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Abstract

Chronic obstructive pulmonary disease (COPD) is associated
with airway inflammation, increased infiltration by CD81

T lymphocytes, and infection-driven exacerbations. Although
cigarette smoke is the leading risk factor for COPD, the
mechanisms driving the development of COPD in only a
subset of smokers are incompletely understood. Lung-resident
mucosal-associated invariant T (MAIT) cells play a role in
microbial infections and inflammatory diseases. The role of
MAIT cells in COPD pathology is unknown. Here, we examined
MAIT cell activation in response to cigarette smoke-exposed
primary human bronchial epithelial cells (BECs) from healthy,
COPD, or smoker donors. We observed significantly higher
baseline MAIT cell responses to COPD BECs than healthy BECs.

However, infected COPD BECs stimulated a smaller fold
increase in MAIT cell response despite increased microbial
infection. For all donor groups, cigarette smoke-exposed BECs
elicited reduced MAIT cell responses; conversely, cigarette
smoke exposure increased ligand-mediated MR1 surface
translocation in healthy and COPD BECs. Our data demonstrate
that MAIT cell activation is dysregulated in the context of
cigarette smoke and COPD. MAIT cells could contribute to
cigarette smoke- and COPD-associated inflammation through
inappropriate activation and reduced early recognition of
bacterial infection, contributing to microbial persistence and
COPD exacerbations.
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Despite continued smoking cessation
programs, smoking remains a major health
concern, with 8 million deaths in 2017
attributed to tobacco usage (1). Cigarette
smoking is associated with a variety of
immunological impacts, such as higher
susceptibility to microbial infections (2–4).
The components of cigarette smoke
act as both proinflammatory and
immunosuppressive factors that modulate
innate and adaptive immunity (3, 5).
For example, cigarette smoke activates

caspase-1 to secrete interleukin (IL-1b) and
IL-18 in-vivo (6–9), resulting in emphysema
and small airway remodeling (10, 11) and
accumulation of CD81 T cells through
IFN-g signaling (12–14). In the context
of infection, cigarette smoke inhibits the
production of proinflammatory cytokines
in response to microbial infection or LPS
stimulation (15), increases adhesion of
Streptococcus pneumoniae to bronchial
epithelial cells (16), and delays clearance
of Pseudomonas aeruginosa (17). Others

have observed that repeated cigarette
smoke exposure in mice with persistent
S. pneumoniae airway infection resulted
in increased release of proinflammatory
cytokines including IL-12 and IL-1b, greater
bacterial load, and reduced lung function
(18), suggesting the interplay between
cigarette smoke, the airway, andmicrobial
infections is complex.

Cigarette smoking also results in long-
term airway changes, evidenced by its role as
the primary risk factor for the development
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of chronic obstructive pulmonary disease
(COPD) (19, 20), the third leading cause of
death worldwide (21). COPDmanifests as
a number of clinical phenotypes, including
small airway disease (e.g., bronchitis) and
emphysema, all of which are characterized
by chronic inflammation and airflow
limitation in the lung and airway (19).
Further complicating COPD pathology are
exacerbations triggered by bacterial or viral
colonization and infection, which can
increase inflammation and play an important
role in the morbidity andmortality
associated with COPD (19, 20).

The immune mechanisms underlying
the development of airway damage and
inflammation leading to COPD in some
smokers but not others are poorly defined
(22). CD81 T cells, which are often
increased in the lungs of patients with
bacterial infections, are the main
inflammatory cell subset increased in the
lungs of smokers with COPD compared
with asymptomatic smokers (13). Increased
frequencies of CD81 T cells were also
observed at the onset of acute exacerbations
(23). CD81 T cells were specifically
correlated with airflow limitation and
COPD pathology (13). Central to this,
CD81 T lymphocytes have increased
expression of chemokine receptors, cytotoxic
effector molecules, and proinflammatory
cytokines in human COPD lung tissue
(reviewed in Reference [23]), and chronic
cigarette smoke exposure alone resulted in
persistent clonal expansion of CD81 T cells
in mice (24). Mucosal-associated invariant
T (MAIT) cells are an innate-like subset of
T lymphocytes that make up a relatively
large proportion of the total CD81 T-cell
population in the blood and lungs in healthy
individuals (25). MAIT cells are critical to
the early control of respiratory infections,
including S. pneumoniae, Haemophilus
influenzae, and Legionella longbeachae
(26, 27). Despite the overall increase in
CD81 T cells in COPD, the frequency of
both peripheral blood and lung-resident
MAIT cells in individuals with COPD is
decreased (28–31), and lower MAIT cell
counts are associated with increased
hospitalization (32). This observation is
different from many other infectious and
inflammatory lung conditions, and the
mechanisms underlying MAIT cell loss in
COPD lungs are not yet defined. In fact,
little is known about the role of MAIT cells
in cigarette smoke- and COPD-associated
inflammatory processes.

The antigens presented toMAIT cells
by theMHC class I related molecule, MR1,
are primarily small molecule metabolites
generated during riboflavin biosynthesis
by many microbial organisms (33–35),
including those implicated in COPD-
associated exacerbations (28, 36, 37).
MAIT cells can also be activated through
antigen-independent, cytokine-mediated
mechanisms (38). IL-12 and IL-18, the
cytokines which elicit this type of antigen-
independent response, are among those
produced by airway epithelial cells and
other inflammatory cells in the context
of cigarette smoke and COPD (6, 8, 39).
We hypothesized that exposure of bronchial
epithelial cells (BECs) to cigarette smoke
and the inflammatory COPD airway
environment would result in dysregulated
MAIT cell responses through alteredMR1
function, contributing to inflammation and
exacerbation.We found that BEC from
COPD lungs induced greater overall MAIT
cell responses compared with healthy control
subjects. Furthermore, cigarette smoke
exposure to BECs decreased both microbe-
independent andmicrobe-dependentMAIT
cell responses. Exposure to cigarette smoke
did not affect the transcriptional expression
ofMR1 but did result in increasedMR1
surface expression, suggesting that smoking
may interfere with the ability of MR1 to
encounter microbial ligands. Our data
demonstrate that impaired interactions
between airway epithelial cells andMAIT
cells, resulting in the dysregulated release
of proinflammatory cytokines and other
molecules, may play a role in COPD-
associated inflammation in the context of
both cigarette smoke as well as bacterial
colonization and infection. Some of the
results of these studies have been previously
reported in the form of conference
abstracts (40–43).

Methods

Human Subjects
This study was conducted according to the
principles expressed in the Declaration of
Helsinki. Additional information on study
participants, protocols, and consent are
described in the data supplement.

Cells and Reagents
Primary BECs (Table 1) from Lonza
Bioscience or isolated from lung tissue
obtained from the Pacific Northwest

Transplant Bank were cultured as previously
described (44). BEAS-2B cells (ATCC CRL-
9609), BEAS-2B:doxMR1-GFP cells, and the
MR1-restricted T-cell clone D426G11 were
used as described previously (45–48).

S. pneumoniae andMycobacterium
smegmatisMc2155 (ATCC) were cultured
as previously described (36, 49). Antibodies
are described in the data supplement.
Phytohemagglutinin PHA-L (Sigma),
NucBlue Cell Stain ReadyProbes
(ThermoFisher), and AlexaFluor 488
succinimidyl ester (ThermoFisher) were used
per manufacturers’ protocols. Doxycycline
(Sigma) was used at 2 μg/ml. 6-FP
(6-formylpterin; Schirck’s Laboratories) was
suspended in 0.01MNaOH and used at a
final concentration of 100 μM.

Cigarette Smoke Extract Preparation
Cigarette smoke extract (CSE) was prepared
using research-grade cigarettes (1R6F,
University of Kentucky Tobacco and Health
Research Foundation) (50). Sterile filtered
CSE (pH=7.4) was stored at220�C.
Thawed aliquots of RPMI (“0% CSE”) or
CSE (“30% CSE”) were diluted to 30%
vol/vol final concentration in the culture
medium.

ELISPOT Assay
IFN-g ELISPOT (enzyme-linked
immunospot) assays were performed
as previously described (51) with
modifications where indicated: BECs were
incubated with 0% or 30% CSE medium
for 3 hours prior to other indicated
treatments in ELISPOT plate. For antibody
blocking experiments, plated cells were
incubated with isotype control subjects,
a-MR1, or a-IL-12 and a-IL-18 antibodies
for 4 hours. Antigens were added for
1 hour before the addition of MAIT cell
clones and overnight incubation.

Fluorescence Microscopy
Primary BECs were seeded in glass-bottom
chamber slides (Nunc). Where indicated,
cells were incubated with CSE for 3 hours,
washed, then infected with fluorescently
labeled S. pneumoniae as previously
described (36). Fixed slides were stained
with a-HLA-A,B,C antibody and
NucBlue nuclear stain and imaged with
a high-resolution widefield CoreDV
microscope (Applied Precision).
Approximately 20 fields per condition were
selected by unbiased nuclear stain and
analyzed as described in the data supplement.
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Real-Time Quantitative PCR
Qiagen RNeasy Plus RNA isolation and Life
Technologies High Capacity cDNA synthesis
kits were used per manufacturers’ protocols.
Real-time PCR was performed using
Taqman gene expression assays forMR1
(Hs01042278_m1) andHPRT1
(Hs02800695_m1). Relative expression levels
for each target gene were determined using
the 22DDCt method (52).

Surface MR1 and MHC-Ia
Flow Cytometry
Primary BECs, wild-type BEAS-2B cells,
and BEAS-2B:doxMR1-GFP cells were
incubated with CSE and 6-FP as indicated,

then stained with APC-conjugated 26.5
a-MR1 antibody and analyzed by flow
cytometry. All analyses were performed
using FlowJo10 (TreeStar).

IL-18 Expression
IL-18 immunoassay was performed using
the ProQuantum Human IL-18
Immunoassay Kit (A35613; Invitrogen) per
manufacturer’s protocols with a 1:3 dilution
of supernatants.

Data Analysis
ELISPOT statistical analysis was performed as
described in the data supplement. All other

data were analyzed using Prism 8 (GraphPad)
or R 4.0, as described in the data supplement.

Results

BEC from COPD Lungs Induce
Increased Microbe-independent, MR1-
dependent Activation of MAIT Cells
Inappropriate MR1 antigen presentation and
activation of lung-resident MAIT cells could
contribute to the inflammatory airway
environment present in COPD airways and
after cigarette smoking. As such, we tested
the ability of MAIT cells to respond to
primary human BECs from the lungs of

Table 1. Description of Bronchial Epithelial Cell Donors

Donor Information Medical History Assays Performed

ID Source Age, yr Sex Race COPD Diagnosis Smoking Smoking Notes ELISPOT RT-PCR Flow

Healthy
H276 Lonza 68 M W — — — Y Y Y
H527 Lonza 47 M W — — — Y Y Y
H608 Lonza 67 M W — — — Y Y Y
H619 Lonza 53 M W — — — Y Y Y
H628 Lonza 42 M B — — — Y N* N*
H544 Lonza 48 M W — — — Y N† Y
H063 PNTB 57 M W — — — Y Y N‡

COPD
C141 Lonza 73 M W 12 yr;

emphysema
1–2 ppd;
20 yr

— Y Y Y

C179 Lonza 69 M W Unknown;
inhaler

2–3 ppd;
40 yr

Decreased smoking (recently);
smoked marijuana

Y Y Y

C409 Lonza 53 M W Unknown;
inhaler, oxygen

2 ppd;
27 yr

— Y Y Y

C415 Lonza 53 M B Unknown;
emphysema

1 ppd;
20 yr

Quit smoking (5 yr) Y Y Y

C436 Lonza 59 M W 20 yr;
steroid inhalers

2–3 ppd;
35 yr

— Y Y Y

C147 PNTB 66 M W 2 yr 1.5 ppd;
40 yr

Quit smoking (10 yr);
smoked marijuana (49 yr)

Y N§ N‡

Smoker
S118 Lonza 56 Fjj B — 0.5 ppd;

26 yr
— Y Y Y

S123 PNTB 39 M W — Occasional;
unknown

— Y Y Y

S149 PNTB 57 M W — 1 ppd;
12 yr

Quit smoking (23 yr) Y Y Y

S150 PNTB 55 M Am Ind — Unknown;
25 yr

— Y Y Y

S151 PNTB 41 M W — Unknown;
25 yr

— Y Y Y

S011 PNTB 50 M W — 0.5 ppd;
.20 yr

— Y N§ N‡

Definition of abbreviations: Am Ind=American Indian; B=Black; COPD=chronic obstructive pulmonary disease; ELISPOT=enzyme-linked
immunospot; ppd=packs per day; PNTB=Pacific Northwest Transplant Bank (now Cascade Alliance); RT-PCR=real-time quantitative PCR; W=White.
*Loss of cell viability after first expansion.
†Failed to isolate RNA of sufficient quality and quantity.
‡Positive and negative flow cytometry controls failed.
§Irregular amplification of internal reference gene.
jjSole female donor.
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COPD or smoker donors compared with
healthy control subjects and in the context of
cigarette smoke exposure. BECs were isolated
from the lungs of healthy (n=7), COPD
(n=6), or smoker (n=6) donors between the
ages of 41 and 73 (Table 1). BECs from these
donors were incubated with a previously
describedMAIT cell clone (D426 G11)
(45, 53) after treatment with CSE
and infection withM. smegmatis or
S. pneumoniae in an ELISPOT assay with
IFN-g production by the MAIT cell clone as
the readout. A linear mixed effects model
with square root transformation of the IFN-g
spot forming units (SFUs) was used to
analyze the data for significant effects of
donor BEC groups onMAIT cell responses.

We first analyzed the response of the
MAIT cell clone to uninfected BECs.We
observed significantly greater microbe-
independent IFN-g SFUs in response to
BECs from COPD donors than from healthy
or smoker donors (P=0.0416) (Figure 1A
and Table 2). These microbe-independent
MAIT cell responses to COPD donors were
greater than responses observed in the
uninfected bronchial epithelial cell line
(BEAS-2B) control (Figure E1 in the data
supplement). There were no differences in
the MAIT cell response to smoker donors
compared with healthy control subjects
(P=0.5173) (Figure 1A and Table 2).
We hypothesized that an increase in
proinflammatory cytokines capable of
mediating MAIT cell responses, such as
IL-18 (38), which is produced by primary
BECs from the lungs of subjects with COPD
(6, 7, 39), could induce increasedMR1-
independent MAIT cell responses absent
microbial antigens. To determine whether
stimulation of IFN-g production by the
MAIT cells occurred throughMR1- or
cytokine-dependent pathways, we used
antibodies to blockMR1 or IL-12 and IL-18
in BECs from a representative healthy and
COPD donor. There was an almost complete
blockade of the IFN-g SFU response for the
healthy and COPD donors in the presence
of the 26.5 a-MR1 antibody, with very
little impact on blocking IL-12 and IL-18
(Figures 1B and 1C). This suggests that
despite the lack of antigen frommicrobial
infection, there are nonetheless MR1-
dependent MAIT cell responses to primary
BECs from all donors. We did observe
diffuse IFN-g staining haze in all ELISPOT
wells containing both BEC andMAIT cells
(Figure 1C). This haze was completely
abrogated in the context of IL-12 and IL-18

blocking for both donors, demonstrating that
there are likely cytokine-mediatedMAIT cell
responses to the primary BECs in addition
to the MR1-dependent responses.
Quantification of non-spot forming IFN-g is
not possible in the context of an ELISPOT
assay. Therefore, we were unable to
determine whether there was also a
meaningful difference in this cytokine-
dependent response to the healthy or COPD
donor BECs. We did perform an assay to
detect IL-18 secretion by a representative
healthy, COPD, and smoker donor. All
donors produced less than 2 pg/ml of IL-18,
with no difference between the donors
(Figure E2). Taken together with the
abrogation of IFN-g spots in the presence of
the a-MR1 antibody, our data suggest that
microbe-independent MAIT cell activation is
largely mediated throughMR1-dependent
mechanisms and is increased in response to
COPD BECs.

We considered the possibility that
alteredMR1 expression in these cells could
explain these changes. We quantified surface
MR1molecules by staining cells with 26.5
a-MR1 antibody for flow cytometry
(Figure 1D). Consistent with our previous
studies, the degree of endogenousMR1
surface expression in ex-vivo primary BECs is
relatively low compared with cell lines (46),
particularly those that overexpress MR1 (49).
As such, we included BEAS-2B cells
overexpressing MR1 in each assay as a
control to confirm the detection and surface
translocation of MR1 (Figure E3). At
baseline, COPD donor BECs express less
MR1 than healthy donor BECs (P=0.0330)
(Figure 1D), demonstrating that the
increasedMAIT cell responses to COPD
donor BECs are not because of increased
MR1molecules. AlthoughMR1 expression
has been confirmed in all cell types studied
to date (54), nearly all analyses of MR1
expression and regulation have focused
on the surface expression of MR1 protein.
There are a limited number of studies
examiningMR1 gene expression in
bulk cells from the lung parenchyma or
peripheral blood of COPD donors (30, 31);
however, we are unaware of any analysis of
the impact of COPD or smoking onMR1
expression in primary BECs. Therefore,
we collected mRNA from the BECs and
quantifiedMR1 expression relative to the
internal control gene, hypoxanthine
phosphoribosyltransferase 1 (HPRT1).
Baseline Ct values and DCt analysis of
MR1mRNA across all donors revealed

significantly higher expression in smoker
donors compared with healthy control at
baseline (Figure 1E). The smallerDCt value
for COPD BECs compared with healthy
donors suggested higherMR1 expression in
contrast to the significantly reduced surface
MR1 expression in COPD donor BECs
(Figures 1D and 1E). Together these results
suggest existing differences in MR1
expression at baseline are not enough to
explain alteredMAIT cell responses.

Exposure to Cigarette Smoke
Decreases MAIT Cell Activation
in Response to Primary BECs
We next examined whether treating primary
BECs with cigarette smoke impacts microbe-
independent MAIT cell responses. BECs
were treated with 30% CSE for 3 hours, then
washed and replated for incubation with
MAIT cell clones in an IFN-g ELISPOT
assay. CSE treatment did not significantly
affect overall MAIT cell IFN-g responses for
healthy and COPD donor BECs (Figure 2A
and Table 3). We compared the fold change
in IFN-g SFUs from 0% to 30% CSE
treatment to account for the increased
baseline MAIT cell responses to COPD
donor BECs. Although healthy donor BECs
were inconsistently impacted by CSE
treatment, MAIT cell responses to BECs
from COPD and smoker donors were
significantly more reduced after incubation
with CSE (P=0.0003 and P, 0.0001)
(Figure 2B and Table 2).

Our ELISPOT results suggested that
MR1-dependent MAIT cell activation was
impacted in cells after acute treatment with
CSE.We looked atMR1 gene expression in
BECs from COPD and smoker lungs
compared with healthy control subjects and
sought to determine if exposure to CSE had
any impact onMR1mRNA expression in
BECs from all donors. We isolated mRNA
from BECs after CSE treatment and
corresponding control conditions and
measured the expression ofMR1 and the
internal controlHPRT1. For all BEC donor
groups, paired comparisons demonstrated
no statistically significant impacts of
acute CSE exposure onMR1 expression
(Figure 2C). These results do not
demonstrate a consistent role for CSE-
mediated transcriptional regulation of MR1
in the observed ability of MAIT cells to
respond to BECs.

We then quantified surface MR1
expression by flow cytometry. Similar to the
baseline comparison, CSE-treated COPD
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donor BECs expressed lower overall degrees
of cell surface MR1 protein than healthy
donor BECs (P=0.0475) (Figure 2D).
Although COPD and smoker donor BECs
were relatively unaffected by CSE treatment,
surface MR1 expression was significantly
increased in CSE-treated healthy donor
BECs (P=0.0408) (Figure 2D). This increase
in MR1 surface expression may compensate
for the CSE-mediated reduction in MAIT
cell responses to healthy donor BECs.

Together, these data suggest that MAIT cell
responses to CSE-treated COPD and smoker
donor BECs are impaired.

Increased Infection of Primary BECs
from COPD Donors or after
CSE Treatment
Our data demonstrate that microbe-
independent, MR1-dependent MAIT cell
responses to primary BECs are increased for
COPD donor BECs but decreased after CSE

treatment. We next explored theMAIT cell
activation in the context of bacterial infection
by the pneumonia-causing pathogen
S. pneumoniae. Cigarette smoke and COPD
are associated with increased bacterial
adhesion and colonization of airway epithelial
cells in both in vitro assays and directly
ex vivo samples (16, 55–57). To measure this,
we infected a representative healthy, COPD,
and smoker donor BEC with fluorescent
S. pneumoniae, then quantified the number
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Figure 1. Primary bronchial epithelial cells (BECs) elicit microbe-independent, MR1-dependent responses by mucosal-associated invariant T (MAIT)
cells. (A) Primary BECs from healthy (n=7), chronic obstructive pulmonary disease (COPD) (n=6), or smoker (n=6) donors were incubated with the
D426 G11 MAIT cell clone in an enzyme-linked immunospot (ELISPOT) assay with IFN-g production as the readout. Data points are the mean IFN-g
spot-forming units (SFUs) of two technical replicates per donor. Statistical analysis was performed as described in the data supplement and is
summarized in Table 2. (B and C) BECs from the healthy and COPD donors that induced the greatest IFN-g SFUs in A were incubated with blocking
antibodies to IL-12/IL-18 or MR1 5 hours before the addition of the MAIT cells in an IFN-g ELISPOT assay. Results are presented as (B) ELISPOT well
images from one representative experiment and (C) the mean of two experimental replicates. Control IgG1 and IgG2a isotype antibodies are pooled
from one representative experiment each. (D) Primary BECs from healthy, COPD, or smoker donors (n=5) were stained for surface expression of
MR1 by flow cytometry. (E) RNA was isolated from healthy, COPD, or smoker donor BECs (n=5), and real-time quantitative PCR (RT-PCR) was
performed to detect amplification of MR1 and the internal control, HPRT1. Data points are the mean of three technical replicates per donor.
Two-tailed unpaired t tests were performed to determine statistical significance for D and E. MR1=MHC class I related molecule.
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of bacteria per cell using fluorescence
microscopy.We observed significantly more
S. pneumoniae cocci associated with BECs
from the COPD donor than healthy or
smoker donors (P=0.0001 and P=0.0271)
(Figures 3A and 3C). To assess the impact of
cigarette smoke, representative BECs were
incubated with media containing 0% or 30%
CSE before infection. As expected, CSE-
treated healthy and COPD donor BECs had
increased bacterial burdens compared with
the 0% control subjects (P=0.0027 and
P=0.0227) (Figures 3B and 3C).We again
observed significantly greater infection in
CSE-treated COPD donor BECs than in
CSE-treated healthy or smoker donor BECs
(P=0.0404 and P=0.0067) (Figure 3C).
These data demonstrate that bacterial burden
is increased in COPD donor BECs and in the
context of acute cigarette smoke exposure.

BECs from COPD Lungs Induce a
Decreased Fold-change in Microbe-
dependent, MR1-dependent Activation
of MAIT Cells
We next used IFN-g ELISPOT assays to
measure MAIT cell responses to BECd
infected with S. pneumoniae, or with
M. smegmatis as a positive control.
As expected, MAIT cell responses to the
S. pneumoniae- orM. smegmatis-infected
donor BECs were significantly greater than
responses to uninfected BEC for all donors
(P, 0.0001) (Figure 4A and Table 3).

Similar to the microbe-independent
ELISPOT assays, the MAIT cell IFN-g SFU
responses to infected BECs requiredMR1,
as demonstrated by nearly complete blocking
in the presence of the 26.5 a-MR1 antibody
(Figure 4B). Overall,M. smegmatis- or
S. pneumoniae-infected BECs from COPD
donors induced higher, but not statistically
significant, MAIT cell responses than
infected BECs from healthy or smoker
donors (Figure 4A and Table 2).

To quantify the infection-mediated
increase in MAIT cell IFN-g production and
take into account the differences in bacterial
burden between the donor groups, we
compared the pairwise fold change in IFN-g
SFU responses between uninfected and
infected donor BECs. Surprisingly, the
infection-mediated increase in MAIT cell
responses to infected COPD donor BECs was
significantly reduced in comparison with
fold-change responses to healthy and smoker
donor BECs (P, 0.0001) (Figure 4C).
Taken together with the observations of
significantly greater bacterial infection per
cell and overall higher induction of MAIT
cell IFN-g production, COPD donor BECs
stimulated a weaker MAIT cell response on
infection. These results suggest that MR1
antigen presentation is impaired in infected
BECs from COPD lungs.

Exposure to Cigarette Smoke
Decreases MAIT Cell Activation in
Response to Infected Primary BECs
from Healthy, COPD, and
Smoker Lungs
We next explored the impact of CSE
treatment in combination with bacterial
infection. MAIT cell responses to infected
BECs from all donor groups were
significantly reduced by CSE treatment
(Figures 5A and 5B and Tables 2 and 3). The
decreased response with CSE treatment was
unexpected, given the increased bacterial
infection of CSE-treated cells (Figures 3B
and 3C). In the context of this increased
infection, our observation of decreased
IFN-g SFU response to CSE-treated cells
suggested cigarette smoke may downregulate
MR1 antigen presentation toMAIT cells.
There were no significant donor group
differences in the fold change IFN-g
response to CSE-treated, infected BECs
(Figure 5C); these results suggest that the
combination of infection and CSE treatment
may affect healthy BECs similarly to COPD
BECs. CSE treatment did not significantly
affect S. pneumoniae infection of BECs from

smoker donors (Figure 3C) despite reduced
MAIT cell responses, suggesting that
cigarette smoke alteration of S. pneumoniae
infection and downstreamMAIT cell
responses may occur through different
mechanisms in the context of acute versus
chronic smoke exposure. Together, our data
suggest a complex role for cigarette smoke in
modulatingMR1 antigen presentation to
MAIT cells.

Acute Cigarette Smoke Exposure
Increases MR1 Surface Translocation
in Ligand-stimulated BECs
We had observed that CSE alone increases
surface MR1 on healthy donor BECs but did
not significantly affect MR1 expression in
COPD or smoker donor BECs. To examine
how the presence of MR1 ligand may impact
MR1 expression, we used flow cytometry to
assess surface expression at basal levels and
after induction of MR1 surface translocation
through treatment with the ligand 6-FP. 6-FP
treatment induced significantly increased
surface MR1 expression in healthy donors
(P=0.0149) (Figure 6A). Although not
significant, we also observed a modest
increase for 6-FP–treated COPD donor
BECs (P=0.0634). We then assessed the role
of acute exposure to CSE in modulating
these processes. The 6-FP–mediated increase
in surface MR1 was increased in the context
of CSE treatment for healthy donor BECs
(P=0.0029) (Figure 6B). For all conditions
tested, healthy donor BECs expressed
significantly higher degrees of surface MR1
than COPD donor BECs (P=0.0447 and
P=0.0468) (Figures 6A and 6B). To explore
whether this CSE- and ligand-mediated
increase is because of greater overall
expression of MR1, we incubated primary
BECs with 0% or 30% CSE before infection
with Sp, then harvested RNA to quantify
relativeMR1mRNA expression. In the
presence of S. pneumoniae infection, CSE
treatment significantly reducedMR1
expression in healthy donor BECs
(P=0.0491) (Figure 6C), suggesting that the
increase in surface MR1 expression is likely
because of posttranslational impacts. We
observed no significant pairwise changes
from CSE treatment in combination
with 6-FP or S. pneumoniae infection for
smoker donor BECs (Figures 6B and 6C),
further indicating that MR1 expression
is differentially affected by acute CSE
exposure, long-term cigarette smoking,
and intracellular changes induced in
BEC during the development of COPD.

Table 2. Statistical Analysis of Enzyme-
linked Immunospot Data: Fixed Effects
Results from Linear Mixed Model

Variable P Value

Healthy (Intercept)
COPD 0.0416
Smoker 0.5173
CSE 0.5279
Msm ,0.0001
Sp ,0.0001
COPD:CSE 0.0003
Smoker:CSE ,0.0001
COPD:Msm ,0.0001
Smoker:Msm 0.8718
COPD:Sp 0.4193
Smoker:Sp 0.2432
CSE:Msm ,0.0001
CSE:Sp 0.0482

Definition of abbreviations: COPD=chronic
obstructive pulmonary disease;
CSE=cigarette smoke extract;
Msm=Mycobacterium smegmatis;
Sp=Streptococcus pneumoniae.
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Together, our results demonstrate that acute
exposure to cigarette smoke may impact
ligand-dependent surface translocation
of MR1.

Discussion

MAIT cells are an evolutionarily conserved
subset of T cells present in high proportions

in human blood and peripheral mucosal
sites. AlthoughMAIT cells were first
described for their role in recognizing and
responding to microbial infection (45, 58),
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Figure 2. Decreased MAIT cell responses to primary BECs after treatment with cigarette smoke extract (CSE). (A and B) Primary BECs from healthy
(n=7), COPD (n=6), or smoker (n=6) donors were infected with media containing 0% or 30% CSE for 3 hours before the addition of D426 G11
MAIT cells in an IFN-g ELISPOT assay. Statistical analysis was performed as described in the data supplement and is summarized in Tables 2 and 3.
(A) Data points are the mean IFN-g SFUs of two experimental replicates paired by an individual donor. (B) Fold change IFN-g SFUs between 0% and
30% CSE-treated primary BECs from healthy, COPD, or smoker donors, calculated pairwise by donor. (C and D) Primary BECs from healthy, COPD,
or smoker donors (n=5) were incubated with 0% or 30% CSE for 3 hours. (C) RNA was isolated from BECs, and real-time quantitative PCR (RT-PCR)
was performed to detect amplification of MR1 and the internal control, HPRT1. MR1 expression was calculated by 22DDCt method, relative to 0% CSE
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evidence continues to grow for their role in
inflammatory noninfectious diseases (26).
Furthermore, MAIT cells have now been
implicated in the homeostasis and repair of
various mucosal barrier tissues, including the
lung (59). MAIT cell functions may be
relevant to the cigarette smoke-mediated
development of airway inflammation
resulting in COPD pathologies and to airway
exacerbations common in COPD. Of note,

numerous groups have observed decreased
MAIT cell frequencies in both the peripheral
blood and lungs of individuals with COPD
(28, 29, 31), which is contrary to the increase
in MAIT cell frequency observed in many
inflammatory conditions. It is tempting to
speculate that persistent inflammation and
microbial colonization in COPD lungs
could result in aberrant activation of MAIT
cells leading to exhaustion and loss, as well as

inappropriate recruitment of the adaptive
lung immune response. Loss of MAIT cells
could subsequently be an important factor
in the inability to reverse tissue pathology
observed in COPD lungs because of the loss
of their function in tissue repair. In this way,
MAIT cells could be important early
immune contributors supporting the
Goldilocks hypothesis of COPD
pathogenesis proposed by Curtis and
colleagues, in which too strong or too weak
adaptive immune response can lead to
worsened symptoms of COPD (22). Here,
we considered how changes to large airway
epithelial cells, the first line of defense
against external assaults important to the
development of COPD pathology, including
cigarette smoke andmicrobial infection, alter
MAIT cell activation.

We found that acute exposure BECs to
CS generally resulted in decreased MAIT
cell responses. This finding was particularly
striking in the context of microbially
infected BECs, in which despite
significantly increased infection of BECs
exposed to cigarette smoke, we observed
significantly decreased MAIT cell response.
We and others have repeatedly
demonstrated in vitro and directly ex vivo
that increased microbial antigen or
infection of healthy, untreated cells results
in increased MAIT cell responses (46).
During microbial infection, MAIT cells are
thought to play an important early role in
immune response, for example, through
the recruitment of cells like inflammatory
monocytes to the site of infection (60, 61).
Delayed recruitment of adaptive immune
responses in the lungs of otherwise
healthy smokers and the context of COPD
exacerbations could allow for microbial
persistence, inappropriately amplifying and
prolonging lung inflammation.

We also observed greater microbe-
independent MAIT cell responses to BECs
than those observed in response to airway
epithelial cell lines. These responses were also
significantly higher in response to BECs from
COPD lungs. We initially hypothesized this
would be the result of cytokine-mediated
MAIT cell activation because of reports of
increased expression of cytokines like IL-18
in COPD lungs (62–64). To our surprise,
these MAIT cell responses did not require
IL-12 and IL-18 but were, in fact, dependent
onMR1. Therefore, we examinedMR1
expression. Little is known about the
regulation of MR1 gene expression, although
it is known that overexpression of MR1

Table 3. Statistical Analysis of Enzyme-linked Immunospot Data:
Multiple Comparisons of Means

Donor Infection CSE Treatment P Value

Healthy UI vs. Msm No CSE ,0.0001
UI vs. Sp No CSE ,0.0001

Msm vs. Sp No CSE ,0.0001
UI vs. Msm 1CSE ,0.0001
UI vs. Sp 1CSE ,0.0001

Msm vs. Sp 1CSE ,0.0001
UI No CSE vs. 1CSE 1

Msm No CSE vs. 1CSE ,0.0001
Sp No CSE vs. 1CSE 1

COPD UI vs. Msm No CSE ,0.0001
UI vs. Sp No CSE ,0.0001

Msm vs. Sp No CSE ,0.0001
UI vs. Msm 1CSE ,0.0001
UI vs. Sp 1CSE ,0.0001

Msm vs. Sp 1CSE ,0.0001
UI No CSE vs. 1CSE 0.9964

Msm No CSE vs. 1CSE ,0.0001
Sp No CSE vs. 1CSE 0.004

Smoker UI vs. Msm No CSE ,0.0001
UI vs. Sp No CSE ,0.0001

Msm vs. Sp No CSE ,0.0001
UI vs. Msm 1CSE ,0.0001
UI vs. Sp 1CSE ,0.0001

Msm vs. Sp 1CSE ,0.0001
UI No CSE vs. 1CSE 0.0006

Msm No CSE vs. 1CSE ,0.0001
Sp No CSE vs. 1CSE ,0.0001

Healthy vs. COPD UI No CSE 0.9964
Msm No CSE 1
Sp No CSE 0.999
UI 1CSE 1

Msm 1CSE 1
Sp 1CSE 1

Healthy vs. Smoker UI No CSE 1
Msm No CSE 1
Sp No CSE 1
UI 1CSE 1

Msm 1CSE 1
Sp 1CSE 1

COPD vs. Smoker UI No CSE 1
Msm No CSE 1
Sp No CSE 1
UI 1CSE 0.9998

Msm 1CSE 1
Sp 1CSE 0.9995

Definition of abbreviations: UI = uninfected.
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increases MR1-dependent MAIT cell
responses (e.g., Huber and colleagues [49]).
In addition, genome-wide studies have
identifiedMR1 as a gene with altered
expression or methylation status in the
context of e-cigarette smoking (65) and
COPD lungs (66). Although our sample size
was not sufficiently powered for statistical
significance in this area, our real-time PCR
data suggest the possibility for increased
MR1mRNA expression in BECs from
COPD donors, with significantly decreased
surface MR1 expression. Although BECs
from smoker donors did express significantly
moreMR1mRNA, we did not observe a
corresponding increase in MAIT cell

response or any significant changes toMR1
surface expression. There was also no impact
of acute exposure to cigarette smoke on
baselineMR1 expression in donors from any
group, complicating the argument for the
role of altered transcriptional regulation of
MR1 in dysregulated induction of MAIT cell
IFN-g production by uninfected BECs.

We considered other possible
explanations for the increased microbe-
independent, MR1-dependent responses
observed in BECs from COPD lungs. One
group has posited the possibility that long-
term tissue damage caused by cigarette
smoke could lead to the production of T-cell
neoantigens that contribute a potential

autoimmune component to COPD-
associated inflammation (67). There has
not yet been an endogenousMR1 ligand
identified; however, increasing evidence from
cancer MAIT cell biology suggests the
existence of self-ligands that can be modified
in disease states (68). Because neoantigens
are already known to be important MR1
ligands (69), the role of potential novel MR1
neoantigens produced in the context of
damage from long-term cigarette smoke and
COPD inflammation should be an avenue of
interest. Given the small molecule nature of
MR1 ligands, we initially hypothesized that
cigarette smoke itself could contain novel
ligands. However, absent other antigens, we

20

p = 0.0067

p = 0.0271

p = 0.0227

p = 0.0404

p = 0.0001

p = 0.0027
16

12

8

B
ac

te
ria

 p
er

 c
el

l

4

0

0% 30%
Healthy COPD Smoker

0% 30% 0% 30%

A

B C

Figure 3. Increased infection of primary BECs from COPD donors or after CSE treatment. (A and B) BECs from representative healthy, COPD,
or smoker donors were incubated with media containing 0% or 30% CSE for 3 hours where indicated and infected with fluorescently labeled
Streptococcus pneumoniae for 3 hours. Fixed cells were stained with a-HLA-A,B,C antibody to label the cell surface and NucBlue nuclear stain.
Approximately 20 fields per donor were selected without bias on the basis of nuclear stain, and whole cells within these fields were then
analyzed by Imaris to enumerate the number of bacteria associated with individual cells. Shown are representative images of S. pneumoniae-
infected primary BECs for each condition. White= surface stain and red= fluorescent S. pneumoniae pseudocolor. Arrows indicate adherent
bacteria (yellow) enumerated for analysis or extracellular bacteria (red) excluded from the analysis. Scale bar, 10mM. (C) Quantification of
S. pneumoniae per cell. Data points indicate individual cells, analyzed by one-way ANOVA.
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did not observe any significant increase in
MR1 expression of CSE-treated BECs.
Furthermore, our functional data
demonstrate that if cigarette smoke did
contain MR1 ligands, they would not be
MAIT2T cell receptor stimulatory. If
anything, exposure to cigarette smoke
decreased the microbe-dependent MAIT cell

responses, suggesting that any putative
ligands in cigarette smoke would be
antagonistic. Alternately, acute exposure to
cigarette smoke resulted in an increase in
6-FP–mediatedMR1 surface translocation.
This increase could be mediated by cigarette
smoke through alteredMR1 trafficking
influencing ligand availability or access to

putative chaperones for MR1. Together,
these results demonstrate that short-term
and long-term exposure to cigarette smoke
could influenceMR1 antigen presentation
andMAIT cell responses in different ways
through distinct mechanisms.

The mechanisms underlying COPD
onset in some chronic smokers, but not
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Figure 4. Increased microbe-dependent, MR1-dependent MAIT cell responses to infected primary BECs from COPD donors. (A) Primary BECs
from healthy (n=7), COPD (n=6), or smoker (n=6) donors were infected with media control, Mycobacterium smegmatis (0.1 ml/well), or
S. pneumoniae (multiplicity of infection [MOI]=20) for 1 hour before the addition of D426 G11 MAIT cells in an IFN-g ELISPOT assay. Data points
are the mean IFN-g SFUs of two technical replicates per donor. Statistical analysis was performed as described in the data supplement and is
summarized in Tables 2 and 3. (B) BECs from the healthy and COPD donors that induced the greatest IFN-g SFUs in Figure 1A were incubated
with blocking antibodies to IL-12/IL-18 or MR1 for 4 hours and infected with S. pneumoniae (MOI=20) for 1 hour before the addition of the MAIT
cells in an IFN-g ELISPOT assay. Results are presented as the mean of two experimental replicates. (C) Fold change IFN-g SFUs between
uninfected and microbial-infected BECs from healthy, COPD, or smoker donors, calculated pairwise by donor from raw data in A. Statistical
analysis was performed as described in the data supplement and is summarized in Table 2.

ORIGINAL RESEARCH

Huber, Larson, Lust, et al.: COPD and Dysregulated MAIT Cell Activation 99



others, remain unclear (22, 70).
Dysfunctional MAIT cell activation could
play a role in the early development of
COPD-associated inflammation. Absent
microbial stimulus, the greater overall MAIT
cell response to COPD BECs suggests that
hyperactive MAIT cells could facilitate

inappropriate airway inflammation, possibly
through the recruitment of inflammatory
monocytes and neutrophils. Conversely, the
hypoactivation of MAIT cells in response to
infected and CS-exposed COPD BECs could
permit microbial colonization and promote
chronic stimulation of innate inflammation.

In the broader pulmonary context, altered
immune signaling from diverse innate and
adaptive cell populations (such as alveolar
macrophages and neutrophils) may
contribute toMAIT cell dysregulation. Our
study was limited to exploringMR1 antigen
presentation by primary BEC to a healthy
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Figure 5. Reduced MAIT cell responses to infected BECs after treatment with CSE. (A and B) Primary BECs from healthy (n=7), COPD (n=6),
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data in A and B. Statistical analysis was performed as described in the data supplement and is summarized in Tables 2 and 3.
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Figure 6. Increased MR1 expression in primary BECs exposed to cigarette smoke. (A and B) Primary BECs from healthy, COPD, or smoker
donors (n=5) were incubated with media containing 0% or 30% CSE for 3 hours where indicated, then incubated overnight with the MAIT cell
ligand 6-FP (6-formylpterin) before harvest and staining for surface expression of MR1 by flow cytometry. Data points are mean fluorescence
intensities paired by individual donor. (C) Primary BECs from healthy, COPD, or smoker donors were incubated with media containing 0% or
30% CSE for 3 hours, washed, then infected with S. pneumoniae for 3 hours. RNA was isolated from BECs, and real-time quantitative PCR (RT-PCR)
was performed to detect amplification of MR1 and the internal control, HPRT1. MR1 expression was calculated by 22DDCt method, relative to
no-treatment pairwise control and HPRT1 expression. Statistical significance was determined by two-tailed paired t tests for same-donor treatment
analyses or unpaired t tests for donor group comparison.
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MAIT cell clone. Future exploration of
inflammatory signaling between primary
MAIT and other immune cells from COPD
and smoker donors may reveal further
insight into COPD development.

Conclusions
We demonstrate that MR1-dependent
MAIT cell responses to BECs are altered in
the context of COPD and cigarette smoke

exposure. Understanding these impacts on
MAIT cell activation may inform future
therapies to treat these critically important
pulmonary diseases. �
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