Algorithm 1. Automatic prediction from the dataset. |
input; dataset output; prediction of attributes for each disease data i for each attribute a remove → a for each disease data (i, t) MIN = 0 for each disease data (i, k) & (k≠t) MIN = MIN + S (k, t) if (MIN < low_Thold) low_Thold = MIN end if end for end for for each disease data (i, t) MAX = 0 for each disease data (i, k) & (k≠t) MAX = MAX + S (k, t) if (MAX > high_Thold) high_Thold = MAX add → a Ts = 0 end if end for end for for each (i, t) & (a≠t) Ts = Ts + S (a, t) end for if (Ts > high_Thold) predict disease data (i, a) else if (Ts > low_Thold) interpolated S = interpolate (Ts, low_Thold, high_Thold) end if if (interpolated S > cut-off) predict disease data (i, a) end if end for end for |