and to bypass any cellular damage.
Therefore, cells cannot fulfill their normal growth function if a mutation is present in some
genes related to tumor development, and the MMR system may be representative of only
this scenario. Indeed, several studies show how the MMR system plays an important role in
the apoptotic machinery and in the activation of cell cycle check points [21–23]. Among the
MMR genes, MLH1 and MSH2 are, above all, the most studied in relation to the anomalies
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found in apoptotic processes. In particular, the MSH2 gene plays a key role in genomic
stability. In addition to its DNA damage repair function, it acts as a “sensor” for DNA
replication errors caused by DNA base analogs and binds to various damage-induced DNA
adducts to trigger cell cycle arrest or apoptosis [13,21–23].
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The combination of all of these functions makes MMR proteins extremely important
in maintaining the integrity of the genetic material, in the regulation of the cell cycle, and in
the development of an effective immune system. Consequently, when the functionality of
the MMR is lost or defective, there is a decrease in apoptosis and an increase in cell survival
and mutagenesis induced by the damage, which leads to a selective growth of the defective
cells with a parallel increase in tumor susceptibility.

4. The Molecular Alterations of Lynch Syndrome

Patients with LS have a germline mutation in one of the MMR genes. Each MMR
protein encoded by the corresponding gene has a unique function in repairing replication
errors. Therefore, MMR proteins possess unique functional domains. When mutations
occur in the site corresponding to the functional domain, the DNA repair function can be
impaired [24,25].

The International Society for Gastrointestinal Hereditary Cancer (InSiGHT) was the
first group of experts to define the pathogenicity of gene variants according to an agreed set
of criteria based on Bayesian probability, using the five-level classification system. In this
system, the variants of Class 5 are pathogenic and Class 4 are possibly pathogenic; in Class 3
the variants are of uncertain significance (VUS), and Classes 2 and 1 variants are identified
as probably benign and benign, respectively [26,27]. In the InSiGHT database, (www.
insightdatabases.org, 01 April 2022) which contains more than 3000 variants associated
with MMR genes, 82% of the listed variants of Classes 4 and 5 involve MLH1 and MSH2;
13% involve MSH6 and 5% PMS2 [28,29]. In contrast, with regard to other genes, few
pathogenic mutations have been found in MLH3, while only a heterozygous variant in the
MSH3 gene has been associated with LS [30,31].

The percentage distribution above can be explained by the fact that MLH1 and MSH2
are the most important predisposing genes for LS. Their protein products are mandatory

www.insightdatabases.org
www.insightdatabases.org
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components in all types of heterodimers of the repair system [12]. Most mutations that
fall into MLH1, MSH2, PMS2, and MSH6 are truncating, predominantly nonsense, or
frameshift mutations [32]. The proportion of missense mutations leading to single amino
acid substitutions is between 30% and 60% for all four genes [33]. About 60% are variants
that fall into the regulatory regions of splicing, which is potentially altered and causes a
truncating effect in the protein [34]. Among the variants cataloged as pathogenic, there is
every type of alteration, including nonsense, missense, or frameshift mutations, mutations
that alter the splicing sites, insertions, or deletions of one or a few exons, and large rear-
rangements, of which the largest found to date has been a cytogenetically visible 10 Mb
inversion affecting MSH2 [35,36]. Non-synonymous missense changes make up about 68%
of Class 3 variants, i.e., VUS [23]. The share of VUS is 31% for all variant showed for MLH1,
28% for MSH2, 47% for MSH6, and 26% for PMS2 [37], Figure 3.
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5. Variants of Uncertain Significance

Although the variants that determine the production of a truncated protein pre-
dominate among the alterations that cause a hereditary pathology at the germinal level,
sequencing analysis has revealed that about 40% of patients who are probable carriers of
an inherited tumor syndrome have a variant of uncertain significance (VUS) [38]. These
variants typically comprise a single amino acid substitution that a priori cannot be classified
as pathogenetic or benign [39].

Therefore, the detection of a VUS suggests a critical scenario since, in the pathogenicity–
benignity spectrum, it is not known exactly where this type of variant can be placed. In
addition, the status of a VUS carrier does not stratify the members of a family into those at
higher or lower risk [35].

Therefore, the influence of these variants on cancer development is a controversial
topic [40,41]. The key analytical problem is that the effects of a VUS must not be categorically
“all or nothing”. Regardless of the type of method used for their detection, it is difficult to
determine what proportional reduction in normal function, due to an abnormal protein, is
necessary to confer an increased and clinically relevant tumor risk [38], Table 3.

However, even a synonymous nucleotide substitution, which normally does not
cause an alteration in the production of the protein, can be pathogenetic if, for example, it
impairs splicing [41]. Furthermore, two or more variants (of the same gene or in different
genes) may coexist and even co-segregate with the disease phenotype in a single family,
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and this could be compatible with different interpretations, including a real correlated
predisposition.

Table 3. Strategies used to clarify the clinical role of VUS.

Direct Genetic Evidence Indirect Genetic Evidence

Co-segregation with the disease In silico predictions based on the position
and nature of the amminoacid change

Co-occurrence with known pathogenic mutations In vitro functional assays

Comparison of allele frequency in cases
and controls

Biochemical assays for protein
characterization

LOH and methylation analysis in vivo

In some cases, a VUS can make a more concrete contribution to cancer risk than classic
pathogenetic Mendelian variants. In addition, the simultaneous presence of a VUS and
some polymorphisms in different genes that are implicated in tumor predisposition, while
behaving as low-risk alleles, could cooperatively contribute to an increased risk of cancer
development [31].

Therefore, recent studies have shown that a significant percentage of hereditary sus-
ceptibility related to the most common diseases may be the result of an additive effect of a
series of low frequency variants of different genes. These low risk alleles probably act in a
dominant and independent way, giving each of these a moderate, but detectable, increase
in the relative tumor risk [30,31,42,43].

6. Microsatellite Instability (MSI)

Deficiency of the MMR complex results in a high rate of mutations in repetitive DNA
sequences known as microsatellites. Microsatellites are short 1-6 base DNA motifs that are
repeated and distributed throughout the genome in both coding and non-coding regions.
Due to their repeating structure, microsatellites are particularly prone to replication errors
which are normally fixed by the MMR system. The loss of function of one of the MMR
proteins causes an accumulation of errors in the microsatellites, with insertions or deletions
of bases, resulting in genetic instability [44].

Microsatellite instability (MSI) can have an oncogenic potential when it occurs in the
coding regions of genes involved in various crucial cellular functions and pathways [45].
More than 30 genes have mutations that occur in microsatellite repeats in MMR-deficient
tumors and these genes are implicated in several cellular functions and pathways. Examples
are the DNA repair proteins MRE11A and RAD50, the growth factors TGFBRII and IGFRII,
the pro-apoptotic factor BAX, the same MMR genes MSH3 and MSH6, and the histone
modifier HD2 [46]. Currently, for the detection of microsatellite instability (MSI), a panel
composed of five mononucleotide microsatellites is used. Tumors showing instability for at
least two of these repeats are classified with high instability (MSI-H); those with instability
in a repeat are classified with low instability (MSI-L), while tumors without alteration
are classified as stable (MSS). In addition to the evaluation of the state of microsatellite
instability, the analysis of the expression of MMR proteins (MLH1, MSH2, MSH6, PMS2)
by immunohistochemistry (IHC) permits the diagnosis of their possible lack of expression
and enables the identification of patients with suspected Lynch syndrome (LS).

Analysis using IHC represents a specific (100%) and sensitive (92.3%) screening tool for
identifying MSI-H tumors [47,48]. Therefore, through IHC and/or MSI testing, it is possible
to direct people with suspected LS toward the molecular test used to search for mutations
in the MMR genes and to confirm the clinical suspicion of LS in patients, as well as to
conduct a pre-symptomatic molecular diagnosis in the context of at-risk family members.

The MSI phenotype is found in approximately 90% of Lynch tumors and only in 15%
of sporadic colorectal cancers (CRCs) [48]. In the latter case, the unstable condition is
mainly caused by somatic hypermethylation of the promoter of the MLH1 gene [45].
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7. K-Endometrium in LS and Loss of MMR Proteins

Endometrial cancer associated with LS is the most common extracolic tumor form in
the context of tumors that fall within the Lynch spectrum. The likelihood of endometrial
cancer development as the first neoplastic manifestation is about 40–60% in women with
LS [49]. It is defined as a “sentinel cancer” associated with LS [50]. Therefore, this definition
identifies the risk of the subsequent development of other cancers associated with LS
and thus the need for early screening and preventive strategies to decrease cancer-related
morbidity and mortality. Recent studies that have identified and deepened the knowledge
regarding the loss of expression of MMR proteins have focused on non-neoplastic colonic
crypts [51,52]. This type of evaluation, linked to the expression of the proteins of the
MMR system, was recently conducted in a cohort of patients with endometrial cancer
and provided a further application useful for the screening of LS, as well as being able
to guarantee a better understanding of the pathogenesis of LS-associated endometrial
cancer [53].

However, literature data on the prevalence and potential significance of MMR defi-
ciency in pre-cancerous endometrial lesions are rather limited. In a small cohort of patients
with LS, loss of expression of MMR proteins, as defined by IHC and/or MSI testing, was
found in areas of endometrial hyperplasia adjacent to endometrial cancer [54–56]. In
one of these studies, a higher frequency of MSI and an earlier mean age of onset of can-
cer were found in carriers of the MSH2 gene mutation than in carriers of mutations in
other MMR genes, suggesting that an MSH2 mutation may indicate a faster rate of tumor
progression [54].

Details concerning the molecular pathogenesis of endometrial carcinoma in LS are
not yet fully known: It is conceivable that non-neoplastic endometrial glands with MMR
deficiency may represent the initial step in endometrial carcinogenesis in patients with LS,
leading to the development of atypical hyperplasia or a direct evolution to carcinoma.

8. Loss of Expression of MMR Genes

Many hypotheses have been proposed concerning additional factors that may result
in a loss of function in the MMR system, alongside better known and more characteristic
alterations of the gene repair pathway.

The mutator phenotype is the result of incorrect functioning of the MMR system.
In addition to the presence of germline mutations, various pathogenetic events, includ-
ing methylation of the MLH1 promoter [57] and reduced histone acetylation [58], lead to
reduced or absent expression of MMR proteins, as well as factors related to the microenvi-
ronment, such as inflammation and hypoxia [59,60].

The maintenance or non-integrity of MMR proteins, including the performance of
their functional role, can also be controlled by miRNAs; namely, non-coding RNAs that
canonically play a role in post-transcriptional regulation of the control of critical biological
processes, including development, differentiation, cell proliferation, and apoptosis [61,62].

For example, it was observed that miR-155 overexpression was present in CRC [63–65]
and appears to be more frequent in MSI than in CRC MSS [66]. These data are consistent
with the hypothesis that miR-155 can regulate the components of the MMR machinery
and, consequently, the mutation rates and MSI. The miR-155 leads to downregulation of
the main heterodimeric proteins of the MMR; namely, MSH2-MSH6 and MLH1-PMS2,
generating a mutator phenotype [67]. It alters both the expression and the stability of the
MMR pathway at somatic level, with a consequent significant increase in mutation rates. In
support of these observations, an inverse correlation has also been found between miR-155
and the expression of MMR proteins in CRC cells.

In general, alterations in the miRNAs that regulate MMR can be caused by mutations
in the target sequences, as demonstrated by the presence of acquired mutations in the
3’UTR of the MLH1 gene, for miR-422a [20], or mutations in the 3’UTR of the MSH2 gene,
for miR-137 [68].
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Therefore, it should always be considered that variants in some gene regions, such as
in the 3’UTR, could compromise the binding of putative transcription factors or miRNAs
involved in the regulation of gene expression, Figure 4.
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9. Genotype–Phenotype Correlations

The risk of cancer development during life is significantly higher in carriers of MSH2
and MLH1 mutations than in carriers of MSH6 or PMS2 mutations. The lifetime risk of any
LS-associated cancer up to age 70 varies between 57% and nearly 80% for carriers of MSH2
mutations and between 59% and 65% for carriers of MLH1 mutations [69,70]. For MSH6,
the risk is 24% for men and 40% for women [71] while the risk of cancer development
throughout life varies from 25–32% for carriers of a PMS2 mutation [72].

Among the various cancers that arise in carriers of mutations in MSH2 and MLH1,
the highest risk is clearly related to the onset of CRC over the course of life, followed by
endometrial cancer and other extracolic cancers. Moreover, individuals with alterations
in the MSH2 gene show a higher incidence of other extracolic manifestations (gastric and
renal cancer) than those with mutations in the MLH1 gene [73].

Mutations in the MSH6 gene, for example, appear to cause an “attenuated” form of
hereditary non-polyposis CRC, characterized by a lower penetrance, a higher age of onset
of the disease, and a low degree of microsatellite instability (MSI-L) [29]. Women carrying
MSH6 mutations have a higher risk of endometrial cancer than CRC [74].

Defects in the PMS2 gene also cause a milder phenotype, with distinct characteristics
of tumors caused by mutations in MLH1 and MSH2; compared with MSH6, they demon-
strate early development of the tumor, which shows MSI. In addition, the MSH6 and PMS2
mutations exhibit reduced penetrance, resulting in a higher mean age at onset of various
tumors in their carriers than in those with the MSH2 or MLH1 mutation [75]. Regarding
minor genes, mutations in the MLH3 gene have been associated with brain tumor develop-
ment [30]. Variants of the MSH3 gene have been associated with a classic phenotype only
if they are inherited together with variants of the MSH2 gene [31]. Furthermore, biallelic
mutations in the MSH3 gene have been shown to cause a polyposis form similar to the FAP
phenotype [76].

This heterogeneity also occurs among family members who share the same mutation.
Indeed, other factors, such as environmental or polygenic factors, can influence the phe-
notypic expression. In this context, counseling and the planning of surveillance strategies
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should be tailored to each patient from the perspective of age, sex, and the pathological
variant identified.

10. Lynch-like Syndrome

In approximately 60–70% of cases where LS is clinically suspected but genetic testing
has failed to identify a germline mutation in the MMR genes, patients are defined as having
Lynch-like syndrome (LLS) [77,78]. Similar to those with LS, patients with suspected LLS
similarly present with cancer at a young age (53.7 vs. 45 years) and manifest microsatellite
instability (MSI), as well as immunohistochemical absence of an MMR protein [79,80]. The
analysis of tumors between probands and families demonstrates heterogeneity for the risk
of tumor onset, with a lower incidence for CRC in LLS syndrome than in LS, as well as for
tumors in other locations [81].

There are several potential explanations for LLS. First, it is possible that some LLS
patients may actually have Lynch syndrome, as there may be some germline mutations
in the MMR genes that are not detectable by current genetic testing, such as those that
fall into intronic and promoter sequences [82]. An alternative explanation is that there are
other molecular mechanisms that inactivate MMR in addition to canonical inactivation via
a gene mutation; indeed, MMR activity may also be modulated by changes in MMR gene
expression, causing the same tumor phenotype that closely resembles Lynch syndrome [81].
Finally, recent findings suggest other molecular mechanisms, such as miRNAs, that could
control MMR genes expression and determine its dysregulation in promoting tumorigenesis
in colon cells [82]. Moreover, it should be noted that in contrast to sporadic microsatellite
instability-high (MSI-H) CRCs, Lynch-like CRCs do not show epigenetic inactivation of
the MLH1 gene or mutations in BRAF. About 50-60% of CRCs in Lynch-like syndrome
patients show biallelic inactivation at the somatic level of the MMR DNA genes within the
tumor [83,84].

Finally, it is also possible that patients with Lynch-like syndrome have germline
mutations in genes other than DNA MMR genes, which are known to be associated with the
molecular mechanism that leads to LS. For example, germline mutations in POLD1/POLE
DNA polymerases are found in Lynch-like syndrome patients [85].

11. Conclusions

In this review, we have outlined the main points of LS. Unfortunately, a large amount of
variants identified in MMR genes remain of uncertain significance. This places a major limit
on the molecular diagnosis of LS. Therefore, many individuals with a clinical suspicion of
LS receive a diagnosis of Lynch-like syndrome. It is hoped that, in the near future, advances
in high-throughput technologies and bioinformatic studies will improve the interpretation
of these variants and provide important insights into the development of the disease, which
will allow us to better classify family risk and related approaches to clinical surveillance
and pave the way toward increasingly personalized therapeutic approaches for LS.
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