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Simple Summary: Tumor-associated antigens (TAAs) are antigens present in tumor cells, but are
also expressed in normal cells. However, TAAs are aberrantly expressed by tumor cells, and can elicit
multiple specific immune responses. One key feature of TAAs is the presence of post-translational
modifications often absent in normal proteins. This article offers an overview of the role of post-
translational modifications in TAAs in eliciting a specific immune response, which makes them
targets for immuno-oncology therapy. Both preclinical and clinical studies will be discussed.

Abstract: Post-translational modifications (PTMs) are generated by adding small chemical groups to
amino acid residues after the translation of proteins. Many PTMs have been reported to correlate
with tumor progression, growth, and survival by modifying the normal functions of the protein in
tumor cells. PTMs can also elicit humoral and cellular immune responses, making them attractive
targets for cancer immunotherapy. This review will discuss how the acetylation, citrullination, and
phosphorylation of proteins expressed by tumor cells render the corresponding tumor-associated
antigen more antigenic and affect the immune response in multiple cancers. In addition, the role of
glycosylated protein mucins in anti-cancer immunotherapy will be considered. Mucin peptides in
combination with stimulating adjuvants have, in fact, been utilized to produce anti-tumor antibodies
and vaccines. Finally, we will also outline the results of the clinical trial exploiting glycosylated-MUC1
as a vaccine in different cancers. Overall, PTMs in TAAs could be considered in future therapies to
result in lasting anti-tumor responses.

Keywords: tumor-associated antigens; cancer immunotherapy; post-translational modifications;
acetylation; citrullination; phosphorylation; glycosylation

1. Introduction

Post-translation modifications (PTMs) add small chemical moieties or chemical modi-
fications at individual amino acids in translated proteins. PTMs regulate protein stability,
folding, function, and their interaction with other biomolecules [1]. The most characterized
PTMs are phosphorylation, acetylation, glycosylation, citrullination, and ubiquitination [2].
PTMs are frequently involved in many diseases beside cancer. Highly phosphorylated tau
protein has been associated with neurodegenerative diseases, including Alzheimer’s dis-
ease [3]. In rheumatoid arthritis, protein hypercitrullination is a hallmark of the disease, and
autoantibodies to hyper-citrullinated proteins are typically detected in the patient’s synovial
fluid [4]. In type 2 diabetes (T2D), an increase in global glycosylation levels leads to impaired
release of secreted proteins from adipose tissue and also induces insulin resistance [5,6].

Cancer cell transformation profoundly changes gene assets, and consequently protein
expression and activation. Tumor antigens are classified into: i) tumor specific antigens
(TSAs) and ii) tumor-associated antigens (TAAs). TSAs are proteins specifically expressed
by tumors but not by normal cells. TSAs can be classified into wild type TSAs and mutated
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TSAs or “neoantigens” [7]. The latter are proteins with individual specificity and emerge
from somatic mutations in the tumor genome [8]. As each tumor displays an individual
heterogeneity and mutational burden, neoantigens can be defined as truly tumor specific.
Wild-type TSAs have been identified as human leukocyte antigen (HLA)-eluted peptides
with wild-type sequences (compared with the relevant germline sequence) that, nonetheless,
have tumor specific presentation, not represented on benign/normal tissues, and to which
the immune system has not been previously exposed [7]. TSA were also identified and
characterized by using high-throughput multi-omics analyses, including next-generation
sequencing or tandem mass spectrometry (MS/MS) [7].

Self-proteins expressed in both tumor and non-malignant cells but aberrantly present
in tumor cells in terms of amount, chemical features, location or time, are defined as
TAAs and can elicit multiple specific immune responses [9]. TAAs were identified by
using serological proteome analysis (SERPA) or serological analysis of recombinant cDNA
expression libraries (SEREX) [10]. Between these two approaches to identify TAAs, SERPA,
which specifically identifies the different isoforms of tumor proteins, is the more appropriate
way to also identify the autoantibody response to PTM [11]. A key example of a TAA
identified by SERPA is alpha-enolase (ENO1), which is overexpressed, acetylated, or
phosphorylated in pancreatic cancer [12–16]. Other examples of TAAs that have been
identified thanks to the analysis of the immune response elicited by them in cancer patients
include acetylated and phosphorylated p53, phosphorylated insulin receptor substrate
2 (IRS2), cell division cycle 25b (CDC25b), citrullinated vimentin (Vim), and glycosylated
mucin (MUC) protein [17–21].

The choice of TSAs or TAAs is essential in any strategy aiming to unleash the anti-
tumor T cell response with vaccine approaches [22]. Therapeutic cancer vaccines allow
peptides derived from tumor proteins (TSAs or TAAs previously identified) to be presented
by HLA molecules in order to activate the immune system to recognize and kill the es-
tablished tumors expressing those proteins. These vaccines typically involve exogenous
administration of selected tumor antigens combined with adjuvants that activate dendritic
cells (DCs) as antigen presenting cells, or even DCs themselves previously loaded with the
tumor antigen [23]. The aim of therapeutic cancer vaccines is to stimulate the patient’s adap-
tive immune system against specific tumor antigens to regain control over tumor growth,
induce regression of established tumors and eradicate minimal residual disease [22,24].

The presence of PTMs in TAAs increases the immunogenicity as they may be consid-
ered foreign antigens by the immune system, or break the tolerance established against
the self-unmodified protein (see Graphical Abstract). Immunogenic epitopes of TAAs
elicit immune responses, especially the production of autoantibodies [25]. In general, TAA
phosphorylated epitopes are better presented than non-phosphorylated epitopes by human
leucocyte antigens (HLAs) [26–28].

Some key examples of PTM-modified TAAs and the relative induced immune re-
sponses are listed in Table 1. All the studies reporting specific T cells or antibodies against
the modified TAA always analyzed the same response induced by the unmodified antigen.

Table 1. Immune response elicited by PTM-modified TAA.

PTMs TAA

Type of Tumor in Which TAA
Has Been Identified or to

Which the Antigen
Is Associated

Immune
Recognition (If Any) References

Acetylation ENO1 Pancreas NA [16]
p53 Colon, Prostrate, Pharynx CD4+ T Cell [19]

Phosphorylation
MART-1 Melanoma, Leukemia CD4+ T Cell [29]

IRS2 Melanoma, Breast,
Ovary, Colon CD8+ T Cell [18,30,31]
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Table 1. Cont.

PTMs TAA

Type of Tumor in Which TAA
Has Been Identified or to

Which the Antigen
Is Associated

Immune
Recognition (If Any) References

β-Catenin Ovary, Melanoma CD8+ T Cell [30,31]
Breast cancer

antiestrogen resistance 3 Melanoma CD8+ T Cell [30]

p53 Head and Neck CD4+ T Cell [21]
ENO1 Pancreas Ab, CD4+ T Cell [14,15]

CDC25b Melanoma, Breast, Ovary,
Colon, Leukemia CD8+ T Cell [18,31]

TNF receptor associated
protein (TRAP-1) Lung CD8+ T Cell [32]

Vim Colon CD4+ T cells [33]

Citrullination
Vim Melanoma, Lung CD4+ T Cell [17,34–36]

Enolase Melanoma, Lung CD4+ T Cell [17,35–37]

Glycosylation MUC1 Breast, Ovary CD8+ T Cell,
Ab [38,39]

Sialylation Silayl-Tn-Antigen Breast, Ovary Ab (IgM) [40–43]

SUMOylation p53 Sarcoma NA [44]

Methylation Enolase Pancreas NA [16]

Below, we will discuss in greater detail each PTM relevant for cancer immunotherapy.

2. Acetylation

Lysine (K) acetylation is a reversible PTM, which converts a positively charged lysine
into a neutral amino acid, changing the function and properties of the protein. Acetylation
plays an essential role in transcription regulation by modifying the core histone tails
through lysine acetyltransferase (KAT) or lysine deacetylases (KDACs) (Figure 1) [45,46].
Acetylation in the histone protein is a crucial regulator in the transcription process [47,48].
Due to technical difficulties, acetylation was previously studied at the protein-to-protein
level, which had restricted acetylation to be a nuclear PTM. With the advancement in
enrichment methods and high-resolution mass spectrometry, studying acetylation at the
proteome level became possible. These advanced methods led to identifying acetylation
even in cytosolic and membrane proteins [49–51].
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Altered acetylation levels in histone and non-histone proteins have been shown to
play a role in tumorigenesis in numerous cancer types [52–59]. Gene expression of proto-
oncogene gets activated during the hyperacetylation of histone. Histone acetylation is
a reversible process for cancer therapeutics [60,61]. Five inhibitors of KDAC have been
approved by the American Food and Drug Administration (FDA) for treating myeloma
and T cell lymphoma [62]. The successful approval of five agents has pushed scientific
communities to test the efficacy of KDAC inhibitors in other tumors. Many agents targeting
KDAC have shown promising results in multiple clinical trials [61,63–68]. These results
suggest that acetylation could represent a good target for tumor treatment, but none of
these studies evaluated the potential presentation of acetylated histone epitopes or how
the specific anti-tumor response was affected. Therefore, we did not include them in
our discussion.

Besides histones, acetylation regards many other cytoplasmic proteins, such as the
lactate dehydrogenase-A (LDH-A). In this case, acetylation inhibited its enzymatic activity,
and acetylation of K5 in LDH-A in the pancreatic ductal adenocarcinoma (PDAC) cell line
BxPC-3 was suggested to play a role in supporting tumor cell proliferation [69]. On the
other hand, K5 acetylation of LDH-A also decreases lactate production thereby restraining
pancreatic cancer cell migration. However, in human pancreatic cancer samples, a signifi-
cant decrease in the ratio of K5 acetylated LDH-A to total LDH-A protein was observed,
and acetylated LDH-A correlated with the tumor stage. This suggested a possible role of
LDH-A-K5 acetylation in the initiation of pancreatic cancer but not in its progression [69].
Linear trap quadrupole-orbitrap mass spectrometry identified 26 acetylation sites in ENO1
from PDAC and normal pancreatic duct cells, and, of those, 5 were unique to PDAC
cells [16]. ENO1 is a cytosolic or nuclear protein, expressed on the membrane wall of
bacteria to help in their invasion [70]. In tumor cells, ENO1 is also highly expressed on
the cell surface, but the mechanism by which it switches from cytoplasm to membrane is
unknown [12]. It is supposed that PTM could represent one of the molecular mechanisms
for its membrane exposure.

A pilot study to test whether or not acetylated peptides could be immunogenic was
performed with p53 peptides. CD4 T cells were stimulated in vitro with autologous DCs
pulsed with acetylated or non-acetylated p53 peptides [19]. A three-fold increased cytokine
production was observed when CD4 T cells were stimulated with acetylated p53 peptides
compared to non-acetylated p53 peptides. This T cell response was inhibited by the
addition of an anti-HLA-DR but not by other anti-HLA class II (HLA-DQ and HLA-
DP) antibodies, suggesting that the peptides (acetylated or non-acetylated) are mainly
presented by HLA-DR molecules. Cancer patient peripheral blood mononuclear cells
(PBMCs), but not healthy donor PBMCs, were able to specifically produce IFNγ after 7
days of stimulation with acetylated peptides but not with non-acetylated p53 peptides [19].
These results demonstrated that tumor-associated acetylated peptides are good candidates
for developing cancer vaccines.

3. Citrullination

Unlike other PTMs, citrullination is an irreversible modification, which converts the
positively charged amino acid arginine (Arg) to neutral citrulline by a family of peptidyl
arginine deiminase (PAD) enzymes [71]. The process is called citrullination or deamination
(Figure 2); PAD replaces the primary ketamine (=NH) group in Arg with a ketone (=O)
group, which was implicated in the recognition from the T cell receptor via HLA presen-
tation [72,73]. The loss of positive charge affects the protein–protein interaction and the
protein structure, and may lead to protein denaturation. Citrullination is a standard process
observed in cells under stress, during nutrient starvation, and during apoptosis due to an
increase in PAD expression [71].
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A number of studies have reported that hypercitrullination could be a factor in break-
ing immune tolerance and inducing autoimmune diseases like type 1 diabetes, multiple
sclerosis, and rheumatoid arthritis [4,72–76]. In rheumatoid arthritis, anti-cyclic citrulli-
nated peptides in patient sera are biomarkers to identify the disease at early stages [4,75].
Given the role of citrullination in autoimmune diseases and its ability to break immune
tolerance, the hypothesis that citrullinated peptides could also be immunotherapeutic
agents in cancer treatments was evaluated.

Citrullinated peptides from Vim and ENO1 elicited a specific immune response with
strong IFNγ release in HLA-DR4 transgenic mice, whereas there was no response against
non-citrullinated peptides [34,37]. CD4 T cells were the most involved in mediating the
citrullinated-specific response but displayed cytotoxic activity by expressing granzyme
and Fas Ligand and directly killing tumors expressing HLA-II [34,37,77]. Splenocytes from
mice immunized with citrullinated Vim peptides released granzyme upon stimulation
with specific stimuli. Immunization with citrullinated [34,37,77] Vim and ENO1 peptides
increase survival of HLA-DR4 transgenic mice implanted with B16F1 tumors expressing
HLA-DR4, as well as Lewis lung carcinoma cells (LLC/2), ovarian cancer cells (ID8), and
pancreatic cancer cells (Pan02) [17].

A proliferative response against citrullinated Vim and ENO1 peptides was observed
in 67% of healthy donors of PBMC [36]. Only 28% of these healthy donors displayed HLA-
DR4, whereas 71% of donors displayed HLA-DP4 [36]. By assessing the T cell repertoire to
citrullinated peptides in ovarian cancer patients and healthy donors, it was demonstrated
that PBMC from 58% of patients proliferated in response to at least one of the PTM peptides
and only 12% to both citrullinated Vim and ENO1 peptides [17]. Analyzing the type of HLA
revealed that most responders were HLA-DR4 or HLA-DP4, but not all. With predictive
methodologies, it was found that some even expressed HLA-DQ6, HLA-DR13, and HLA-
DP18 [17]. These data suggest that more HLA loci present citrullinated peptides, and that
citrullinated peptides from TAA represent good candidates for vaccine approaches [17,77].

The binding of citrullinated Vim and ENO1 peptides to HLA-DP4 was tested by
comparing to that of HLA-DP4-known binding peptides like those from the hepatitis B
virus. Unmodified Vim aa415-423 and aa28-49 peptides showed low binding to HLA-DP4
compared to the citrullinated Vim peptides, which showed stronger binding. Similarly,
citrullinated ENO1 peptide had higher binding capacity to HLA-DP4 compared to un-
modified ENO1 peptide [37]. In HLA-DP4 transgenic mice, the combination of a vaccine
composed of citrullinated Vim and ENO1 peptides with granulocyte–macrophage colony-
stimulating factor (GM-CSF) and TLR agonists (especially with TLR1/2 agonist) reduced
by 10- to 100-fold the dose of vaccine without losing the anti-tumor activity [40].

A combination of citrullinated peptides (Vim and ENO1) could also elicit similar im-
mune responses in HLA-DR4 or HLA-DP4 transgenic mice [17,77]. These combination pep-
tide vaccines could elicit anti-tumor therapy against multiple tumor models in mice [17,77].
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In a B16 melanoma mouse model, citrullinated peptides induce IL10 release, but also
higher secretion of IFNγ compared to non-citrullinated peptides [35]. New citrullinated
peptides could be extracted by peptide elution and mass spectrometry [35]. Another
important confirmation of the relevance of modified and specifically citrullinated peptides
as targets to elicit an anti-tumor response is the presence of elevated levels of IgG bound
citrullinated peptides in the sera of newly diagnosed breast cancer patients (0–0.8 years) [78].
This suggests that citrullinated peptides-Ig complexes could be explored as biomarkers for
early detection just as they are used in the early identification of RA.

4. Phosphorylation

Phosphorylation is a reversible PTM catalyzed by phosphotransferase, which adds a
phosphate group on the hydroxyl group of amino acid residues (Ser/Thr/Tyr) from the ATP
molecule (Figure 3) [79]. It is one of the most widely studied PTMs [2]. One of the hallmarks
of tumor growth is, in fact, dysregulated phosphorylation, which contributes directly to
oncogenic signaling cascades involved in cell growth, differentiation, and survival [80–83].
This renders phosphorylation an interesting potential therapeutic tool, as the presence of
PTMs increases the variety of naturally occurring peptide epitopes [84–86].
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Phosphorylated peptides can be presented by HLA-II molecules. Structural analysis
showed a 2.1 Å resolution of phosphorylated tumor-associated antigen MART-1 peptide
(pMART-1100–114) bound with HLA-DR1 [27]. Specific CD4+ T cell clones secreted GM-CSF
in response to phosphorylated MART-1 peptide pulsed onto the HLA-DR1-expressing anti-
gen presenting cells (APCs), but not to the non-phosphorylated peptide. This demonstrates
that the phosphate group is indeed a critical determinant for T cell receptor recognition [27].

A study validated the hypothesis that phosphopeptides can be immunotherapeutic
targets by analyzing mixtures of more than 10,000 peptides presented by HLA-A*201
on the surface of human melanoma, ovarian cancer, and B cell lymphoma cell lines [31].
They were isolated and extracted, and phosphopeptides were enriched; 36 phosphopep-
tides presented by HLA-A*201 on one or more of the four cell lines were identified, se-
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quenced, and employed to immunize transgenic mice expressing HLA-A*201. Isolated
phosphopeptide-specific CD8 T cells secreted IFNγ when exposed to synthetic phosphopep-
tide epitopes, but not to non-phosphorylated peptides [31]. Fresh PBMC from melanoma
patients HLA-DRB1*01, HLA-DQB1*0501 were stimulated in vitro with phosphorylated
MART1 (pMART1) peptides for several rounds of simulation. Phosphorylated specific
CD4+ T cells secreted IFNγ and GM-CSF in response to pMART1 but not in response to
non-phosphorylated MART1 [29].

A phosphorylation site (Ser419) was also identified in the more acidic isoforms of the
glycolytic enzyme ENO1 in PDAC and normal pancreatic ductal cells [16]. Autoantibodies
against phosphorylated ENO1 were found in a greater percentage of PDAC patients,
and only in a small percentage of healthy individuals [14]. Antibodies present in the
sera of PDA patients recognized six different isoforms of ENO1 (ENO_1,2,3,4,5,6) while
those in healthy individuals recognized only four isoforms. Notably, the presence of anti-
ENO_1,2 autoantibodies improved the diagnostic performance of CA19.9 in pancreatic
cancer patients with low levels of CA19.9, and correlated with a better prognosis and overall
survival (OS) [14]. This suggests that phosphorylation plays a role in breaking tolerance in
cancer patients in the attempt to fight tumor growth. The association between the presence
of the HLA-DRB1*08 allele and the production of autoantibodies against a phosphorylated
epitope of ENO1 was also demonstrated [15]. In effect, HLA-DRB1*08 allele was more
frequent in PDAC patients with autoantibodies against pENO1413-422 (phosphate group
at Ser419) than healthy controls or patients without these autoantibodies. Interestingly,
PDAC patients with autoantibodies against pENO1 also displayed T cells that proliferated
and secreted IFNγ in response to phosphopeptides, but to a lesser extent in response to
unmodified peptides [15].

Phosphopeptides from IRS2, CDC25b, p53, Vim, and TRAP1 also could elicit specific
immune responses in different cancer models in terms of T cells secreting IFNγ [21,31–33].
Phosphopeptides of IRS-2, CDC25b, and TRAP1 specifically elicited CD8 T cells, whereas
the CD4 specific T cell response was elicited in response to phosphopeptides of p53
and Vim [21,31–33].

An open-label, pilot, proof-of-concept clinical trial study to assess the phosphopeptide
vaccine safety and immunogenicity was performed on patients with resected stage II–IV
melanoma [30,87]. pIRS2 and phosphorylated BCAR3 were used as vaccines. Patients
were divided into three groups: the first group (three patients) was administered with
pBCAR3, the second group (three patients) with pIRS2, and the third group (nine patients)
received both phosphopeptides. Vaccines were administered along with tetanus toxoid
peptide in a water-in-oil emulsion with an equal volume of incomplete Freud’s adjuvant.
Immediately after vaccination, poly-L-lysine and carboxymethyl cellulose were injected
in patients to stimulate the immune system [30]. A total of 17% of patients administered
with pBCAR3 showed a CD8+ T cell response, whereas 42% of patients elicited a CD8+
T cell response when administered with the pIRS2 vaccine, with a greater increase in
IFNγ production [30,87]. None of the patients reported severe adverse effects after vac-
cination, showing that the phosphopeptide vaccine is safe and should be tried in larger
clinical trials [30,87].

Overall, all these studies support the hypothesis that phosphorylated epitopes are
recognized by the adaptive immune system and, therefore, imply that the antitumor
response can fight tumor growth.

5. Glycosylation

Protein glycosylation is a PTM where a carbohydrate molecule is attached to nitrogen
or hydroxyl or other functional groups of amino acids through enzymatic reactions. Glyco-
syltransferase enzyme catalyzes these reactions [88]. Protein glycosylation is classified into
two major categories: N-Linked glycosylation, where glycans are attached to the nitrogen
of an Asparagine (Asn) or Arg residues, and O-Linked glycosylation, where glycans are
attached to the hydroxyl group of Ser or Thr residues [88]. Protein glycosylation plays
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a significant role in protein folding, activity, stability, and conformation. Almost half of
human proteins are glycosylated, and the majority of cancer biomarkers, which have been
approved by FDA, consist of glycoprotein or carbohydrate antigens [89–92].

Many glycoproteins are associated with cancer progression [42,93]. One common
glycoprotein whose role is well established in tumors is MUC. The first identified membrane
MUC protein in many solid tumors and hematopoietic cancers was MUC1 [39,94,95]. MUC1
is often upregulated and aberrantly glycosylated, making it a potential therapeutic target
for cancer immunotherapy. In some malignant transformations, MUC1 becomes hypo-
glycosylated carrying truncated carbohydrates known as Tn antigens. MUC2 is another
MUC protein, commonly found in intestinal lining and expressed in goblet cells of the
small bowel and colon [96]. In mucinous carcinoma of the pancreas, prostate, breast, ovary,
and colon, there is an overexpression of MUC2 [97,98].

The potential of MUC1 as a vaccine was evaluated in pre-clinical models in different
tumors [41,43,93,99–102]. Successful results in mice led to many phase I clinical trials
showing that MUC1 is safe and well tolerated in patients [20,103–110]. These exciting
results began a new era of immunotherapy clinical trials over the following two decades.
Many phase II and phase III clinical trials targeting glycosylation demonstrated an effective
antitumor response, but limited success in extending survival of cancer patients. [111–121]
Phase III clinical trials targeting MUC1 are shown in Table 2.

The majority of clinical trials proposed the use of a viral vector expressing MUC1 alone
or in combination with other TAA in different solid cancers [105,109,114,115,118,121–125].
Many phase III trials got terminated either prematurely or suspended because of lack of
funding; hence, there are no related publications and limited information in the Clinicaltrials.
gov website (access on 20 December 2022). One of the major phase III clinical trials used
TG4010, a modified vaccinia Ankara vector expressing MUC1 and interleukin-2, in combi-
nation with chemotherapeutic drugs or placebo in 222 non-small cell lung cancer (NSCLC)
patients [114]. Patients were subdivided into two arms: those receiving chemotherapeutic
drugs with TG4010 and those receiving chemotherapeutic medication with a placebo. Pa-
tients treated with TG4010 combined with chemotherapeutic drugs had a longer significant
PFS compared to that of patients treated with a placebo plus chemotherapeutic drugs [114].

The most extensive phase III clinical trial of MUC1 was conducted by enrolling 1513
patients of NSCLC treated with tecemotide, a lipopeptide derived from MUC1 [120].
No significant differences in OS of the patients treated with tecemotide or with placebo
were reported; however, 10.2 months improvement in median survival for patients who
received tecemotide after chemoradiotherapy was observed. This suggest that tecemotide
may have a potential role in the efficacy of maintenance therapy after initial concurrent
chemoradiotherapy in NSCLC patients [120]. Other phase III clinical trials targeting MUC1
are detailed in Table 2 with outcomes from the studies.

Many small Phase I/II trials evaluated the potential of autologous DC presenting
MUC1 [107,108,110,119,126,127]. The vaccine (CVac) was made with a recombinant fusion
protein (FP) conjugated to oxidized mannan (M) and loaded into autologous DC [107]. The
FP consisted of a variable number of tandem repeats (VNTR) region of the MUC1 protein
and glutathione-S-transferase [107]. The benefit of mannan-conjugated antigen is to ability
to induce DC activation and maturation by targeting the complex of mannose receptor of
DC [107]. Oxidized mannan increases the efficiency of the HLA I presentation of MUC1
recombinant protein [128]. Ovarian cancer patients in complete remission (CR) were treated
with CVac to evaluate its efficacy and safety [127]. Patients from first CR (CR1) or second
CR (CR2) were randomised to standard of care (SOC) or CVac-treatment. Patients were
given 10 doses of CVac over 56 weeks and followed-up for another 48 weeks at the end of
the study to measure PFS. When both groups were challenged with MUC1 antigen, SOC
patients had few or no T cells, whereas CVac treated patients had both CD8 and CD4 T cell
responses [127]. In addition, CVac-treated patients displayed a higher CD8 cytotoxic T cell
response compared to that elicited in CD4 T cells, for which it was not possible to evaluate
the release of cytokines. In the CR1 group of patients no significant change was observed
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in progression-free survival (PFS) and OS between the SOC and CVac arms. However
in CR2 patients, CVac-treated patients had higher PFS compared with the SOC control
group [127]. Another phase I/II clinical trial assessed the safety of a vaccine composed of
Tn-MUC1 loaded onto autologous DC in 17 patients with non-metastatic castrate resistant
prostate cancer (nmCRPC) [126]. The Tn-MUC1 DC vaccine was found to be safe, and
elicited a strong CD4 T cell response by increasing the secretion of cytokines such as TNFα,
IL2, IFNγ, and a more robust CD8 T cell response, although nmCRPC patients did not
achieve the desired prostate-specific antigen (PSA) values [126]. However, the strong
immune response monitored in the patients suggested that a larger trial in combination
with chemotherapeutic drugs could improve both PFS and OS.

Many clinical trials also employed direct vaccination with MUC1 peptides in different
tumors, and even as a preventing strategy [20,104,106,129,130]. Patients with advanced
colon adenoma were vaccinated with MUC1 to assess the ability of this vaccine to induce an
anti-MUC1 immune response and long-term memory without toxicity [129]. The authors
found that 44% of patients were able to produce high levels of anti-MUC1 immunoglobulin
G (IgG) and long-lasting immune memory without any toxicity [129]. The remaining 56%
of patients, who did not show elevated levels of anti-MUC1 IgG, displayed higher levels of
myeloid derived suppressor cells (MSDC) already before the vaccination [129]. Another
interesting phase I study used a humanized glycol-optimized monoclonal antibody against
the MUC1 epitope (PankoMab-GEX) in different cancers [130]. PankoMab-GEX was well
tolerated, and in patients with advanced disease was strong enough to elicit an anti-tumor
activity. The best result in this trial was observed in ovarian and lung cancer patients: in
the former cohort, one patient had a complete response, and 32% of patients displayed
disease stabilization [130].

MUC2 is commonly used as a biomarker for many cancers as well as other dis-
eases [131–134]. A study with fifty patients with goblet cell metaplasia found that MUC2
expression in non-goblet epithelium may represent a specific biomarker. The authors con-
cluded that, in the esophagus, MUC2 expression represents a late event in the conversion
of mucinous columnar cells to goblet cells [134]. MUC2 overexpression was correlated with
the lower tumor grade and lower rate of lymphatic invasion in a large meta-analysis of
2363 patients of gastric carcinoma [135]. However, there was no statistically significant
correlation between the expression of MUC2 and lymph node metastasis, gender, and
five-year survival rate [135].

Clinical studies assessed the role of MUC2 as a potential therapeutic immune target in
cancers [136–140]. MUC2, conjugated to the immunologic carrier protein, keyhole limpet
hemocyanin (KLH), and given with the saponin adjuvant, Quillaja saponin (QS-21) was
safe and induced high IgM and IgG titers specific for the immunogen [139–142]. Another
interesting tumor-associated carbohydrate antigen is Globo H, which is expressed on the
outer membrane of cancer cells but not in normal tissue cells. Indeed, antibodies against
Globo H mediated complement lysis or ADCC [141]. In a phase I clinical trial, a bivalent
vaccine consisting of Globo H and MUC2 conjugated to the carrier, KLH, and mixed with
adjuvant QS21 was administered to 43 patients with relapsed prostate cancer [143]. The
vaccine was found to be safe and generated high titer of IgG and IgM antibodies to MUC2,
but only IgM antibodies to Globo-H [143]. The promising result from Phase I clinical trial
led to other Phase II clinical trials involving MUC2 and/or Globo H as vaccine targets with
conjugates, which have no posted results yet [NCT00036933; NCT00004929; NCT00016146].

Even after some failed trials, an interest in finding a vaccine for cancer using glycosy-
lated antigens as a target has not decreased, and the number of new registrations for clinical
trials have increased in the past two decades. This clearly shows the faith of corporations
in investing a lot in immunotherapy.



Cancers 2023, 15, 138 10 of 17

Table 2. List of Phase III clinical trials using MUC1 antigen (retrieved from clinicaltrial.gov website,
accessed on 9 September 2022).

Vaccine Number of Patients Treatment Outcome References

Oxidized mannan
MUC1 peptide

31 doubly blind breast
cancer stage II

Administered
subcutaneous injections of
either placebo or oxidized

mannan-
MUC1

5.5 years since the final patient
began treatment (8.5 years

from the start of treatment of
the first patient); the

recurrence rate in patients
receiving the placebo was 27%

(4/15; the expected rate of
recurrence in stage II breast

cancer); those receiving
immunotherapy had no

recurrences (0/16); and this
finding was statistically
significant (P = 0.0292).

[112]

PANVAC-VF viral
vector expressing CEA.
and MUC1 plus B7.1,

255 advanced
pancreatic

cancer patients

PANVAC-VF versus
palliative chemotherapy

No significant difference in OS
of patients receiving

PANVAC-VF versus palliative
chemotherapy or best

supportive care

[144]

Silayl Tn-KLH 1028 breast
cancer patients Silayl Tn-KLH versus KLH

No significant difference in OS
in patients receiving Silayl
Tn-KLH versus KLH alone

[117]

Tecemotide (L-BLP25)
lyophilized

25mer MUC1
1513 NSCLC patients

Tecemotide (L-BLP25)
versus placebo after
chemoradiotherapy

No significant OS difference
within whole cohort [120]

TG4010 (a modified
vaccinia Ankara

expressing MUC1) and
interleukin 2

222 stage IV NSCLC
patients (phase 2b/3)

TG4010 plus chemotherapy
seems to improve

progression-free survival
compared to placebo
plus chemotherapy

[114]

Tecemotide (L-BLP25)
lyophilized

25mer MUC1

285 Stage IV
NSCLC patients

Study was
prematurely terminated [111,116]

OS: overall survival; PANVAC-VF: cancer vaccine targeting MUC1, and carcinoembryonic antigen delivered via
two viral vector vaccina (V) and flowpox (F); KLH: keyhole limpet hemocyanin.

6. Conclusions

It is becoming clearer that immunotherapy represents real promise for treating cancer,
in all its forms. Passive immunization and immune checkpoint blockade were the first
approaches to take hold, although an increase in clinical trials using the adoptive transfer of
CAR T cells or TRC-engineered T cells has been reported since 2015 [145]. Vaccines are still
less successful compared to previous approaches due to the complex relationship between
tumor, stroma, and immune cells, which render the microenvironment extremely demand-
ing and exhausting. However, the crucial point in the active immunotherapy remains the
choice of antigen to be targeted by the vaccine. TAAs with PTMs represent an interesting
option for cancer immunotherapy. New insights regarding the ability of acetylated and
citrullinated peptides to elicit tumor specific responses represent promising results that,
nevertheless, need further investigation, especially in pilot phase clinical trials. The promis-
ing results from combinational citrullinated ENO1 and Vim peptides also should be further
explored with chemotherapeutic targets in pilot clinical trials for their immunogenicity and
safety in cancer patients, to open new possibilities of design immunotherapeutic strategies.
Efforts should first be focused on identifying, and then exploiting, aberrant phosphory-
lated, acetylated, citrullinated, and glycosylated proteins variably expressed from multiple
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cancers to develop vaccines for large scale immunotherapy. The focus should be to translate
these preclinical studies into clinical trials.

A pilot clinical trial into vaccines against phosphorylated peptides of pIRS2 and PB-
CAR3 along with the vaccine against MUC1 and MUC2 showed promising results for those
many vaccines which have yet to undergo clinical trials. Future vaccine strategies could
involve many PTM antigens, which could enhance the magnitude of the immune response.

It is very important to deeply understand the meaning of PTMs in cancer in parallel
to their immunogenicity characterization. If the PTM becomes a general and key process
acquired during carcinogenesis, it is expected that it will be maintained in all tumor cells
and not only in certain clones, which happens for the so-called neoantigens. This will allow
the extreme heterogeneity that has been well described in tumor cells to be overcome. Are
PTMs modulated by treatments, and, if yes, in which way and with which drugs? The
answer to this open question will also allow designing the best vaccine for each patient
based on which treatment they are receiving.
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