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Simple Summary: Patients with cancer are often immuno-compromised, and at a high risk of experi-
encing various COVID-19-associated complications compared to the general population. Additionally,
COVID-19 infection and lung toxicities due to cancer treatments can present with similar radiologic
abnormalities, such as ground glass opacities or patchy consolidation, which poses further challenges
for developing AI algorithms. To fill the gap, we carried out the first imaging AI study to investigate
the performance of habitat imaging technique for COVID-19 severity prediction and detection specifi-
cally in the cancer patient population, and further tested its performance in the general population
based on multicenter datasets. The proposed COVID-19 habitat imaging models trained separately on
the cancer cohort outperformed those AI models (including deep learning) trained on the multicenter
general population by a significant margin. This suggests that publicly available COVID-19 AI models
developed for the general population will not be optimally applied to cancer.

Abstract: Objectives: Cancer patients have worse outcomes from the COVID-19 infection and greater
need for ventilator support and elevated mortality rates than the general population. However,
previous artificial intelligence (AI) studies focused on patients without cancer to develop diagnosis
and severity prediction models. Little is known about how the AI models perform in cancer patients.
In this study, we aim to develop a computational framework for COVID-19 diagnosis and severity
prediction particularly in a cancer population and further compare it head-to-head to a general
population. Methods: We have enrolled multi-center international cohorts with 531 CT scans from
502 general patients and 420 CT scans from 414 cancer patients. In particular, the habitat imaging
pipeline was developed to quantify the complex infection patterns by partitioning the whole lung
regions into phenotypically different subregions. Subsequently, various machine learning models
nested with feature selection were built for COVID-19 detection and severity prediction. Results:
These models showed almost perfect performance in COVID-19 infection diagnosis and predicting
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its severity during cross validation. Our analysis revealed that models built separately on the cancer
population performed significantly better than those built on the general population and locked to
test on the cancer population. This may be because of the significant difference among the habitat
features across the two different cohorts. Conclusions: Taken together, our habitat imaging analysis
as a proof-of-concept study has highlighted the unique radiologic features of cancer patients and
demonstrated effectiveness of CT-based machine learning model in informing COVID-19 management
in the cancer population.

Keywords: COVID-19; habitat imaging; machine learning; diagnosis; prognosis

1. Introduction

The global pandemic of the COVID-19 disease forced researchers to swiftly develop
effective ways to mitigate the quick spread of the virus. Accurate diagnostic solutions have
been developed for COVID-19, among which Reverse Transcription Polymerase Chain
Reaction (RT-PCR) is considered as the gold standard in detecting the infection. However,
RT-PCR has several limitations with a false-negative rate [1–3] that is sufficiently high and
multiple tests may be required to confirm the diagnosis of SARS-CoV-2 infection. More
importantly, RT-PCR offers no insight on assessing disease severity to guide patient man-
agement. Due to these drawbacks, several approaches were investigated to complement
the use of the RT-PCR, including clinical symptoms, laboratory findings, and imaging. For
imaging, computed tomography (CT) and chest radiography (CXR) are routinely used to
guide clinicians in the diagnosis and assess the pulmonary severity of COVID-19 [4–8].

Patients with cancer are often immuno-compromised and at a high risk of experiencing
various COVID-19 associated complications compared to the general population [9]. Pilot
artificial intelligence (AI) algorithms largely focus on the general population, utilizing
features such as clinical symptoms [10,11], lab tests [12–14], and CT findings [15–17] to
diagnose COVID-19 and predict outcome after infection. While these AI algorithms showed
initial promise, there were challenges and failures observed in the clinical implementation
of these models driven by a failure to validate algorithms in heterogeneous populations
as well as a change in disease presentation with SARS-CoV-2 variants [18]. The likelihood
for the clinical utility of models built using data from the general population is even
smaller in immunocompromised hosts, who may bear distinct risk factors for severe
disease. Additionally, COVID-19 infection and lung toxicities due to cancer treatments
can present with similar radiologic abnormalities, such as ground glass opacities (GGO) or
patchy consolidation [19–21] on chest CT, which poses further challenges for AI detection
algorithms. Though pilot AI models have been developed to predict COVID-19 severity and
deterioration specifically in cancer patients [22,23], they left out the quantitative imaging
metrics. Further, it is unclear whether and to what degree these AI models built on the
cancer population are different from the ones on the general population, which is what we
aim to investigate in this study.

Imaging findings in COVID-19 vary greatly from patient to patient, including in the
extent and heterogeneity of involvement and the characteristics of the lung infiltrates.
Radiologists score pneumonia severity by assessing the percentage and distribution of
distinct infected regions, such as ground-glass opacities (GGO) and consolidation. These
standards are known to be coarse, subjective, and not robust enough to characterize complex
infection patterns. Many AI approaches (radiomics and deep learning) attempt to automate
these measurements through crafting robust computational pipelines. On the other hand,
habitat imaging offers an avenue for us to define intrinsic infection patterns. We have shown
that habitat imaging quantifies intratumoral heterogeneity in cancer patients [24]. Unlike
classical radiomics analysis which treats the heterogeneous tumor as one entity, habitat
imaging explicitly partitions the complex tumor into phenotypically distinct subregions,
where these intratumoral subregions are termed habitats. These subregions have differing
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prognostic implications for cancer severity. Similar to genomic sequencing studies that
show the clonal diversity of cancer cells [25], habitat imaging offers a new and powerful
avenue to investigate how molecular diversity manifests on the radiological scans, and we
have demonstrated added value in predicting treatment response [26].

The main goal of this study is to investigate the performance of habitat imaging
technique for COVID-19 prognosis (primary aim) as well as detection (secondary aim) in
cancer patient population and compare its performance to the general population. Different
from existing AI studies that mainly focused on the general population, here we specifically
focus on the COVID-vulnerable cancer population.

2. Materials and Methods
2.1. Overall Study Design

The overall goal is to develop and test imaging biomarkers for the diagnosis and
prognosis of COVID-19 in the cancer population and further compare its performance in
the general population (dataset details in Table 1). To achieve this goal, we proposed a
habitat imaging framework that consists of three main steps (Figure 1). First, we applied
imaging preprocessing and fusion pipeline to highlight the lung infection patterns. Second,
an unsupervised subregion segmentation approach (i.e., habitat analysis) is proposed to
reveal these complex infection patterns by partitioning the whole lung regions into pheno-
typically different habitats. Third, we characterized the spatial arrangement/interaction
among these habitats and built machine learning models for COVID-19 detection and
severity prediction.

Cancers 2023, 15, 275 4 of 20 
 

 

 
Figure 1. Workflow of the proposed approach. 

2.2. Patient Population 
This retrospective study was approved by the MD Anderson institutional review 

board and compliant with the Health Insurance Portability and Accountability Act. We 
enrolled two types of patient population, including a general population set and a cancer 
population set (Table 1). 

Table 1. Demographic and clinical characteristics of general and cancer population. Note, There 
are three datasets, Stony Brook (N = 275 patients with 304 CT scans), RICORD COVID-19 
positive (N = 110 patients with 110 CT scans) and RICORD COVID-19 negative (N = 117 
cases with 117 CT scans) that we referred to as the general population. Similarly, we have 
three datasets, MD Anderson COVID-19 positive (N = 252 patients with 258 CT scans), 
Leukemia (N = 126 patients with 126 CT scans) and Melanoma (N = 36 patients with 36 
CT scans) that we referred to as cancer population. The Leukemia and Melanoma sub-
cohorts are not highlighted in this table as the detailed demographic information for these 
datasets is not available. 

Datasets Characteristics 
Stony Brook  

(N = 275) 
MD Anderson COVID-19 

Positive (N = 252) 
No. (%) No. (%) 

Age (years)   
<18 - 1 (0.4%) 

18–59 125 (45%) 112 (44%) 
60–74 83 (30%) 99 (39%) 
75–90 67 (24) 37 (15%) 

Figure 1. Workflow of the proposed approach.



Cancers 2022, 15, 275 4 of 19

2.2. Patient Population

This retrospective study was approved by the MD Anderson institutional review
board and compliant with the Health Insurance Portability and Accountability Act. We
enrolled two types of patient population, including a general population set and a cancer
population set (Table 1).

Table 1. Demographic and clinical characteristics of general and cancer population. Note, There
are three datasets, Stony Brook (N = 275 patients with 304 CT scans), RICORD COVID-19 posi-
tive (N = 110 patients with 110 CT scans) and RICORD COVID-19 negative (N = 117 cases with
117 CT scans) that we referred to as the general population. Similarly, we have three datasets, MD
Anderson COVID-19 positive (N = 252 patients with 258 CT scans), Leukemia (N = 126 patients
with 126 CT scans) and Melanoma (N = 36 patients with 36 CT scans) that we referred to as cancer
population. The Leukemia and Melanoma subcohorts are not highlighted in this table as the detailed
demographic information for these datasets is not available.

Datasets Characteristics
Stony Brook

(N = 275)
MD Anderson COVID-19

Positive (N = 252)

No. (%) No. (%)

Age (years)

<18 - 1 (0.4%)

18–59 125 (45%) 112 (44%)

60–74 83 (30%) 99 (39%)

75–90 67 (24) 37 (15%)

>90 - 3 (1%)

Sex

Male 160 (58%) 121 (48%)

Female 106 (39%) 131 (52%)

NA 9 (3%) -

BMI

>30 100 (36%) 70 (28%)

<30 127 (46%) 95 (38%)

NA 48 (17%) 87 (35%)

Smoking status

Current 6 (2%) 11 (5%)

Former 63 (23%) 90 (36%)

Never 138 (50%) 148 (59%)

NA 68 (25%) 3 (1%)

Major diseases

Malignancy 25 (9%) 240 (95%)

Hypertension 105 (38%) 136 (54%)

Diabetes 54 (20%) 105 (42%)

Coronary artery diseases 33 (12%) 50 (20%)

Chronic kidney disease 19 (7%) 75 (30%)

Chronic obstructive pulmonary disease 18 (7%) 15 (6%)

Other lung diseases 39 (14%) 22 (9%)
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Table 1. Cont.

Datasets Characteristics
Stony Brook

(N = 275)
MD Anderson COVID-19

Positive (N = 252)

No. (%) No. (%)

Symptoms at onset

Fever 158 (57%) 33 (13%)

Shortness of breath 152 (55%) 14 (6%)

Cough 157 (57%) 39 (15%)

Nausea 49 (18%) 17 (7%)

Vomiting 29 (11%) 9 (4%)

Diarrhea 65 (24%) 17 (7%)

Abdominal pain 19 (7%) 7 (3%)

Hospitalization status

Inpatient/admitted 259 (94%) 86 (34%)

Outpatient - 166 (66%)

Emergency Visit 16 (6%) -

ICU

TRUE 83 (30%) 42 (17%)

FALSE 192 (70%) 209 (83%)

Oxygen requirement

TRUE 71 (26%) 20 (8%)

FALSE 204 (74%) 232 (92%)

For the general population, a total of 531 CT scan images were obtained from public
TCIA database (Stony Brook [27,28] and RICORD [28–30] cohorts), including 385 patients
with confirmed COVID-19 positive with RT-PCR and 117 COVID-19 negative patients
from four international sites. For the cancer population, a total of 420 CT scan images
from 414 cancer patients receiving treatment at MD Anderson cancer center were included.
Among the 414 cancer patients, 252 patients were confirmed to have COVID-19 infection
with RT-PCR while the remaining 162 patients were COVID-19 negative per RT-PCR but
had other causes of pneumonia or pneumonitis. We utilized the available CT scan images
of same patient at multiple timepoints to build the diagnostic models. For the prognostic
model, only the CT scans closest to the PCR test were used to predict the end points
(hospitalization, ICU admission and ventilation).

2.3. Imaging Preprocessing and Fusion

We utilized the U-net [31] to segment the right and the left lung from the original
CT images. Then, the CT density of lungs was normalized using both the lung and medi-
astinum windows. Since the infected regions within the lungs manifested as ground glass
opacity (GGO), consolidation, and their mixture, which usually corresponded to increased
heterogeneity compared to the normal lung parenchyma, we specifically characterized
these local density and texture variations using the entropy filter. For a small neighborhood
Nl with window size nl ×ml within an image I, we can compute the local entropy of the
neighborhood Nl as:

E(Nl ) = −∑M−1
r=0 pr log pr (1)

where pr = qr/(nl ×ml) denotes the probability of the grayscale r appearing in the neigh-
borhoodNl and qr denotes the number of pixels with grayscale r inNl . M is the maximum
grayscale. The filtered image channels were fused together to form the final image on
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which the habitat analysis is applied. Figure 1 shows an example of the lung window
and mediastinum window, the corresponding results of their filtered local entropy maps
(Equation (1)), and the fused image. Note that brighter pixels in the filtered maps corre-
spond to neighborhoods with high local entropy in the original images.

2.4. Habitat Image Pipeline

After imaging harmonization, the habitat imaging is an unsupervised (clustering
based) approach [26,32,33] containing two clustering modules at both individual and
global levels, as illustrated in Step 2 of Figure 1. The individual level module is designed
to segregate each patient’s lungs into superpixels by grouping neighboring pixels of sim-
ilar intensity and texture, whereas the global level module was designed to refine the
individual-level over-segmentation by exploiting the similarity of both inter and intra-
patient superpixels.

Individual level clustering module
Here, we aimed to partition each of the input 3D lungs into phenotypically similar

small pieces. Given the fused maps, the simple linear iterative clustering (SLIC) [34]
algorithm was utilized to over-segment them into a cluster of superpixels. The main idea
behind the SLIC superpixel algorithm is to adopt the local kmeans algorithm to generate
clusters grouped by neighboring voxels of similar imaging patterns. In detail, the SLIC
algorithm involves two steps:

Step 1. Cluster center initialization: The algorithm starts by splitting the input image
into K regular grids and then chooses the center of each grid as the initial cluster centers.
To avoid assigning a cluster center on image edge, the edge pixels with the lowest gradient
in a 3× 3× 3 neighborhood is chosen as the initial seed location.

Step 2. Local kmeans clustering: Each pixel is then assigned to the nearest cluster
center using a distance measure D:

D(i, j) =

√(
dc(i, j)

m

)2
+

(
ds(i, j)

S

)2
(2)

where dc(i, j) =
∣∣ai − aj

∣∣ and ds(i, j) =
√(

xj − xi
)2

+
(
yj − yi

)2
+
(
zj − zi

)2, ai denotes
the mean density of the voxels, dc denotes the density proximity, ds denotes the spatial
proximity, S denotes the initial grid step (sampling interval of the cluster centroids) and m
is a parameter that controls the compactness of the superpixels. The distance (Equation (2))
is computed within a confined region around the cluster center and this step is repeated
until the maximum number of iterations is reached or the residual error converges.

Global level clustering module
We merged the superpixels obtained for individual patients to study the inter and intra

patient similarity, so that superpixels with similar features/characteristics within a lung
were fused to form a habitat (subregion). Moreover, corresponding subregions across the
entire population were consistently labeled. In particular, each superpixel was represented
by first order statistics of its encompassing voxels’ four channels (lung and mediastinum
windows, and their entropy), and subsequently, kmeans clustering algorithm was used to
define the optimal habitat regions.

Multiregional spatial interaction (MSI) feature extraction
The multiregional spatial interaction (MSI) matrix was used to quantify the intra-lung

infection heterogeneity on the habitat maps (Step 3 of Figure 1). In detail, for any voxel
within each lung, we scanned its neighbor and the co-occurring pairs were added to the
corresponding cell in the MSI matrix (Step 3 of Figure 1). After looping through all lung
voxels, the habitats’ spatial distribution and interaction patterns were abstracted in this
MSI matrix. Subsequently, a set of quantitative features were extracted from the MSI
matrix including first order and second order statistical features. The first order statistical
features include the absolute volume and relative proportion of individual subregions as
well as their interacting boarders, whereas the second order statistical features summarize
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the subregion’s spatial heterogeneity, including the contrast, homogeneity, correlation,
and energy.

2.5. Habitat Imaging Based Machine Learning Model

To improve their generalizability, we aimed to build a parsimonious model by selecting
features with high discriminant power. Two clinical endpoints were studied: (1) COVID-19
diagnosis; (2) prognosis, including admission type: outpatient vs. inpatient, ICU, and
ventilation. Given these extracted features, we used a univariate feature ranking approach
(chi-square test) to evaluate each feature’s association with individual endpoints. The
feature importance score is computed based on the p-value of univariate testing (− log(p)).
The features were ranked by computed scores where feature with the largest score was
considered as the most important feature. We then iteratively selected the top ranked
features to build four types of machine learning models, including logistic regression,
generalized additive model, support vector machine, and random forest. 10-fold cross
validation was used for parameter tuning and performance evaluation. Of note, the
datasets for COVID-19 prognosis and severity are highly imbalanced (see Table 1). To
avoid evaluation bias (e.g., assigning all cases to the dominant class), we employed the
oversampling approach to augment samples from the underrepresented classes to balance
their cases with majority class.

2.6. Model Interpretation

To understand the constructed habitat models, we systematically investigated its
meaning. First, we overlapped the habitat subregions with radiologist’s manual annotation
of COVID infected regions on CT. Then, we correlated the MSI features to the radiolo-
gist’s semantic readings. In particular, the radiologists, blinded from habitat modeling,
reported CT features in structured report designed based on the RSNA COVID-19 re-
porting template (https://radreport.org/home/50830/2020-07-08%2011:50:07 accessed on
1 November 2021). The semantic features include presence of consolidation and/or ground
glass opacities (GGO), and if present, the laterality, location, quantity GGO/consolidation,
and patterns/morphology of GGO, In addition, presence or absence of centrilobular nodule,
discrete solid nodule, lymphadenopathy, bronchial wall thickening, mucoid impaction,
pericardial effusion, pleural effusion, pulmonary embolism, smooth septal thickening,
endotracheal tube, pulmonary cavities were also noted. COVID classification patterns
based on the RSNA Consensus Statement [35] and CT severity score were also recorded.
Volcano plot was utilized to visualize the association of the MSI features with individual
semantic readings.

2.7. Statistical Analysis

The receiver operating characteristics (ROC) curve analysis as well as the area under
the curve (AUC) were used to evaluate the prediction capability of the habitat imaging
models. The optimal threshold to separate different classes was defined based on the
Youden’s J statistics during training and the same threshold was applied during validation.
We also reported the model’s sensitivity, specificity, and accuracy. These metrics were
evaluated using 10-fold cross validation scheme.

3. Results
3.1. Habitat Image Analysis

We independently applied the habitat pipeline in both the general and cancer cohorts,
and consistently identified six distinct habitats (subregions) at the population level, corrob-
orating prior study of COVID-19 infection [36]. Figure 2 shows the detailed distribution
of four input image channels across the six habitat regions as well as their imaging in-
terpretations. In general, these habitat subregions are phenotypically different and that
the individual subregions were associated with distinct imaging features. The subregion
4 corresponds to the background normal lung parenchyma, and subregion 2 corresponds

https://radreport.org/home/50830/2020-07-08%2011:50:07
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to the pulmonary effusion. Subregion 3 corresponds to the dense and homogeneous consol-
idated area, and subregion 1 corresponds to pure GGO. Interestingly, subregions 5 and 6
correspond to the infected areas from GGO to consolidation at different degrees.
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Figure 2. Habitat subregions distributions; SR: subregion. Row (A) is a boxplot showing the detailed
distribution of the four input image channels across the six habitat regions. Row (B) represent the
imaging interpretations of the six habitat regions.

Clinically, it remains a laborious task to manually delineate areas of involvement on
each CT image, especially given the heterogeneous infection patterns. We compared the
habitat maps with annotation of lung infection by radiologists. As shown in Figure S1,
the infected regions segmented by the radiologist were mostly captured and separated
from the normal lung parenchyma region using proposed habitat approach. Furthermore,
the habitat imaging analysis can partition these heterogeneous infected regions into six
COVID-habitat regions (Figure 3).
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Figure 3. Examples of habitat maps of 5 cases from the Stony Brook dataset.

3.2. Habitat Models for COVID-19 Diagnosis

Given the habitat maps, fifty-eight multiregional spatial interaction features (details
in Table 2) were measured from these subregions for COVID-19 detection. We conducted
both unsupervised and supervised machine learning analysis to examine the diagnostic
values of habitat features for COVID-19 detection.

Table 2. Multiregional spatial interaction (MSI) features interpretation.

Feature Name Feature Description

MSI 1–MSI 4 2nd order statistics features

MSI 5–MSI 10 absolute habitat subregions volume (SR1–SR6)

MSI 11–MSI 16 interaction (absolute) between habitat subregions and border

MSI 17–MSI 21 interaction (absolute) between SR1 and the remaining subregions, i.e., MSI 17 = SR1 ∩ SR2,
MSI 18 = SR1 ∩ SR3, . . . , MSI 21 = SR1 ∩ SR6.

MSI 22–MSI 25 interaction (absolute) between SR2 and SR3, SR4, SR5 and SR6, i.e., MSI 22 = SR2 ∩ SR3,
MSI 23 = SR2 ∩ SR4, MSI 24 = SR2 ∩ SR5, MSI 25 = SR2 ∩ SR6.

MSI 26–MSI 28 interaction (absolute) between SR3 and SR4, SR5 and SR6, i.e., MSI 26 = SR3 ∩ SR4,
MSI 27 = SR3 ∩ SR5, MSI 28 = SR3 ∩ SR6.

MSI 29–MSI 30 interaction (absolute) between SR4 and SR5 and SR6, i.e., MSI 29 = SR4 ∩ SR5, MSI 30 = SR4 ∩ SR6.

MSI 31 interaction (absolute) between SR5 and SR6, i.e., MSI 30 = SR5 ∩ SR6.

MSI 32–MSI 37 percentage of habitat subregions volume (SR1–SR6)

MSI 38–MSI 43 normalized interaction (percentage) between habitat subregions and border
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Table 2. Cont.

Feature Name Feature Description

MSI 44–MSI 48 normalized interaction (percentage) between SR1 and the remaining subregions, i.e.,
MSI 44 = SR1 ∩ SR2, MSI 45 = SR1 ∩ SR3, . . . , MSI 48 = SR1 ∩ SR6.

MSI 49–MSI 52 normalized interaction (percentage) between SR2 and SR3, SR4, SR5 and SR6, i.e.,
MSI 49 = SR2 ∩ SR3, MSI 50 = SR2 ∩ SR4, MSI 51 = SR2 ∩ SR5, MSI 52 = SR2 ∩ SR6.

MSI 53–MSI 55 normalized interaction (percentage) between SR3 and SR4, SR5 and SR6, i.e., MSI 53 = SR3 ∩ SR4,
MSI 54 = SR3 ∩ SR5, MSI 55 = SR3 ∩ SR6.

MSI 56–MSI 57 normalized interaction (percentage) between SR4 and SR5 and SR6, i.e., MSI 56 = SR4 ∩ SR5,
MSI 57 = SR4 ∩ SR6.

MSI 58 normalized interaction (percentage) between SR5 and SR6, i.e., MSI 58 = SR5 ∩ SR6.

First, we applied low-rank embedding algorithms to assess the performance of habitat
features for differentiating COVID-19 positive from COVID-19 negative cases when mixing
the general and cancer patients (Figure 4). The COVID-19 positive cases from the general
population (RICORD, Stony Brook) and cancer population (MD Anderson Population)
tend to mix and form a tight cluster, indicating high similarity among them as measured by
habitat analysis. Since these embedding algorithms are designed to project the inherent
local structure of high dimensional data to low dimensional subspace, the clear separation
of COVID-19-positive from negative cases indicates that the habitat-derived MSI features
can effectively encode discriminant imaging information. Interestingly, the MSI features can
also differentiate the non-COVID-associated pneumonia across different cancers, including
pneumonia in acute myeloid leukemia or melanoma cases.
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Figure 4. Two-dimensional embeddings of general population and cancer population datasets after
habitat analysis.

Next, we built separate prediction models to detect COVID-19 infection on the general
population and cancer population (Figure 5 and Table 3). For the general population, the
optimized LR, SVM, RF and GAM models were fitted with the top 23, 10, 13, and 7 features,
respectively, and their corresponding confusion matrices were presented in Figure 5A.
Similarly, for the cancer population, the performances of these models using different
number of features were reported in the accuracy and AUC curves (Figure 5B), where these
models achieved high performance for COVID-19 detection.
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Table 3. Performance comparison of the different models for COVID-19 diagnosis on the general
and cancer cohorts. Acc: accuracy; Sen: sensitivity; Spe: specificity; AUC: area under the receiver
operating characteristic curve. LR: logistic regression, RF: random forest, SVM: support vector
machine, GAM: generalized additive model.

Methods

Cohort

General Cancer

Acc Sen Spe AUC Acc Sen Spe AUC

LR 0.9944 1.0000 0.9928 0.9999 1.0000 1.0000 1.0000 1.0000
RF 0.9944 0.9914 0.9952 0.9998 0.9952 0.9878 1.0000 0.9998

SVM 0.9906 0.9912 0.9904 0.9998 0.9976 1.0000 0.9961 1.0000
GAM 0.9925 1.000 0.9904 0.9997 0.9952 0.9938 0.9961 1.0000
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We compared the performance of our proposed habitat imaging approach to several
reported COVID-19 detection approaches from either conventional radiomics or deep
learning approaches based on imaging or other data source. As can be seen in Table S1, our
habitat imaging approach significantly outperformed the existing approaches.

3.3. Comparison between Diagnostic Models of General Population and Cancer Population

We first examined the feature importance ranked in two models for general or cancer
population (see Figure 5) for COVID-19 diagnosis. The top ranked features in the general
cohort are significantly different from cancer cohort. For instance, MSI25 which captures
interaction between SR2 and SR6 appears to be the most important predictor in the general
cohort, while it is not top ranked in cancer. The fluctuation across the two different cohorts is
possibly due to their underlying difference in pneumonia patterns as appeared on CT scans.

Next, we tested the performance of machine learning model trained on general popu-
lation directly on cancer population, where we observed a decreased prediction capacity
compare with the dedicated cancer model as shown in Figure S2. In addition, when finetun-
ing the general population model on the cancer population, we observed that the mixture
of two heterogenous populations adversely affected model’s performance (Table 4).

Table 4. Performance of the COVID-19 diagnostic models trained on the general cohort and applied
on the cancer cohort.

Methods
All

Acc Sen Spe AUC

LR 0.8738 0.9910 0.8317 0.9807
RF 0.8548 1.0000 0.8088 0.9178

SVM 0.8548 1.0000 0.8088 0.9586
GAM 0.9000 0.9918 0.8624 0.9202

3.4. Habitat Models for COVID-19 Prognosis and Severity Prediction

We tested the effectiveness of habitat imaging models in predicting COVID-19 dis-
ease severity with three end points include patient’s admission, need for intensive care,
and need of mechanical ventilation. The habitat imaging-based classification models
achieved high performance for the prognosis analysis, shown in Tables 5, S2 and S3, and
Figures 6, S3 and S4. The prognostic models were able to obtain an AUC score of 1 for
ICU and ventilation prediction on the cancer population, and AUC scores ranged from
0.96 to 1 on general population. In addition, we found the optimal prediction of the RF
and GAM models using fewer number of selected features than LR and SVM models,
where the curves started to plateau early on a handful of features. By contrast, the LR and
SVM models kept improving with the increase in number of selected features, where they
reached optimal performance using almost all the features. For example, the LR and SVM
models achieved the best accuracy and AUC scores for admission prediction on cancer
cohort using a total of 49 and 51 top-ranked features, respectively. Taken together, the
habitat-based machine learning models can accurately infer the severity of a COVID-19
infection in both general and cancer population, by predicting whether the infected patients
need to be admitted to hospital and ICU and also if they require ventilation.

Table 5. Performance comparison of the different models for ventilation prediction.

Methods

Cohort

General Cancer
Acc Sen Spe AUC Acc Sen Spe AUC

LR 0.9616 0.9796 0.9457 0.9961 0.9912 1.0000 0.9821 1.0000
RF 0.9161 1.0000 0.8589 0.9949 0.9580 1.0000 0.9205 1.0000

SVM 0.9928 1.0000 0.9861 1.0000 0.9757 1.0000 0.9524 1.0000
GAM 0.9161 1.0000 0.8589 0.9967 0.9867 1.0000 0.9735 1.0000
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Figure 6. Comparison of the different models for ventilation prediction. Row (A,B) show the
performances of the different models on the general and cancer cohorts, respectively. The “Accuracy
curves” and “AUC curves” shows the performance (classification accuracies and area under the
curve) of the different classification models with respect to different number of selected features.
The confusion matrices show the performance of the best models (in terms of the best selected
features) and “ROC curves” shows the corresponding receiver operating characteristics curves of the
best models.

3.5. Habitat Models Interpretation

We performed the correlation analysis between habitat imaging features and semantic
readings from radiologists. A limited number of habitat features were observed to associate
with radiologist’s readings and reached the predefined statistical significance level at a false
discovery rate (FDR) of <0.05 as shown in Figure S5. For instance, MSI17 that measures
interaction of habitat regions 1 and 2 and MSI19 that measures interaction of habitat regions
1 and 3 were correlated to the presence of ground glass opacities (GGO). Additionally,
MSI17, that measures volume of subregion 3, was negatively correlated to presentation of
pulmonary embolism, and it was found to be correlated to quantity of GGO consolidation
and solid nodules.

3.6. Comparison to Deep Learning Approach

We further examine the performance of deep learning model for COVID-19 diagnosis
and prognosis in the general and cancer population. Specifically, we trained a DenseNet121
model using the stochastic gradient descent (SGD) method with momentum of 0.9 and
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initial learning rate of 0.001. To avoid fluctuation in the later stage of training, we set the
learning rate to decay by 0.9 every 10 epochs. We consider the binary cross entropy as the
loss function. Inputting the CT scan images, we extracted deep features (N = 1024) at the
last layer of the model and used the extracted deep features to train the same classifiers as
in the habitat analysis approach.

For COVID-19 diagnosis in the general and cancer population, the best performances
in terms of AUC were obtained using the LR and RF models with AUC’s 0.9792 and 0.9750,
respectively (Table S4). When training the different classification models on the general
population and finetuning on the cancer population, the SVM model obtained the best AUC
result of 0.9673 (Table S5). The SVM model performed the best for admission, ventilation
and ICU prediction in the cancer population with AUC values of 0.9924, 1.0000 and 1.0000,
respectively (Tables S6–S8). Similar performance of the SVM model is observed in the
general population with AUC value of 1.0000 for both admission and ventilation prediction,
while GAM obtained the best AUC value of 0.9864 for ICU prediction (Tables S6–S8).

4. Discussion

In this study, we developed and validated the habitat imaging approach for COVID-19
severity prediction and detection using chest CT of a cancer population instead of a gen-
eral population. Our proposed habitat analysis has demonstrated robust performance in
partitioning the whole infected lungs into phenotypically distinct subregions. By quan-
tifying the spatial distributions and interactions of these intrinsic subregions using the
hand-crafted multi-regional spatial interaction features, machine learning models were
built and showed high performance in COVID-19 infection diagnosis. More importantly,
the habitat models demonstrated high accuracy for predicting infection severity, including
the needs for hospital admission, ICU stay, and ventilation support. Taken together, our
habitat imaging analysis as a proof-of-concept study has demonstrated the effectiveness
of CT-based machine learning model in informing COVID-19 management in the cancer
population, if prospectively validated.

To the best of our knowledge, this is the first reported imaging study that explores
the performance of machine learning models on cancer patients who were infected with
COVID-19, and further compared it to the general population. Cancer patients were
reported to have worse COVID-19 outcomes, greater need for ventilator, and elevated
mortality rates [37]. Specifically, we have demonstrated that models trained on a gen-
eral population will not optimally perform when applying to cancer of phenotypically
different radiographic patterns as driven by distinct underlying physiology. Systemic
cancer treatment regimens can expose patients to an elevated infection risk and lead to
worse COVID-19 outcomes [38]. Thus, our prognostic model can potentially shed light on
informing the clinical cancer management. In this study, we have shown that the COVID-19
models trained separately on the cancer cohort outperformed those trained on the multi-
center general population by a significant margin. This suggests that publicly available
COVID-19 models which are developed and validated in the general population will not
be optimally applied to cancer.

The superior performance of the proposed algorithms warrants its further validation
for the vulnerable cancer population. If validated, the imaging-based analysis may add
clinical value. For COVID-19+ cancers, our prognostic models can be used to identify
high-risk patients, who may need urgent and intense medical care such as admission to
hospital and ICU, and ventilation. In addition, the routine follow-up and screening CT
scans can feed into our diagnostic model for accidental COVID-19 infection detection to
prevent nosocomial transmission. In particular, our algorithm has potential clinical values
in differentiating the COVID-19-induced pneumonia from the non-COVID-associated
pneumonia/pneumonitis.

Currently, chest imaging of COVID-19 positive patient lungs exhibits variable infection
patterns across different regions of the lung. Radiologists score their severity through
assessing the percentage and distribution of distinct infected regions, such as GGO and
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consolidation. These standards are known to be qualitative, subjective, and not enough
to quantify complex infection patterns. Thus, most existing AI approaches (including
radiomics and deep learning) attempt to address these limitations through crafting robust
computational pipelines to automate the radiologist’s annotation or semantic readings. For
instance, Zhao et al. [39] developed an automatic technique to segment areas of pneumonia
on CT scans and extract texture features for COVID-19 diagnosis. Bai et al. [40] developed
a federated learning framework of deep learning to advance COVID-19 diagnosis on CT
scans obtained from 22 hospitals, which is shown to be correlated with GGO, interlobular
septal thickening and consolidation. However, historically these radiographic standards
have been developed to assess pneumonia of other causes. A critical question is whether
COVID-19 causes a distinct pattern of infection and whether the description of this pattern
can be conveyed in the usual terminology used by radiologists. Here, we investigated this
question by adapting previously validated habitat imaging pipeline [26,32,33], which has
been used to identity intrinsic intra-tumoral subregions with differing imaging phenotypes
(i.e., habitats).

This knowledge-discovery approach allows us to reveal more refined delineation of
areas affected by pneumonia (i.e., COVID-habitats) by applying the unsupervised clustering
algorithm on the CT scans. From the COVID-habitat map, it has demonstrated that these
subregions not only overlapped with the areas of pneumonia as 3D annotated by the
radiologist, but also divided these areas consistently into intrinsic subregions. Consequently,
we have identified more refined six phenotypically distinct subregions within the lungs,
which is in line with prior domain knowledge [36]. Of note, our habitat analysis leverages
the unsupervised analysis to automate labeling these regions rather than leveraging the
manual annotations from radiologists. Moreover, by correlating these habitat-derived
features with radiologist’s semantic readings (see Figure S5), interestingly we observe
that certain habitat features are significantly correlated to presence and quantity of GGO,
quantity of GGO/consolidation, presence of bronchial wall thickening and pulmonary
embolism. Of note, our proposed habitat approach does not require manual annotations
from the radiologists, which are time consuming to obtain and often complicated with
inter-observer variations. Moreover, we used unsupervised learning aims to explore data
patterns which are inherently more robust than a supervised approach, less prone to model
overfitting, and more likely to identify novel interactions between data that may not be
readily apparent. As such, our approach can efficiently capture subtle patterns of infection
and may be more robust on small and heterogeneous datasets as compared to deep learning
and radiomics approaches. Given that our habitat model outperformed several existing
radiomic [41–44] and deep learning approaches [15,45–49] (Table S1), it is plausible that our
approach can improve our understanding of the radiologic manifestation of SARS-CoV-2
pneumonia in cancer patients.

Our study has some limitations. First, we did not study whether our habitat imaging
models could predict COVID-19 related deaths because we had limited follow up data. In
the future, exploring how patterns of COVID-19 infection affect the overall survival and
disease progression in cancer patients will help us better manage this high-risk popula-
tion. Second, though we have enrolled multi-institutional datasets of different populations
(general vs. cancer), these initial encouraging findings need to be further validated. Third,
given that the COVID-habitat-based features are fundamentally driven by differing mi-
croenvironments in infected lung regions, future efforts are needed to explore the biological
drivers of the subregions on CT scans.

In conclusion, we have developed and validated habitat imaging-based CT signatures
to diagnose and predict the severity of COVID-19 in cancer and general population. These
CT signatures have been developed and validated using data from multiple centers. Thus,
the CT signatures showed the potential to help identify cancer patients who may benefit
from urgent and intense care. These results warrant further verification in future prospec-
tive data to refine such findings and test clinical utility of these imaging biomarkers to
manage cancer patients infected with COVID-19.
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Abbreviations

RT-PCR Reverse Transcription Polymerase Chain Reaction
AI artificial intelligence
GGO ground glass opacities
MSI multiregional spatial interaction
ROC receiver operating characteristics
AUC area under the curve
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