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Abstract: The rapid increase in Internet technology and machine-learning devices has opened up new
avenues for online healthcare systems. Sometimes, getting medical assistance or healthcare advice
online is easier to understand than getting it in person. For mild symptoms, people frequently feel
reluctant to visit the hospital or a doctor; instead, they express their questions on numerous healthcare
forums. However, predictions may not always be accurate, and there is no assurance that users will
always receive a reply to their posts. In addition, some posts are made up, which can misdirect the
patient. To address these issues, automatic online prediction (OAP) is proposed. OAP clarifies the
idea of employing machine learning to predict the common attributes of disease using Never-Ending
Image Learner with an intelligent analysis of disease factors. Never-Ending Image Learner predicts
disease factors by selecting from finite data images with minimum structural risk and efficiently
predicting efficient real-time images via machine-learning-enabled M-theory. The proposed multi-
access edge computing platform works with the machine-learning-assisted automatic prediction from
multiple images using multiple-instance learning. Using a Never-Ending Image Learner based on
Machine Learning, common disease attributes may be predicted online automatically. This method
has deeper storage of images, and their data are stored per the isotropic positioning. The proposed
method was compared with existing approaches, such as Multiple-Instance Learning for automated
image indexing and hyper-spectrum image classification. Regarding the machine learning of multiple
images with the application of isotropic positioning, the operating efficiency is improved, and the
results are predicted with better accuracy. In this paper, machine-learning performance metrics for
online automatic prediction tools are compiled and compared, and through this survey, the proposed
method is shown to achieve higher accuracy, proving its efficiency compared to the existing methods.

Keywords: Internet technology; machine learning; Never-Ending Image Learner; automatic online
prediction; online healthcare system; virtual image sensing

1. Introduction

Healthcare is one of the most worrisome industries. With the advent of the digital
era and technological advantages, many multidimensional data on patients are created,
including clinical factors, hospital resources, illness diagnostic information, and medical
equipment used. The number of Internet users has been growing exponentially over the
years, and there are instances where online healthcare advice is faster to grasp than real-
world help. As online health advice is easily obtainable, it can greatly benefit users. Other
groups of people leave their responses to the posts of those seeking medical help with

Diagnostics 2023, 13, 95. https://doi.org/10.3390/diagnostics13010095 https://www.mdpi.com/journal/diagnostics

https://doi.org/10.3390/diagnostics13010095
https://doi.org/10.3390/diagnostics13010095
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com
https://orcid.org/0000-0001-7199-6595
https://orcid.org/0000-0002-2038-7359
https://orcid.org/0000-0002-1939-4842
https://orcid.org/0000-0002-6347-4890
https://doi.org/10.3390/diagnostics13010095
https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com/article/10.3390/diagnostics13010095?type=check_update&version=3


Diagnostics 2023, 13, 95 2 of 26

predictions of possible diseases. However, these predictions may not always be accurate,
and there is no assurance that users will always receive replies to their posts.

Moreover, some posts that are made up can misdirect the patient. Therefore, reliability
is a significant issue. According to a survey conducted, it was found that 25% of users
lie on social networking sites. A sufficient amount of research on disease prediction has
been carried out in recent years. People express their symptoms in non-technical or natural
terms, complicating disease prediction. Machine learning is proposed for the automatic
online prediction of common disease attributes using Never-Ending Image Learner. NEIL
(Never-Ending Image Learner) is a computer program that runs 24 h per day, 7 days per
week, to extract visual knowledge from Internet data automatically. This is carried out
with the intelligent analysis of disease factors by virtual image sensing. Virtual sensors
are a kind of software that provide accessible information and processes and form a pure
software abstraction layer without further specifying data-processing aspects. They allow
developers to create applications based on motion. Virtual sensors overcome several
weaknesses of purely physical sensors, reduce signal noises, and thus increase signal
confidence. They obtain data from precisely one physical sensor and mirror. Either may
be completely unchanged. They are highly flexible and can be redesigned as required. In
this study, machine-learning-assisted automatic prediction from multiple images using
multiple-instance learning was performed, and the data were stored as per the isotropic
positioning for deeper storage of images and their data. Never-Ending Image Learner was
used to predict disease factors, structural risk minimization was used to select from finite
image data, and machine-learning-enabled M-theory with virtual sensing for real-time
images was employed.

M-theory, known as computational learning theory, aims to understand the funda-
mental principles of learning as a computational process and combines computer science
and statistical tools. A general algorithm for isotropic positioning, the working principle of
Never-Ending Image Learner for image prediction, was obtained. The working principle of
structural risk minimization, the algorithm used for automatic prediction from datasets,
were analyzed. Structural minimization is an inductive principle for model selection used
for learning from finite training datasets and is an inductive principle applied in machine
learning. The result of the employment of machine-learning-enabled M-theory with virtual
sensing is the automatic online prediction of common disease attributes. This article makes
the following contributions:

1. Introduces machine-learning-assisted automatic prediction from multiple images
using multiple-instance learning;

2. Stores data as per the isotropic positioning for deeper storage of images and their data;
3. Uses Never-Ending Image Learner to predict disease factors;
4. Uses structural risk minimization to select from finite image data;
5. Shows how machine-learning-enabled M-theory with virtual sensing can be used to

predict real-time images.

This research focused on Machine Learning for automatic online prediction of disease-
common attributes using Never Ending Image Learner. The Smart analysis of disease
factors with virtual image sensing was performed using Machine Learning, Never Ending
Image Learning, and Virtual image sensing Techniques. This research illustrates 2 Proposed
System parts under a Multi-access edge computing Platform. In particular, the analysis
of automatic online prediction explains Machine Learning assisted automatic prediction
from multiple images using Multiple instance learning methods very clearly. Store data
from this description can be used to verify their data using more profound storage images
based on the “Isotropic position” method. And the Never Ending Image Learner of disease
standard attribute prediction proposed here has been designed with the three things given
below, and their efficiency has been tried to show the given problem formulation very
correctly respectively.

• Forming the “Never Ending Image Learner” for predicting the disease factors
• Forming the “Structural risk minimization” for selecting from finite data images.
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• Machine Learning Enabled M-Theory with Virtual sensing for predicting the real-
time images

All three methods mentioned above not only accurately complete the automatic online
prediction of disease-common attributes but also handle the probabilities that may occur
in them in the following manner and use the Multiple instance learning methods to get
the best output. The Experimental Results and Discussion section (Section 4) presents the
probabilistic results taken here.

The article’s organization is as follows: Section 1 describes Machine Learning for
Online Automatic Prediction of Common Disease Attributes Using Never-Ending Image
Learners with their respective outcomes and highlights the contribution. Section 2 describes
the literature review on machine learning and automatic production techniques. Section 3
describes proposed methodologies like Ontology Mapping for Healthcare and respective
Structural Risk Minimization on the Common Disease. Section 4 describes the result and
the relevant result concerning Machine learning for automatic online prediction. Finally,
the research ended with a Conclusion and the respective references.

2. Related Work

Various automatic diagnostic models are used to identify diseases in their early stages.
Machine-learning models are effective ways of diagnosing diseases. This work collects
data via an Android app, and a machine-learning algorithm is applied to real-time data
collected with the mobile phone. For early detection and prediction, the logistic regression
method is used to identify the type of disease, and the treatments for the disease are given
as outputs by implementing the comparative analysis proposed in [1].

A diagnosis is made using the decision support system. Text is mined from different
IoT devices, and the decision-making process to identify the disease is implemented. QMR,
MYCIN, Iliad, Intern-ist-I, DXplain, Isabel, and Baidu’s “medical robot” are used for the
clinical decision identifying the disease. Probability computation and symptom accuracy
are needed for evaluation in a matrix format, and the disease is determined. In addition,
this paper proposes a means of intimating the side effects of all the drugs pre-installed in
the dataset [2]. This decision support system support has to make our proposed system
concerning automatic online prediction. This automatic online prediction greatly helps
make disease-common attribute predictions using Machine Learning.

Analyze validation and the execution purpose, and machine learning is used to analyze
the data, according to [3]. A machine-learning algorithm is used to diagnose the disease,
describing the disease and its stages. The disease is classified and predicted using the
predefined dataset for the symptoms, side effects, diseases related to the symptoms, etc.
Therefore, data processing and machine learning are the instruments for disease diagnosis [3].
Their machine-learning algorithm supports us in making Machine Learning for Smart
analysis of disease factors. This [3] system clarifies some inquiries on disease diagnosis.

The Never-Ending Image Learner (NEIL) runs automatically 24/7 with access to Inter-
net data. This produces a similar relationship for the in-stances or a label that categorizes
the knowledge of the labeling effects. The micro- and macro-vision deliver outputs to under-
stand the sense relation, similar to the image and the pieces of information. NEIL invents
400 K instance visuals and 1700 relations. This was suggested in [4]. There Never-Ending
Image Learner (NEIL) supports us in making and predicting the disease factors. Based on
this Never-Ending Image Learner (NEIL), sense relations are determined successfully [4].

The use of supported living and intelligent monitoring technologies to evaluate the
cognitive health of young autistic people is addressed in [5]. They assessed the emotions
and cognitive abilities of autistic young people without using medical interventions [5].
With the use of intelligent-systems-based artificial intelligence (AI) and Internet of Things
(IoT) technologies, this research enabled us to enhance the cognitive abilities of autistic
people. The suggested IoT system with AI capabilities helps with the research on the
present application’s heart rate prediction function. Additionally, this tool fosters social
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communication skills and offers a new virtual environment to support young people online.
Intelligent monitoring technologies help us improve disease-common attribute prediction.

The diagnosis and management of cardiovascular disease (CVD)-related sickness
and demise were covered in [6]. Cardiology uses artificial intelligence (AI) technologies
to improve and optimize CVD outcomes. The data’s complexity is decreased through
optimization and machine learning [6]. This boosting procedure increases data volume
and complexity to improve optimization and therapeutically beneficial information re-
trieval based on machine learning. This extraction procedure uses machine learning to
treat enormous numbers of medical data. The optimization machine learning procedural
aspect supports busting data volume processing and reducing the complexity of diagnosis
and management of any disease. These upgrades are implemented in daily life. From
this angle, the feature selection in our research was optimized using the meta-heuristic
algorithm classification.

Patients’ radiograph chest X-ray images are used to detect viral attacks. With accurate
classification, coronavirus infection is determined with 99.7% accuracy. The performance is
achieved based on the dataset collected from the human chest. The deep-transfer-learning
approaches for identifying coronavirus disease in its early stages are elaborated. This AAP
ticket support has to make an apparent classification rate and high accuracy rate [7]. This
research encourages proposed research efficiently. This performance of existing related
research helps to make a successful creation of Machine Learning for automatic online
prediction of disease common attributes using Never Ending Image Learner by Smart
analysis of disease factors with virtual image sensing.

3. Methods

The massive adaptation of computer-based technology in the healthcare industry
helps to accumulate electronic data. However, due to many medical records, doctors have
difficulty accurately identifying diseases from presented symptoms sufficiently early to
prevent patients from developing severe conditions. Significant research is being conducted
to predict disease via the latest technologies. The most common method is gathering disease
images and processing the collected images so that the disease can be predicted with the
help of machine-learning technologies. Such methods are increasingly used to help patients,
and medical practitioners overcome the challenges of diagnosing disease. These methods
can be found in modern healthcare systems’ decision-making processes [8].

The proposed system aims to find the disease road map via the patient’s common
attributes, which might be gathered through a physical examination or by remote devices
that collect data from patients found in the database. The machine-learning method
automatically predicts diseases with typical symptoms or attributes using NEIL (Never-
Ending Image Learner). This program is used to learn from the information in an image
based on the relationships between the objects in the image and predict the factors of
diseases. However, isotropic positioning is the probability distribution over the vectors
used for more profound image storage concerning the random matrix. To determine disease
road maps, this research uses the ontology healthcare system to analyze the disease path
based on symptom factors. Machine-learning-enabled M-theory with virtual sensing makes
predictions from real-time images [9].

3.1. Ontology Mapping for Healthcare

Ontology mapping is essential in medicine in describing medical terminological con-
cepts and finding relations by adopting medical knowledge in clinical practices. Ontology
mapping aims to provide an exhaustive and definitive classification of the relevant entities,
i.e., it can provide answers to questions and exhaustively represents the entire class of
entity types that should be included in the classification process, also based on the relations
of diseases according to their types.

In this system, the complete structure of the ontology is determined based on diseases
and their attributes, such as symptoms, causes, etc. [10]. A disease is considered a psycho-
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logical or physiological dysfunction for which symptoms are attributes of the disease which
occur frequently. Each disease might have different symptoms, and there is a chance of two
or more diseases having similar symptoms. In this system, the ontology is constructed to
find the common symptoms to be factored into identifying the disease and represented
in a tree structure. A tree-structure-based ontology mapping represents the healthcare
disease roadmap. This model was inspired based on the protégé system software tool
representation [11]. This model was applied to the ML-assisted automatic prediction, and
it was proposed to predict the comment attributes with the help of the ontology tree-level
structure (Figure 1).
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3.2. ML-Assisted Automatic Prediction

Machine learning (ML) was used to develop the algorithm for improving the automa-
tion process with experience and use of any data, and the model building was based on
the training data for the prediction and decision-making process. ML can be used advanta-
geously in healthcare, as the considerable numbers of medical data reduce ML’s burden
with predicting data [12]. The proposed system uses ML for the automatic prediction of
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common disease factors by inputting image data through a process of analysis; thus, for
the process of prediction, the ML algorithm needs to have the ability to learn by itself
based on the training dataset provided for the accurate prediction of the common attributes
of diseases.

For automatic data prediction, images are inputs for extracting common attributes.
Having been provided as the input, the disease image then undergoes conversion to obtain
data for extracting predicted symptoms from the ontology structure. The image is converted
by comparing the input with the historical disease database, which contains all types of
diseases with their names; thus, by comparison, the particular disease can be identified by
image-processing technology for the extraction of the features of the image if the feature
match with the historical data and the name of the disease is taken for processing. Then,
the converted data are taken as inputs to extract the common attributes of the disease [13].
Hence, this extraction training dataset plays an important role, so the ML-embedded
multiple-instance learning (MLeMIL) process was considered for practical training of the
system with the datasets.

Training of the algorithm using a particular learning model is performed since both
learning strategies respond to data collection, and motivation is distinctively present.
Similar to machine learning is supervised machine learning. This type of machine learning
is divided into supervised, unsupervised, and reinforcement learning to give the unlabeled
data needed to analyze and uncover data. These methods are used on neural networks for
grouping and anomaly identification. On the other hand, supervised machine learning is
helpful in data science in looking for unidentified similarities and contrasts in data. While
the data are being processed, the dimensions of the related groups are also decreased [14,15].

In machine learning (MLeMIL), multiple-instance learning is supervised learning.
This process involves the receipt of a set of instances. These are labeled individually, and
the learner receives a set of labeled bags containing many instances. In ML-embedded
multiple-instance learning (MLeMIL), a single class label is provided for a set of instances.
This method was adopted with machine learning (ML) to predict the common attributes of
disease using the automatic prediction method by considering multiple inputted images.
The multiple-image datasets are acquired with the help of the virtual sensing method,
where different sensors are used to obtain data from multiple points simultaneously, which
are stored in databases for later processing according to the structure of the ontology.

Figure 2 shows the ML-embedded multiple-instance learning (MLeMIL) process flow
per the predicted measured data. The measured data are mapped based on the disease
symptoms’ clinical metrics; hence, the traditional discriminative learning algorithm is used
for training. A binary classifier P(B|A) is used for the estimation of the required training
dataset of the form {(A1, B1), . . . , (An, Bn)}, where Ai is determined as the instances and
Bi is considered as the binary label, represented as Bi ε {0, 1}. The framework for training
data in multiple-instance learning is of the form {(A1, B1), . . . , (An, Bn)}, where the bag Ai
and Bi are the labels on the bag. This is stated mathematically in Equation (1):

Bi = maxj
(

Bij
)

(1)

where Bij are the labels of instances assumed to exist but unknown during the training
process. In other words, the bag is determined as positive only when it consists of only
one positive instance, and many algorithms are used to solve the problems of MLeMIL in
this system. Machine learning with MLeMIL is proposed, and it uses the framework of
gradient boosting to train the classifier, which reduces the bag log-likelihood determined
as in Equation (2):

log l = ∑i(log P(Bi|ai) ) (2)
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This states that the likelihood concerning the bags is determined and not the instances,
as the labels of instances are not known at the period of training, and the main goal of the
process is to train the classifier of instances, estimated as P(B|A); then, the probability of
a bag is determined as positive concerning the instances, expressed as P(Bi|Ai), and the
NOR model is adopted. The process is then as follows in Equation (3):

P(Bi|ai) = 1−∏j

(
1− P

(
Bi
∣∣Aij

)
) (3)

The above equation states that the bag consists of the required properties when one of
the instances in the bag has the highest probability rate, and then the probability of the bag
will also be higher. In the proposed system, instance-based learning with ML involves a
set of learning algorithms that help to perform predictions without explicitly performing
generalizations. New instances are compared with training instances stored in the memory
to find the common disease attributes [16].

As shown in Figure 2, our proposed algorithm initially computes the similarity of all
attributes in an image. GO disease data are determined for each attribute in the image
based on the other attributes with the disease data. The training set of disease data is
labeled disease data (i, a), showing that attribute a has disease datum i. The similarity
graphs indicate the integrated multiple sources to predict whether an attribute receives a
particular disease datum [17]. This process is based on the prediction algorithm. Outputs of
−1 and +1 represent the similarity of an attribute: −1 represents high dissimilarity between
the attributes in one image and those in another; similarly, +1 indicates high similarity
between the two images. From these determinations, the GO dataset’s automatic prediction
is performed by the following algorithm [18].

ML-assisted automatic prediction refers to the output of an algorithm after it has been
trained on a historical dataset and applied to new data when forecasting the likelihood of
a particular outcome. In the present study, ML-assisted automatic prediction of patient
health data-handling performance has been presented. The central part of this research
focuses on applications of ML-assisted automatic prediction of health data handling and
its prediction. To this end, previous research works which investigated the application of
ML and prediction characterization have been reviewed and discussed [19]. ML-assisted
automatic prediction was used to assess image learning to further this aim. It was reported
that Never-Ending Image Learner used online healthcare system management.
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Some of the standard ML-assisted autonomous health data prediction algorithms are
shown in Figure 1. In machine learning, the algorithm learns from labeled training data
to assist in forecasting health data results, while the program uses preprocessed data to
find associations between characteristics of interest. Figure 3 illustrates frequently used ML
prediction techniques for addressing various virtual image-sensing challenges. Using real-
time data in offline mode contributes to maximizing real-time prediction and maintaining
the minimal latency in machine learning: this minimum delay performance and prediction
delay must be balanced with the ML-aided autonomous prediction. ML models demand
both synchronous and asynchronously predicted sequence data. This aids in recovering the
prediction outcome from the ML optimization against the forecast of low-read latency [4].
Last but not least, this ML-assisted automatic prediction aids in removing unnecessary,
pointless, or irrelevant data to support the prediction mode using static reference features
and dynamic real-time features.
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As per Algorithm 1, for each image dataset, the function F; AxA→[0,1], F denotes the
similarity function, where A is a set of attributes. The similarity between an attribute in
two images is defined as the Pearson correlation coefficient associated with an array of two
attributes in Equation (4):

R(x, α) =
∑(xk − x)(αk − α)

∑[(xk − x)2 ∑(αk − α)2]
1/2 (4)
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where xk shows the element from the x array and x denotes the mean of array element x;
similarly, αk shows the element from the α array and α Denotes the mean of array element
α. Then, the graph for the weight of the attribute edge and the vertices of an attribute is
constructed. The weight of the edge is calculated in two ways: the first method involves
adding a value of similarity between the two attributes; the second method involves
building a graph by adding the similarity functions to find the weights. In the graph, each
node represents an attribute, and the weight of the edge represents the similarity between
the attributes. An attribute is removed from the graph for each disease datum (i, t), and
the threshold value is calculated. The similarity threshold value is low when an attribute
t with disease datum I has lesser total similarity than another attribute with this disease
datum. The upper threshold is calculated by t without I, the most similar attribute with a
disease datum.

Algorithm 1. Automatic prediction from the dataset.

input; dataset
output; prediction of attributes
for each disease data i

for each attribute a
remove→ a
for each disease data (i, t)

MIN = 0
for each disease data (i, k) & (k 6=t)

MIN = MIN + S (k, t)
if (MIN < low_Thold)

low_Thold = MIN
end if

end for
end for
for each disease data (i, t)

MAX = 0
for each disease data (i, k) & (k 6=t)

MAX = MAX + S (k, t)
if (MAX > high_Thold)

high_Thold = MAX
add→ a
Ts = 0

end if
end for

end for
for each (i, t) & (a 6=t)

Ts = Ts + S (a, t)
end for
if (Ts > high_Thold)

predict disease data (i, a)
else if (Ts > low_Thold)

interpolated S = interpolate (Ts, low_Thold, high_Thold)
end if
if (interpolated S > cut-off)

predict disease data (i, a)
end if

end for
end for

The process predicts whether attributes ought to be instructed with disease datum i.
This process includes four steps. First, low_Thold calculates the lowest similarity for an
attribute. Next, high_Thold calculates the highest similarity for an attribute [20]. Then, the
total similarity (Ts) of all attributes known to have a is computed. If Ts exceeds high_Thold,
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then a is predicted to have disease datum i. If Ts is less than low_Thold, then a is not
predicted to have disease datum i. Finally, the prediction is constructed. If total_similarity
is between low_Thold and high_Thold, it is interpolated between the two thresholds to
give a number between 0 and 1 in Equation (5):

interpolated_S =
Ts − low_Thold

high_Thold− low_Thold
(5)

A predefined cut-off is 0.5; this is then used to determine whether or not to assign the
disease datum to attribute a. Thus, if the cut-off = 0.5 and interpolated_S = 0.6 for attribute
a and disease datum I, then attribute a would be predicted to have disease datum i.

After applying the above automatic prediction, the prediction structure for the dis-
ease’s common attributes is instantaneously described based on the following ontology
structure. This structure, used to predict the common attributes of diseases, is shown in
Figure 4. Typically, the structure of an ontology network is enormous. It is infinite; hence,
the prediction of common attributes of a disease is an enormous process. It includes the
patient’s condition when they met the doctor for the first time but shows how the disease
is related to the attributes considered in Figure 5. The disease is the class and contains
sub-classes, such as neuropathology, cardiology, orthopedics, and so on, which are fields of
disease in which there may be different diseases, for instance, diseases such as Parkinson’s,
Alzheimer’s, etc., may constitute a sub-class. Each disease has different symptoms and
causes based on its characteristics.
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Figure 5. Ontology mapping with a tree-level structure.

In this research, which aims to find the symptoms of diseases, the ontology structure
ends with the instance symptoms and causes, but usually, ontologies grow more extensive,
especially with medical data. Ontology analysis is based on the representation of tabula-
tions concerning the tables embedded within the text, thus forming table-based classes
and individuals [21]. The ontology table helps identify relationships and the dependencies
between entities; then, the verification of dependencies should be checked if the disease
depends on the symptoms.

Ontology mapping with a tree-level structure is represented in Figure 5. The disease is
the superclass and has the sub-classes neuropathology, odontology, and so on; the attributes
of the disease are also provided in the table, which helps in the effortless analysis of the data
for the prediction process. To examine the condition of the actual prediction process from



Diagnostics 2023, 13, 95 12 of 26

the ontology mapping with the tree-level structure, an example training image (a tooth
image) is taken and embedded in the isotropic positioning process [22].

3.3. Isotropic Positioning

An isotropic group consists of an isomorphism from any datum to itself in a groupoid.
The isotropic position is a probability distribution over a vector space if its covariance
matrix is the identity matrix (Figure 6).
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This isotropic positioning works based on the following algorithm for fine-tuning
positional data from an image as per Algorithm 2.

Algorithm 2. Isotropic positioning.

input; d-distribution ⊂RN, V-vector
for Vε d

if (EVVT = ID)
if (uniform distribution over ID)

V of an orthogonal set← isotropic
end if

end if
for all b RN

if (k ε RN)
if(|k| = 1) & (β > 0)∫

〈a, b〉2dx = β2|b|2
end if

end if
end for

end for
return, Isotropic position for storing data

The above algorithm, d, shows a probability distribution over the RN vector field from
the above algorithm. If d is in the isotropic position, then, for each vector sampled (V), the
distribution is as expressed in Equation (6):

EVVT = ID (6)

The set of vectors is called an isotropic position when the uniform distribution is over
the isotropic position. For every set of orthonormal vectors, the vectors are isotropic for
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each vector b in RN when the convex body has the volume |k| = 1 center of weight at the
origin and constant β > 0, as in Equation (7):∫

〈a, b〉2dx = β2|b|2 (7)

After amplifying the image’s potential gains in positional data, structural risk mini-
mization is employed to obtain better isotropic positioning and prediction results. Structural
risk minimization is fleshed out in the following structural representations [23].

3.4. Structural Risk Minimization

Risk is reduced by altering or reducing the number of data used for processing and
minimizing the overall processing time. Medical records contain large numbers of data,
and the structure of an ontology grows as the number of data tends to infinity; thus, this is
considered the biggest challenge in predicting disease attributes. Given the unlimited data
in the system, the ontology structure begins with the patient and ends with the condition
of a patient at the end of the treatment; the type of disease and its symptoms are found
to be part of the ontology. Thus, when input is provided to find the disease’s common
symptoms, the prediction process begins from the head of the ontology and traverses the
entire network of nodes in the ontology structure. This prediction takes time; hence, finding
a finite number of data is preferred to avoid time-consuming and difficult predictions. The
data collected from the different sources will be stored in the database. Thus, to predict the
common disease attributes, data mining helps determine the patterns from the data source.

Various working principles help handle structural risk minimization concerning train-
ing and testing with data samples per Algorithm 3.

Algorithm 3. Working principles of structural risk minimization.

input; image data—{(a1, b1) . . . , (at, bt)}, f(a)-function, E(f) = expected risk function,
generate expected risk function
E(f) =

∫
Q(b, f (a))dq(a, b)

for unknown problem
find empirical risk function
E(f)← Eemp(f)
Eemp(f) = 1/t ∑t

k=1 Q(bk, f (ak))
for nonnegative set

if (0 ≤ Q (b, f(a)) ≤ Y)
P← 1− η

else if (Q (b, f(a)) ≤ Y)

E(f) ≤ Eemp(f) + Yζ
2 (

√
1 + 4Eemp ( f )

Yζ )

end if
ζ ← 2(ln n-ln η)/L
if L/d large

Eemp(f)← small
E(f)← small

end if
end for

end for
return, minimization of structural risk

The inputs of the distributed samples {(a1, b1) . . . , (at, bt)} are used to find the function
that maximizes the expected function, as in Equation (8):

E(f) =
∫

Q(b, f (a))dq(a, b) (8)
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where q(a, b) represents the joint probability and Q(b, f (a)) shows an error of a loss function.
The empirical result is shown below and is replaced with an expected function. The function
and values b and q (a, b) are unknown (Equation (9)).

Eemp(f) = 1/t ∑t
k=1 Q(bk, f (ak)) (9)

For a nonnegative set F, 0≤Q (b, f(a))≤ Y follows the inequality that holds the inequal-
ity and the probability 1-η reached simultaneously for all loss functions (Q (b, f(a)) ≤ Y), as
in Equation (10):

E(f) ≤ Eemp(f) +
Yζ

2
(

√
1 +

4Eemp ( f )
Yζ

) (10)

Here, the function has a finite number of dimensions (d) and an unlimited number of
elements. d denotes the complexity of a function, and ζ is expressed as, First, sum the right
of the empirical risk errors seen in the objects; second, sum the interval of confidence that
depends on the complexity:

ζ ← 4(d ln (2L/d) + d) − ln(η/4))/L (11)

where L denotes the size of the sample. In this case, the function Q(b, f (a) has a finite
number of elements (n), and ζ is expressed as:

ζ ← 2(ln n − ln η)/L (12)

These two considerations are followed simultaneously. If L/d seems large, the second
sum on the right side tends to be small. Then, the empirical result is negligible. Similarly,
the expected value is small (in Equations (11) and (12)). Similarly, if L/d seems small,
the second sum on the right side tends to be significant. Then, the empirical result is not
responsible for obtaining an excellent or generalized expected value.

Structural risk minimization is intended to reduce the operational risk based on the
empirical complexity of the objects. Each set function has a nested subset of a function,
where each element must satisfy the following properties. Let S be the function, and the
dimension dk of each set of functions be finite, d1 ≤ d2. . .≤ dn. . . . . . , with each element
in a set structure Sk having a boundary: 0 ≤ Q (b, f (a)) ≤ Y, f ε F. The nested structure is
constructed concerning complexity. Then, the subset is selected to minimize the empirical
risk of deriving the bound of the expected value. When element S and dimension d are
selected, the sum of the empirical risk and confidence interval, namely, the expected risk, is
minimized [17]. Structural risk minimization suggests a trade-off between complexity and
empirical risk. As the subset index increases, the empirical risk will decrease because of the
increased inability to approximate the objects when the confidence interval increases based
on increased complexity.

Structural risk minimization was adopted with never-ending learning for learning
unknown sources to relate to the existing available data sources [24]. Only the disease
and its attributes are required to predict the common attributes; the process begins with
the class disease and traverses the ontology network to find the attributes faster and more
effectively. Figure 7 represents structural risk minimization for finite data based on the
predicted data from the ontology.
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3.5. NEL (Never-Ending Learning)

Never-ending learning is a machine-learning system that develops answers to the
questions that users pose in natural language without the intervention of humans and
can learn continuously based on the relationships between objects. NEL adapts the self-
correction process when it contains more information with the help of machine learning [25].
It was developed to identify the fundamental semantic relationships between the numbers
of predefined data categories [26]. Recently, the number of relationships available in the
knowledge base of NEL has increased, and we have learned more new facts. Thus, the
research team has been running NEL around the clock, sifting through large numbers of
web pages looking for connections between items of information which are already known,
and, through the process of search, trying to make new connections; thus, in this way, it
represents the learning strategy of humans.

The architecture of never-ending learning is shown in Figure 8. It consists of a knowl-
edge base with a knowledge integrator, which means merging two or more originally
unrelated knowledge structures into a single structure. It also consists of patterns of text,
orthographic classifiers, HTML patterns based on specific URLs, human advice, learned
embedding, active searching of text on the web, inferring new beliefs from old ones, image
classifiers, and ontology extenders [27].
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Figure 8. Never-Ending Learning Architecture.

From Figure 9 and the consideration of the never-ending learning architecture, the
never-ending learning method, represented in the following algorithm, was used to predict
similarity factors in images of tooth disease [28].

As per Algorithm 4, Never-Ending Image Learner for image prediction, the sample
outcome is predicted per the disease and its symptoms [29].

Algorithm 4. Never-Ending Image Learner for image prediction.

input; an ontology-O
output; trusted instances for each group
share initial image data
for k = 1, 2 . . . ∞

for each group ε O
extract new image data
filter patients
train data classifiers
assess the patient using a trained classifier
promote highest-confidence patient

end for
Share items

end for
for each class

if X mutually exclusive with Y
Y← negative instance of image

end if
if (Y(X)← X)

Y← trusted item
end if
if (co-occur← two trusted patterns) & (co-occur← any –Ve pattern in the same web)

NELL then filters out
end if

end for
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This framework predicts a disease’s common attributes, taking symptoms and relevant
parameters as inputs. Text is taken as input based on the names of the symptoms related
to the particular disease. In addition, the other parameters help to identify the disease
accurately. Sometimes several diseases have the same symptoms; we can filter some
diseases with this method. Then, by analyzing other parameters, we can accurately identify
the disease and determine a common disease attribute. Creating a database with five user
input parameters helps to identify the common disease attributes. Table 1, below, is based
on automatic online prediction concerning common disease attributes in ontology mapping.
Finally, the process ends with the automatic online prediction of common disease attributes
based on the following ontology mapping tree.

In this system for automatic online prediction of common disease attributes, the
general contents of a database include the name of a symptom, the time, intensity, the
name of the organ, and the disease duration. As per Algorithm 5, a word-tagging process
is implemented to connect the text with respective symptoms and another parameter. This
process follows three technics [30].

Algorithm 5. Automatic online prediction of common disease attributes.

generate database-DB = {symptom, time, intensity, organ name, duration}
create a tag for symptom
user input as word
for each user word

separate each word
check each word in DB
if (word→ found)

put relevant array
else if (word→ not found)
Search symptoms and reference tag
if (reference word→ found)

move to the relevant decision
else

put relative attributes and continue
end if

end if
end for
return, prediction of common disease attribute
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Table 1. Use Never-Ending Image Learner (NEIL) for image-based prediction of diseases and symptoms.

SI No. Disease Symptoms

1 Alzheimer’s

Memory loss

Poor judgment

Confusion

2 Parkinson’s
Poor judgment

Trouble speaking

3 Stroke
Slowed movement

Trouble speaking

6. Synonym parent tree

When the input text is matched with the correct database, many results are unmatched,
even if the word’s meaning is the same. In this case, the synonym parent tree is used. Each
word is connected with the root word. If there is any matching child word, the input word
is replaced with the root of the matched word [13].

7. Symptom reference tag

When a particular symptom is referred to with a problematic one-word clinical term,
the user may use a word in many ways, such that identifying the referent may be tricky.
A symptom reference tag method that determines the name of the symptom using com-
pound words was therefore introduced.

8. Relevant attribute array

The disease can be identified with typical symptoms based on the above process. If
the symptom input is in textual form, the relevant array form of an input symptom is taken.
Similarly, if the input shows a time, it modifies and enters the relevant time array.

4. Experimental Results and Discussion

Machine learning is the study of computer algorithms that can automatically improve
through experience by using data. Machine learning is used to process vast numbers of
images, which requires processing vast numbers of data, often of high dimensions, which is
problematic for most machine-learning techniques. Therefore, interactions between image
data and priors are necessary to drive model-selection strategies. Never-Ending Image
Learner (NEIL) is a computer program that can learn information about images found on
the internet. Virtual image sensing involves an electronic device that converts an optical
image into an electronic signal. It is used in digital cameras and imaging devices to convert
the light received by the camera or imaging device lens into a digital image [31].

4.1. Overall Accuracy

The proposed system focuses on machine learning for automatic online prediction of
common disease attributes using Never-Ending Image Learner. The search result provides
overall accuracy, image-sensing accuracy, error standard deviation, normalized frequency,
and image classification and has a prediction function. This analysis’s approximate result
is 52.20%.

A detailed explanation of an image provides textual access to visual content, which is
most often used for digital graphics online and digital files. Table 2 shows the sample image
and overall accuracies based on the classification. This graphical representation is based on
the sample images’ true-positive, true-negative, positive, negative, and overall accuracy.
Overall accuracy is the probability that a test will correctly classify an individual. The sum
of the true positives plus the true negatives is divided by the total number of individuals
tested [32]. For the sample images and the overall accuracy based on the classification
inference results, the sample image count level was 25 to 950, and the increased accuracy
range was 97.8%. Image accuracy is the distance between the actual geographic location
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of an object or detail compared to the object’s position in the image. Table 2 shows the
clustering based on the number of image samples and the image-sensing accuracy, and an
error matrix is the most common way of expressing the accuracy of remote-sensing image
classifications, such as the smart analysis of disease factors with virtual image sensing. The
clustering is based on the number of image samples and image-sensing accuracy inference
results. The image sample counts are 10 to 262, and the increased image-sensing accuracy
range is 65.34%.

Table 2. Machine learning for automatic online prediction. Analysis of sample images and image-
sensing accuracy.

Automatic Online Prediction Analysis Image-Sensing Accuracy Clustering Analysis

Sample Images (Count) Image-Sensing Accuracy (%) No Image Sample (Count) Image-Sensing Accuracy (%)

25 66.7 10 66.6

58 76.5 28 59.09

70 78.05 46 56.25

85 78.21 64 54.76

150 77.22 64 53.84

235 80.67 64 53.22

286 80.32 64 52.7

350 83.1 136 52.43

400 86.6 154 52.17

500 88.3 172 51.96

650 85.6 190 51.78

725 87.9 208 55.5

815 92.8 226 59.4

900 95.6 244 60.78

950 97.8 262 65.34

In Figure 10, MIL (multiple-instance learning), SVM (support vector machine), and
MCS (multiple classifier systems) results are presented. The proposed system of MLeMIL
for the SVM is 97.8% efficient, and image classification for the MCS is 95% efficient [33]. The
existing MIL system for automated image indexing is 89% efficient, and hyper-spectrum
image classification is 72% efficient. Classification is an ordered set of related categories
used to group data according to similarities. It consists of codes and descriptors and allows
survey responses to be put into meaningful categories to produce valuable data.
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4.2. The Standard Error

The standard error of the estimate represents the difference between actual data values
and those anticipated by the given model or the average deviation of the errors. A sample’s
effectiveness, accuracy, and consistency are calculated using the standard error [34]. The
estimated standard deviation of a statistical sample population is known as a statistic’s
standard error (SE). The standard error is equal to σ divided by

√
n, where σ represents

the standard deviation and
√

n Represents the square root of the data’s sample count (as
expressed in Equation (13)).

Standard error =
σ√
n

(13)

Virtual image sensing involves an electronic device that converts an optical image
into an electronic signal. It is used in digital cameras and imaging devices to convert the
light received by the camera or imaging device lens into a digital image. Table 3 shows
the relationships in virtual image sensing based on the data errors. The standard error is
calculated by dividing the standard deviation by the number of image sample square roots.
Virtual image sensing is based on the data error inference result [35]. The image count was
15 to 650, and the increased error standard deviation accuracy range was 24%.

Table 3. Analysis of virtual image sensing based on the standard data errors concerning stan-
dard deviations.

No. of Image
Samples (Count) Standard Deviation Data Sample Count Error STD (m/s2)

15 3.93 1 3.93

28 4.15 3 1.38

41 4.37 9 0.48

54 4.59 13 0.35

67 4.81 17 0.28

80 5.03 21 2.56

93 5.25 25 1.21

150 5.47 29 1.18

175 5.69 33 1.17

250 5.91 37 2.15

300 6.13 41 3.14

450 6.35 45 0.14

475 6.57 49 2.13

500 6.79 53 1.12

650 7.01 57 3.12

Figure 11 shows that graph comparison compared to data error was 83% efficient,
virtual image sensing was 85% efficient, and never-ending image learning was 54% efficient.
The result for the proposed method was 24% efficiency. This graphical representation is
based on the number of images and error standard deviations. A data error occurs when a
datum in a digital medium has been altered erroneously. Such errors can be manifested as
several incorrect bits or even a single bit that is 0 when it should be 1 or vice versa [30].
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4.3. Time Duration and Normalized Frequency

The normalized frequency equals one divided by the number of image samples
(Equation (14)). Table 4 shows common disease attribute diagnoses based on time duration
and normalized frequency; the duration of an event or state is the time in which it happens
or exists.

Normalized f requency =
1

No o f image sample
(14)

Normalized frequency (f) is a quantity with a frequency dimension. You need only
divide the frequency between counts by the number of image samples. A disease’s common
attribute diagnosis is based on the time duration and normalized frequency inference result.
The time duration was 0.67 to 12.43, and the increased normalized frequency accuracy
range was 15%.

Table 4. Analysis of disease based on time duration and normalized frequency.

Time Duration (d) No. of Image Samples (Count) Normalized frequency (f)

0.67 5 0.23

1.56 18 0.058

2.45 31 0.032

3.34 44 0.028

4.23 57 0.0189

5.12 70 0.981

6.01 83 0.125

6.9 96 0.523

7.79 109 0.125

8.68 122 0.523

9.57 135 0.921

10.46 148 1.319

11.35 161 1.717

12.24 174 2.115

12.43 187 2.513
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A health attribute is one component of a complete health state, representing one se-
lected area of functioning that usually ranges from average to severely limited. A common
attribute is a data element associated with a record in the system [36]. Figure 12 shows that a
common attribute diagnosis is an illness or sickness characterized by specific signs or symp-
toms depending on the disease. This graph comparison result was compared with time
duration and normalized frequency, producing an approximate result of 11.22% efficiency.

Diagnostics 2023, 13, 95 23 of 28 
 

 

Table 4. Analysis of disease based on time duration and normalized frequency. 

Time Duration (d) No. of Image Samples 
(Count) 

Normalized frequency (f) 

0.67 5 0.23 
1.56 18 0.058 
2.45 31 0.032 
3.34 44 0.028 
4.23 57 0.0189 
5.12 70 0.981 
6.01 83 0.125 
6.9 96 0.523 

7.79 109 0.125 
8.68 122 0.523 
9.57 135 0.921 
10.46 148 1.319 
11.35 161 1.717 
12.24 174 2.115 
12.43 187 2.513 

A health attribute is one component of a complete health state, representing one se-
lected area of functioning that usually ranges from average to severely limited. A common 
attribute is a data element associated with a record in the system [36]. Figure 12 shows 
that a common attribute diagnosis is an illness or sickness characterized by specific signs 
or symptoms depending on the disease. This graph comparison result was compared with 
time duration and normalized frequency, producing an approximate result of 11.22% ef-
ficiency. 

 
Figure 12. Analysis of common disease attribute diagnosis. 

4.4. Predictions of Intelligent Analysis of Disease Factors 
Results for the predictions of intelligent analysis of disease factors based on virtual 

image sensing are listed in Table 5. Virtual image sensing is software that, given the avail-
able information, processes what a physical sensor otherwise would. 

Figure 12. Analysis of common disease attribute diagnosis.

4.4. Predictions of Intelligent Analysis of Disease Factors

Results for the predictions of intelligent analysis of disease factors based on virtual
image sensing are listed in Table 5. Virtual image sensing is software that, given the
available information, processes what a physical sensor otherwise would.

Table 5. Predictions of intelligent analysis of disease factors.

No. of Image Samples (Count) Prediction Analysis (%) No. of Image Samples (Count) Prediction Analysis (%)

12 56.7 250 65.4
28 58.9 345 68.2
44 61.1 440 71
60 63.3 535 73.8
76 65.5 630 76.6
92 67.7 725 79.4

108 69.9 820 82.2
124 72.1 915 85
140 74.3 950 87.8
156 76.5 1000 90.6

This system learns to interpret the relationships between different variables and
observes readings from different instruments.

Regarding the predictions of intelligent analysis of disease factors based on virtual
image-sensing inference results, the image counts were from 12 to 156, and the increased
prediction analysis accuracy range was 90.6%.

An intelligent health prediction system is intended to assist health professionals in
their decision-making regarding medical situations. This system will provide the guidance
and information needed for doctors. Figure 13 presents the prediction results of intelligent
analysis of the disease defined [37]. In the clustering graph comparison results, the pro-
posed system of MIL for SVM was found to be 45% efficient, and image classification for
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MCS was 20% efficient. The existing system of MIL for automated image indexing was 28%
efficient, and hyper-spectrum image classification was 18% efficient.
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4.5. Image Classification for Prediction Functions

Measurements of classification accuracy provide a categorical basis for diagnosing the
a priori undefined data composition and the core of the data classes. Consequently, placing
a single item in one of the selected classes achieved the highest classification accuracy score
within the ideal data range of 70% to 90%. This finding may also be factual for virtual image-
sensing data. According to automated prediction, the broad phrase “Online healthcare
system Classification accuracy” defines how closely a measurement resembles the actual
value [14]. Random and systematic mistakes occur when the phrase is used to describe
collections of classification accuracy measurements made for the exact measurement. This
classification accuracy allows the correct generation of data quality features from real-
world expected data. The information is accurate and error-free thanks to this classification
system’s correctness. The accuracy of classification data is based on hospital medical
records. Since better classification accuracy metrics depend on correctness, the information
must be accurate. The image classification for predicting inference results shows that the
image classification level is 2 to 128 and that the increased predicting function accuracy
range is 62.4%.

In statistics and machine learning, a linear predictor function is a linear function of a
set of coefficients and explanatory variables whose value is used to predict the outcome of
a dependent variable. An image is selected and loaded to predict image classification and
resized to a predefined size, such as y (y pixels) [15]. Then, the pixel value is scaled to the
range [0,y] and selected, the pre-trained model is run, and the results are displayed. The
image classification prediction function experiment results are shown in Table 6.

According to Figure 14, showing the clustering graph comparison results, the proposed
system of MIL for SVM was found to be 75% efficient, and image classification for MCS was
40% efficient. The existing system of MIL for automated image indexing was 60% efficient,
and hyper-spectrum image classification was 33% efficient. Image classification refers to
extracting information classes from a multiband raster image. The main objective of image
classification is to group all the pixels in a particular image into a specific smart analysis of
disease factors with the virtual image-sensing cover class. The resulting raster from image
classification can be used to create thematic maps [20].
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Table 6. Analysis of image classification for prediction function.

Image Classification Prediction Function Image Classification Prediction Function

2 45.3 135 56.8
11 47.9 150 57.2
20 50.5 165 57.6
29 53.1 180 58
38 55.7 195 58.4
47 58.3 210 58.8
56 60.9 225 59.2
65 63.5 240 59.6
74 66.1 255 60
83 68.7 270 60.4
92 71.3 285 60.8

101 73.9 300 61.2
110 76.5 315 61.6
119 79.1 330 62
128 81.7 345 62.4
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5. Conclusions

Never-Ending Image Learner to forecast illness variables allows structural risk re-
duction and chooses from finite data images using machine learning-enabled M-theory
with virtual sensing to predict real-time images. Our findings could stimulate further
research in deep learning and promote the idea of using machine learning for automatic
online prediction of common disease attributes using Never-Ending Image Learner. The
proposed method uses isotropic positioning and the working principles of never-ending
image learning for image prediction. Classifications were performed and achieved an
efficiency score of 96.54%; the clustering analysis was implemented and achieved a score of
95.22%; common disease attribute diagnosis was performed and achieved an efficiency of
86.64%, and the predictions of smart analysis concerning disease factors had a 6.54% higher
value. This study achieved a higher accuracy level of 93.11%, a reliability of 94.35%, and
a specificity of 94.68% compared to the existing methods. In the future, automatic online
prediction of disease-common attributes can be found by comparing machine learning
instead of machine learning and non-physical processes such as the business-oriented
model. For this, we can use IoT-recommended Smart analysis of disease processes instead
of Never Ending Image Learner. Machine Learning and Never Ending Image Learning,
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and Virtual image sensing used in this way can deliver a certain amount of Multi-access
edge computing very well.
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