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Abstract: Coronavirus disease (COVID-19) is a worldwide epidemic that poses substantial health
hazards. However, COVID-19 diagnostic test sensitivity is still restricted due to abnormalities in
specimen processing. Meanwhile, optimizing the highly defined number of convolutional neural
network (CNN) hyperparameters (hundreds to thousands) is a useful direction to improve its
overall performance and overcome its cons. Hence, this paper proposes an optimization strategy
for obtaining the optimal learning rate and momentum of a CNN’s hyperparameters using the grid
search method to improve the network performance. Therefore, three alternative CNN architectures
(GoogleNet, VGG16, and ResNet) were used to optimize hyperparameters utilizing two different
COVID-19 radiography data sets (Kaggle (X-ray) and China national center for bio-information
(CT)). These architectures were tested with/without optimizing the hyperparameters. The results
confirm effective disease classification using the CNN structures with optimized hyperparameters.
Experimental findings indicate that the new technique outperformed the previous in terms of accuracy,
sensitivity, specificity, recall, F-score, false positive and negative rates, and error rate. At epoch 25, the
optimized Resnet obtained high classification accuracy, reaching 98.98% for X-ray images and 98.78%
for CT images.

Keywords: COVID-19; CNN hyperparameter optimization; image classification; grid search; learning
rate; momentum

1. Introduction

The World Health Organization (WHO) declared coronavirus disease (COVID-19) as
a highly contagious illness with a primary reproductive number to be a global pandemic
on 11 March 2020. The most recent coronavirus discovery has endangered people’s health
and caused significant economic losses worldwide [1]. As of 7 September 2020, the WHO
reported that 27,032,617 people had COVID-19 infections due to testing, among which
881,464 died [2]. Recent research shows that the sensitivity ranged from 71% (19 Febru-
ary 2020) to 91% (27 March 2020) and 96% (2022). The specificity of tests for identifying
COVID-19 using reverse transcription polymer chain reaction (RT-PCR) analysis is around
95%, according to a recent systematic review. However, the sensitivity of PCR tests for
COVID-19 may be in the range of 71–98% (21 April 2020) [3]. The probability of COVID-19
infection is thus not ruled out by one or more negative findings according to the WHO.
Therefore, there is an urgent need for further auxiliary tests with somewhat higher sensitiv-
ity to COVID-19 [4].
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It is known that COVID-19 victims had lung infections, according to autopsies, accord-
ing to a report from the CHINA–WHO COVID-19 joint investigative panel [5]. Because
it uses current medical technology and clinical tests, lung medical imaging is an excel-
lent supplemental diagnostic testing approach for COVID-19. The most frequent medical
imaging tests for the lungs are chest computed tomography (CT) and chest X-ray radiog-
raphy (CXR), both of which are accessible in most hospitals worldwide [5]. Compared to
a regular CXR, a CT has better tissue contrast and more gray levels (between 32 and 64)
but at a higher cost. This is because a three-dimensional body representation is produced
through the computerized processing of CT scans. In addition, recent research directions
revealed that using CXR and CT scans increased the diagnostic sensitivity for detecting
COVID-19, hence mitigating its spread [6]. However, the interpretation of medical imaging
is time-consuming, labor-intensive, and frequently subjective [7]. Moreover, within the
present epidemic, frontline expert physicians are overloaded with many diagnoses within a
short time, which might impair diagnostic efficiency. Therefore, computerizing COVID-19
detection in hospitals using medical image processing algorithms will accelerate COVID-19
diagnosis with considerable accuracy, reducing the strain on specialists [8–11].

Deep learning (DL) schemes, particularly convolutional neural networks (CNNs),
have made tremendous strides in handling issues like image classification, object identifi-
cation, gaming, decision making, and natural language processing [12]. However, due to
the multi-modal features of clinical data and the DL model’s lack of interpretability, the
applications of DL for clinical diagnostics are still limited [13]. Nevertheless, studies have
shown that DL approaches work exceptionally well for diagnosing pneumonia using CXR
pictures [14], diabetic retinopathy with retinal fundus images [15], and lung cancer with
CT images [16,17].

To the best of our knowledge, the DL-aided approach has only been verified on
single modal data, with no association study with clinical indications. Traditional machine
learning (ML) schemes are more limited and suited to practical computing applications
that use features than DL approaches [18].

Any CNN structure contains many design decisions that could greatly affect the
performance of the network if it is optimized, such as loss function [19,20] and different
network hyperparameters such as:

• The number of convolutional layers.
• The number of filters.
• The filter size.
• The stride is thus the number of steps the filter takes as it slides across the input image.
• The kind of padding might be the same or a valid convolution.
• The batch size.
• The number of training epochs
• The learning rate, momentum, and dropout probability.

Hence, the values of the hyperparameters determine a CNN’s success rate in address-
ing a specific task. This paper focuses on optimizing the CNN hyperparameters to obtain
the highest accuracy for COVID-19 diagnosis. A grid search method will be utilized to
optimize the CNN hyperparameters to improve the achieved accuracy. To this end, we
created a universal end-to-end DL framework for extracting information from CXR im-
ages (X-data) and CT images (CT-data), which may be considered a cross-domain transfer
learning model [21]. The key contributions of this paper are summarized as follows:

• The CNN hyperparameters are optimized using the grid search approach to reduce
model losses and achieve the best degree of COVID-19 diagnostic accuracy.

• The grid search optimization algorithm chooses the optimum CNN hyperparame-
ters from a provided list of parameter possibilities, automating the “trial-and-error”
process to obtain the optimized parameters with the greatest diagnosis accuracy.

• The optimization approach is tested and compared using three different well-known
CNN structures (GoogleNet, VGG16, and ResNet50).
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• The optimized CNN architectures were used to classify CT and CXR images for
COVID-19 patients to increase the diagnostic sensitivity for identifying COVID-19.

• Simulation results confirm the efficiency of the CNN architectures with optimized
hyperparameters regarding disease categorization. Hence, our envisioned approach
outperforms unoptimized CNN methods.

• Furthermore, our envisioned technique attains the highest accuracy compared to
previous techniques using both X-ray and CT images.

This paper is organized as follows. Section 2 highlights the related work. Afterward,
Section 3 discusses the proposed work, and Section 4 introduces the leveraged data sets
and the reason for utilizing them. Section 5 discusses the experimental results, and finally,
the conclusions are highlighted in Section 6.

2. Related Work

Several researchers utilized CNNs to detect COVID-19, but the accuracy of their results
decreases as the number of CNN layers increases [22]. Therefore, the researcher’s directions
turned to possible solutions to enhance CNN performance without altering the design,
i.e., using the same layout. The performance and training speed of CNNs are directly
influenced by their hyperparameters, such as the size of kernels, number of kernels, length
of strides, and pooling size. Additionally, optimizing the hyperparameters’ effects becomes
noticeable as the network’s complexity rises. Thus, optimizing the hyperparameters is a
useful research direction to enhance the CNN’s performance [23,24].

Recently, deep learning has been widely used for medical applications in general and
specifically in medical image-based diagnosis. The improved performance of CNNs in
medical image analysis and classification encouraged researchers to use them for a variety
of classification tasks related to medical diagnosis. Since the emergence of COVID-19 in
December 2019, numerous research studies have been conducted related to using deep
learning for COVID-19 diagnosis.

In [25], the authors compared the effectiveness of five pretrained networks (Inception,
Xception, VGG16, InceptionResNet50, and MobileNet) to classify X-ray images into three
categories (normal, COVID-19, and pneumonia) using a transfer learning strategy. They
used two data sets for performance evaluation, including 1427 and 224 X-ray pictures. Their
findings demonstrated a DL-based approach’s capability to build an autonomous detecting
system employing X-ray images. In [26], the authors developed a DL-based anomaly
detection network utilizing X-ray data of 1078 individuals. Despite the achieved specificity
of 70.65% and sensitivity of 96%, their model still owns a large number of false positives.

The authors of [27] suggested an approach for categorizing chest CT pictures into two
categories (infected and normal) via a CNN. Furthermore, they employed multi-objective
differential evolution to set the CNN parameters. In [28], the authors proposed using
a DenseNet201 network to classify normal and infected CT images. Their results were
promising regards pretrained VGG16 and ResNet50 models. To partition the affected
region of the chest, the authors of [29,30] suggested employing U-Net [31] with a residual
attention mechanism. A total of 110 axial CT scans from 60 patients were utilized for
training their model.

A CoroNet structure based on the Xception architecture was introduced in [32], em-
ploying X-ray images to categorize the chest pneumonia diseases such as COVID-19. They
reported 87.02% accuracy using limited 1351 images. To categorize X-ray images, the
authors of [33] presented a Bayesian DL model with transfer learning. They achieved an
accuracy rate of 89% within four different classifications using a data set of 5941 photos.
Based on pretrained networks such as VGG16 and InceptionV3, COVIDXNet was first
introduced in [34]. A total of 50 X-ray images were collected, and COVID-19 was confirmed
in 25 of them. Their approach produced the best result for F1-score at 91%.

In [35], the authors studied the impact of network depth by using a CNN model
with extra convolutional layers. Their network was able to achieve a good diagnostic
accuracy that reached 99.5% for COVID-19 diagnosis, but they validated their suggestion
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using a limited-sized data set. In [36], the authors used four variants of optimizers (SGD,
Adagrad, Adam, and RMSprop optimizers) in the CNN model to classify the data. The
Adam optimizer achieved the best results with an accuracy value of 95.83%. Other network
hyperparameters were not optimized. In [37], the authors employed a gradient descent
(GD) algorithm to optimize their network parameters. They discussed the basic structure
and function and combined back propagation (BP) with the GD method. In [38], the authors
optimized four hyperparameters: (1) backbone architecture, (2) the number of inception
modules, (3) the number of neurons in the fully connected layers, and (4) the learning rate
using the VGG16 CNN Model. CNNs were trained on 2175 computed tomography (CT)
images. This method achieved a sensitivity, precision, and accuracy of 97%, 82%, and 88%.
In [39], a multi-objective black widow optimization-based CNN (MBWO-CNN) method
was proposed. The MBWO method was utilized to tune the CNN hyperparameters, and
the extreme learning machine autoencoder (ELM-AE) was leveraged to classify COVID-19.
The achieved accuracy result was 97.53%. In [40], five different CNN models were used
to extract features. Then, they take the output from each model as input to four different
ML algorithms, namely support vector machine (SVM), K-nearest neighbors (k-NN), naive
Bayes (NB), and decision tree (DT) for classification. The hyperparameters are optimized
by Bayesian optimization to be used for each ML algorithm. This paper’s highest accuracy
is 96.29% with the DenseNet201 model and SVM algorithm. However, this method’s
processing time for Bayesian optimization is too high.

The lack of a complete automated real-time end-to-end COVID-19 diagnosis system
encouraged us to propose our optimized end-to-end trainable framework to achieve the best
degree of diagnostic accuracy. This paper focuses on optimizing the CNN hyperparameters
employing the grid search approach. The optimized models have been utilized to precisely
recognize/diagnose COVID-19 images, including CT and CXR.

3. Proposed COVID-19 Detection System

This section explains the suggested optimized model for a COVID-19 detection sys-
tem. First, different preprocessing procedures are utilized to improve the performance of
the CNN model via precise categorization of CXR and CT chest images to find infected
individuals. Second, different well-known reference CNN models are to be presented, and
their hyperparameters are optimized for better classification accuracy.

Figure 1 shows the flowchart for image classification using optimal CNN hyperpa-
rameters. First, the grid search method is leveraged to obtain the optimal learning rate
and momentum for more reliable diagnostic performance. Grid search is an exhaustive
search approach that targets certain parameter values. The flowchart clarifies five main
steps as follows:

• Load the images and prepare the training and test images.
• Create an image data augmenter that configures a set of preprocessing options for

image augmentation, such as resizing, rotation, and reflection.
• Resize the training and testing images to the size required by the network.
• Implement the grid search method to get the optimal learning rate and momentum.
• Finally, train the model with the optimal learning rate and momentum based on

grid search.



Diagnostics 2023, 13, 76 5 of 19

Dataset cleaning Dataset
normalization

Dataset
agumantationDataset preprossing

TestTrain

New dataset

HPO using
grid search

Model with 
best Parameters

Evaluation

Results

Preprossing

Dataset
segmentation

Deep learning
models 

VGG 16 
GoogleNet 
ResNet 50

Figure 1. Image classification using optimal CNN hyperparameters.

3.1. Preprocessing Phase

Due to the unavailability of sufficient large data sets for COVID-19 patients, we
employed data augmentation techniques in order to generate new data. To this end, we
increased the size of our utilized data set. New images are generated by rotating, shearing,
zooming, and blurring the original images. The data are then preprocessed in two stages:
standardization and normalization. These steps are critical for unifying the data to be fed
into the network. Finally, the preprocessed images are passed into the segmentation block
to detect picture anomalies and address anomalous aspects and features. In addition to
early detection, we allow this block to detect condition severity through further picture
processing. Finally, the aberrant pictures are fed into a deep network using the transfer
learning approach differentiating COVID-19 from other viral pneumonia diseases. The
following sections will provide further information about each block.

3.1.1. Image Augmentation

Data augmentation is used to extract more data from the current data set. In this
situation, it makes perturbed duplicates of the existing photos. The principal objective is to
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strengthen the neural network with different diversities, which results in a network that
can differentiate between significant and irrelevant properties in the data set. Several ways
may be used to enhance images. When necessary, augmentation methods are effectively
used following the quantity and quality of available data. Our approach combines a variety
of strategies to support a sizable data set for various situations, as follows:

• Gaussian blur: a Gaussian filter may be used to remove high-frequency elements,
resulting in a blurred image version.

• Rotation: a rotation of between 10° and 180° is applied to the picture.
• Shear: using rotation and the imitation factor for the third dimension, picture shearing

may be done.

The training set will be expanded using these techniques and utilized to train our
optimized CNN models. The testing set will not be expanded. This will demonstrate the
architecture’s resilience and how it prevents over-fitting.

3.1.2. Image Processing

An approach to control the complexity and correctness is crucial since the data often
originates from diverse sources. Image preprocessing guarantees reduced complexity and
improved accuracy when particular data are produced. This approach standardizes the
data through several phases to provide the network with a clean data set.

The target of the initial image processing stage is to increase the likelihood of finding
the suspicious area. The image’s more delicate features are improved, and noise is elimi-
nated. When medical pictures are distorted by noise, the image’s accuracy is decreased.
To reduce this noise, several filters are employed. Background noise is reduced using an
anisotropic filter, while salt and pepper noise is reduced using a weighted median filter.
Wavelet-based de-noising methods skew wavelet and scaling coefficients.

First, the utilized data set is preprocessed to prepare the used images in a form suitable
for the used CNN architectures using the following primary steps:

• Image standardization: it is necessary for CNNs because they deal with images. As a
result, the images must first be resized into distinct dimensions and a square form,
which is the typical shape used in neural networks (NNs).

• Normalization: To improve the convergence of the training phase, input pixels to
any AI system must have a normalized data distribution. To normalize an image, the
distribution’s mean value is first subtracted from each pixel, then divided by the result
by the standard deviation. Sample X-ray and CT images are shown in Figure 2 before
(on the left) and after (on the right) the preprocessing steps.

Figure 2. Sample X-ray and CT images before and after the preprocessing steps.



Diagnostics 2023, 13, 76 7 of 19

3.1.3. Segmentation

Threshold methods are used in the segmentation procedure. Segments with similar
intensities are produced utilizing the thresholding approach. Images can create borders
with the help of thresholding. First, the background noise is checked to see if it is constant
or not using an adaptive thresholding approach. For this particular study, the clustering
approach is employed. Input data patterns and clustered values are related in clustering
procedures. It first groups n items into the “c” division, where c ≤ n, according to an
attribute. Next, we compare how closely two or more observations match one other. This
requires computing the Euclidean distance to achieve similar statements. A measurement
of the separation between observations is the Euclidean distance, expressed as follows:

dpq =
√
(p1 − q1)2 + (p2 − q2)2 + (p3 − q3)2 + . . . (pz − qz)2 (1)

The cluster center is now randomly chosen, indicated by the letter C. Next, the
fuzzy center is calculated, and finally, the cluster center is updated. A centroid must be
determined for each cluster to update the cluster center. It is crucial to compute the centroid
by averaging all the x- and y-axes. It is essential to take the mean of all the points in each
cluster to re-compute the new cluster center. Sample X-ray and CT images before (on the
left) and after (on the right) the segmentation process are shown in Figure 3.

Figure 3. Sample X-ray and CT images before and after the segmentation step.

3.2. Reference CNN Models for Transfer Learning

CNNs are very similar to artificial neural networks (ANNs) because they consist
of layers and artificial neurons with weights and biases. The main difference between
ANNs and CNNs is that CNNs are optimized to work with images. Hence, CNN input
is implicitly assumed to be a 2D or 3D image. The name “convolutional” comes from the
fact that the first layers of CNN carry out convolutions instead of internal products, as in
ANN. CNN is shaped like an ANN by a sequence of layers, but CNN has convolution
layers, pooling layers, and fully connected layers [41]. The convolutional layer contains a
set of filters (or kernels) that are discrete number grids and is usually square. It performs a
convolution operation between these filters and the layer input to create feature maps.

The pooling layer directly comes after the convolution layer. The main objective
of this layer is to decrease the dimension (since it combines the neighboring pixels of
a particular area of the image in a single value) and, at the same time, highlight the
image’s characteristics. Some of the most popular forms of operation are max pooling
and mean pooling. The max pooling layer reports the maximal values in each rectangular
neighborhood of each input feature point, while the mean pooling layer reports the mean
values. The last layer of the architecture of a CNN is a classifier that determines which class
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the input image belongs to based on the characteristics detected and extracted by the CNN
in the convolutional layers and the pooling layers. The fully connected layer is made up of
several neurons equal to the number of classes or classifications. To be inserted into fully
connected layers, feature maps are flattened into a single 1D vector.

The hyperparameters of the CNN define network structure variables and network
parameters. Hyperparameter optimization aims to improve CNN performance in terms
of improved accuracy or minimized loss. Numerous studies have shown the impact
of hyperparameter tuning on network performance. There are two most widely used
techniques for hyperparameter tuning: grid search and random search [42].

Grid search is a systematic process for hyperparameter optimization. Every combi-
nation of hyperparameters is specified and evaluated on the model; it is a trial-and-error
method. It can be effective at a small number of hyperparameters. As the number of
hyperparameters increases, the utilization of computational resources grows exponentially.
On the other hand, random search allows researchers to identify hyperparameter values
by sampling randomly from the search space. One of the main shortcomings of this tech-
nique is that it does not learn from previous tests, and repeated search with the same
hyperparameters is possible.

Deep learning has gained remarkable success in computer vision for medical image
processing. CNNs, in particular, have been employed for many medical image classification
problems due to their successful extraction of image features. There are several types of
deep CNNs, including visual geometry group network (VGG-Net); residual network
(ResNet); dense convolutional network (DenseNet); Inception, and Xception [43].

• VGG16: The foundation for the 2014 ImageNet competition entry was the VGG
network design (VGG16), which has 16 layers. Five blocks of convolutional layers
and three fully linked layers make up VGG16. Convolution uses a filter of size 3 × 3
with stride 1 and padding 1. After each convolution, the ReLU activation function is
applied, and the spatial dimensions are decreased by max-pooling with a 2 × 2 filter,
stride 2, and no padding.

• GoogleNet: Using inception modules, GoogleNet conducts convolutions with various
filter sizes. ImageNet’s 2014 large-scale visual recognition competition (ILSVRC) was
known as GoogleNet thanks to its superior performance. It employs four million
parameters and has 2 × 2 layers. Layers are deeper with concurrent use of various
field widths, and a 6.67% error rate was attained. The ReLu activation function is
utilized for all convolutions, including those inside the inception module, and a 1 × 1
filter is applied before the 3 × 3 and 5 × 5 convolutions.

• ResNet: ResNet, a 2015 ILSVRC winner, is another name for the residual network. In
order to increase the classification accuracy of challenging tasks, very deep models
are employed for visual recognition tasks. However, the training procedure becomes
more challenging, and accuracy begins to decline as the network depth increases.
Skip connections were utilized to add residual learning to solve this issue. In general,
layers are placed for training and network learn features at the end of these layers in
a convolutional-based deep NN. A residual-based network has a residual link that
spans two or more network levels. ResNet accomplishes this goal by linking the nth
layer to the (n + x)th layer. The 34-layered ResNet solves the problem of accuracy
loss in a deeper convolutional network and is simple to train.

3.2.1. Hyperparameters

During the learning process, parameters such as weights or biases are evaluated and
improved in a CNN. However, a hyperparameter is a variable whose value is set before
training, so it is neither estimated nor corrected. In other words, hyperparameters are
the variables that determine the structure of the network (for example, the number of
hidden units) and the variables that determine how the network is trained (for example,
the learning rate). Therefore, hyperparameters are very important because the performance
of the ANN or CNN largely depends on them [44]. The hyperparameters include the
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number of convolutional layers, the number of filters, and the size of the filters. The
stride is the number of steps that the filter takes when sliding through the input image.
Additionally, learning rate, momentum, dropout probability, batch size, and the number
of training epochs are examples of hyperparameters that could effectively improve the
network performance once optimized. [45]. The CNN’s success rate for solving a certain
problem depends upon the values of the hyperparameters [46]. Table 1 shows some
hyperparameters related to network training.

Table 1. Hyperparameters related to the training of a neural network [47].

Hyperparameters Description

Learning Rate

The learning rate defines how quickly a network updates its parameters.

For the classification problem, it is important to choose the optimal

learning rate to minimize the loss function. A low learning rate slows down

the learning process but converges smoothly. A larger learning rate speeds up

the learning but may not converge.

Momentum
Momentum helps to know the direction of the next step with the knowledge

of the previous steps. It helps to prevent oscillations.

Number of Epochs
The number of epochs is the number of times the whole training data are

introduced to the network. It is important to determine an ideal epoch

number to prevent overfitting.

MiniBatch Size

The larger minibatch size causes running of the model for a long period of time

with constant weights that causes overall performance loses and increases the

memory requirements. Carrying out the experiments with small minibatch sizes

can be more beneficial.

3.2.2. Grid Search Scheme

Grid search (GS) is the most common technique for learning the hyperparameter
configuration space. Grid search may be thought of as a means of brute force testing
all possible combinations of the hyperparameters provided to the grid setup. GS works
by evaluating the Cartesian product of a user-defined, limited set of values. The high-
performing regions cannot be further exploited by GS alone. As a result, the following
procedure must be carried out by hand to find the global optimums [48–50]:

• Start with a large search space and phase scale, then limit them based on prior obser-
vations of hyperparameter settings that performed well.

• Repeat multiple times until the best result is obtained.

The main disadvantage of GS is its ineffectiveness in the configuration space of high
dimensional hyperparameters since the number of evaluations grows exponentially as the
frequency of the hyperparameter rises. The dimensionality curse refers to this exponential
growth. Assuming k parameters exist and each has n distinct values, the computational
complexity grows exponentially at a rate of O(nk). As a result, GS is only an efficient
optimization technique when the hyperparameter setting space is constrained.

Grid search is an exhaustive search that is computationally expensive compared to
other schemes [51] as it builds a model for every combination of hyperparameters specified
and evaluates each model. However, it finds the best way to tune the hyperparameters
based on the training set. Since the training phase is carried out offline before the testing
phase, it is acceptable to take a longer duration, allowing the network to test all possible
combinations and achieve the best performance. Therefore, we used GS to guarantee
the highest achieved accuracy during the testing phase rather than reducing complexity
and training duration. This guaranteed accuracy will help in preventing the disease’s
spread. Due to its ease of implementation and better accuracy with much high reliability
and dimensionless, we utilize the GS scheme. Hence, our COVID-19 detection model
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minimizes manual interactions by doctors and automatically identifies any abnormalities
with high accuracy.

3.2.3. Optimized CNN Model

The CNN is regarded as a highly potent technique and has been widely used in
many image classification jobs. It has drawn a lot of interest in several fields, including
computer vision tasks, image analysis and identification, and object detection. The CNN
rapidly pulls characteristics from images, and thanks to its hierarchical structure, it can
deal with images in a dynamic way. These layers are rationally ordered in depth, width,
and height, respectively. In such a model, a layer’s neurons are only loosely connected
to those of the subsequent layer. This number finally decreases to a score with a single
vector probability in the output layer. A preprocessed extracted characteristic is employed
to improve COVID-19 categorization.

The CNN utilizes several convolutions and pooling layers in the initial stage to extract
probable features. The retrieved features’ spatial size is reduced by using the max pooling
layer. The overfitting problem is also lessened by the pooling layer. While average pooling
considers average values from the feature map produced by the convolutional process, the
max pooling layer only considers maximal values. Stride is a term for the pixel spacing that
is utilized while pooling images. A fresh “convolved” image is created with features taken
from the previous phase after each convolution stage. If an image is denoted by I(x, y) and
the filter employed is represented by f (x, y), the transformation that results is

y(i, j) = (I, f )(x, y) = ∑ ∑ I(x − u, y − v) f (u, v). (2)

The rectified linear unit (ReLu) is used as an activation function that connects the
output and input of each layer via a sophisticated feature mapping. The ReLu is a linear
function that either returns zero or accepts positive input values directly.

Classification: The flattened layer creates a single, lengthy feature vector and feeds it
to the dense, fully connected layer, which transforms the input into a one-dimensional array.
Dense layers categorize by using characteristics from an image retrieved from convolutional
layers. Typically, the dropout layer decreases the feature map and minimizes overfitting
with the aid of the activation function. The final output is predicted using a sigmoid in the
final dense layer. The sigmoid function is typically expressed as follows:

S(t) =
1

1 + e−t . (3)

4. Utilized Data Sets

X-rays and CT are two typical medical imaging modalities used to diagnose and
assess the severity of a disease. Each medical imaging technique has its pros and cons.
Due to its low cost and considerable availability worldwide, X-ray imaging is the most
commonly utilized medical imaging approach for COVID-19 diagnosis. It is processed
using elementary techniques, which decreases imaging time and hence the risk of viral
propagation. Compared to a CT scan, X-ray imaging is non-invasive and generates minimal
radiation exposure. Despite its benefits, X-rays are less sensitive, which may result in a
mistaken diagnosis of the illness with early and moderate symptoms. CT scans, on the
other hand, are more sensitive and provide precise information about the damaged location,
resulting in reliable judgment. Therefore, CT scans are crucial in the diagnosis of lung
disorders, and hence are more reliable regarding the early detection of COVID-19. However,
its expensive cost, increased radiation dosage, and resource restrictions bound its usage.
This paper utilized the publicly accessible pneumonia normal-chest-X-ray posteroanterior
(pa) data set [52]. It consists of images gathered from the websites of the Italian Society of
Radiology (SIRM), Kaggle, Radiopedia, and Figshare data repository. The data set contains
posteroanterior (PA) chest X-ray images divided into three classes (COVID-19, pneumonia,



Diagnostics 2023, 13, 76 11 of 19

and normal). It consists of 2313 samples for each class, resulting in 6939 samples. Figure 4
displays a sample of that data set.

(a) COVID-19 (b) Normal

(c) Viral pneumonia

Figure 4. (a–c) X-ray data set samples [52].

The China National Center for Bio-information CT chest imaging data set [53] was
also employed in our investigations. The images of the data set are classified as coronavirus
pneumonia, common pneumonia, and normal. The data set includes 617,775 CT slices from
6752 CT scans for 4154 patients. It consists of CT images for 999 COVID-19 patients, and
1687 normal and 1468 common pneumonia patients. Figure 5 depicts the CT samples of the
utilized data sets leveraged in our investigations.

(a) COVID-19 (b) Normal

(c) Viral pneumonia

Figure 5. (a–c) CT data set samples [53].
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5. Results and Discussions

The hyperparameters utilized to optimize the CNN by obtaining the optimal values are
learning rate, momentum, and the number of epochs. The grid search method is employed
to tune the hyperparameters of ResNet50, VGG16, and GoogleNet to achieve improved
performance. Table 2 shows the hyperparameter ranges used to get the optimal values.

The training process was conducted via MATLAB 2019a (MathWorks, Natick, MA,
USA), running on a machine with an Intel core i7-4510U CPU @ 2.60 GHz, 8 GB of memory,
and a Windows 8.1, 64-bit operating system.

Table 2. Utilized hyperparameters range to obtain optimal CNN.

Hyperparameters Range

Learning Rate [0.09, 0.07, 0.05, 0.03, 0.01]

Momentum [0.9, 0.7, 0.5, 0.3, 0.1]

Number of Epochs 10 to 100 with step 5

Table 3 lists the optimized hyperparameters obtained using grid search optimization
of the three models.

Table 3. Optimized hyperparameters for the three models.

Hyperparameters Resnet Google Net VGG16

Learning Rate 0.01 0.01 0.02

Momentum 0.1 0.1 0.3

Number of Epochs 25 30 45

Activation Function Relu Relu Relu

Classifier Softmax Softmax Softmax

Loss Function Cross entropy Cross entropy Cross entropy

5.1. Evaluation Metrics

Different evaluation metrics were employed to reflect the improved performance of
our proposed optimization approach. They are listed as follows:

• The sensitivity or recall
It is the accuracy of positive examples. It refers to how many examples of the positive
classes were labeled correctly. This is shown in Equation (4), where TP is the true
positives, which are the number of instances that are correctly identified, and FN is the
false negatives, which are the number of positive cases that are classified as negative
by mistake [54].

Sensitivity (Recall) =
TP

TP + FN
(4)

• Specificity
It refers to the conditional probability of true negatives given a secondary class. It
approximates the probability of the negative label being true as in Equation (5), where
TN is the number of true negatives classified as negative and FP is the number of
false positives, defined by the negative instances that are classified incorrectly as
positive cases. In general, sensitivity and specificity evaluate the positive and negative
effectiveness of the algorithm on a single class, respectively [55].

Specificity =
TN

TN + FP
(5)
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• Accuracy
It is used to evaluate classification performance. It calculates the percentage of samples
that are classified correctly, as shown in Equation (6) [55].

Accuracy =
TP + TN

TP + TN + FP + FN
(6)

• Precision
It is calculated by the number of true positives divided by the number of true positives
plus the number of false positives as in Equation (7). It evaluates the predictive
power of the algorithm. Precision is how “precise” the model is out of those predicted
positive and how many of them are actually positive [55].

Precision =
TP

TP + FP
(7)

• F-score
It focuses on the analysis of positive class. It combines both precision and recall, as
shown in Equation (8). A high value of it indicates that the model performs better on
the positive class [55].

Fscore = 2 ∗ Precision ∗ Recall
Precision + Recall

(8)

• False-positive rate and false-negative rate
False-positive rate (FPR) is the portion of negative cases identified improperly as
positive instances to the total number of negative instances. FPR is an error in classi-
fication in which a test result incorrectly indicates the presence of a condition (such
as a disease when the disease is not present), while a false-negative rate (FNR) is the
opposite error, where the test result incorrectly indicates the absence of a condition
when it is actually present. These are the two kinds of errors in a test, in contrast to
the two kinds of correct results (a true positive and a true negative). They are also
known in medicine as a false-positive (or false-negative) diagnosis, and in statistical
classification as a false-positive (or false-negative) error.

FPR =
FP

FP + TN
(9)

FNR =
FN

FN + TP
(10)

The error rate is the performance statistic that informs of incorrect predictions without
classifying positive and negative forecasts. It can evaluate by

ErrorRate =
FP + FN

TP + FP + TN + FN
(11)

5.2. Results

Tables 4 and 5 present the performance measures for VGG 16 without and with opti-
mized hyperparameters, respectively. The maximum achieved accuracy of the unoptimized
network was 93.52% for COVID-19, 92.89% for viral pneumonia, and 94.86% for normal.
On the other hand, optimizing the same network using our proposed hyperparameter
optimization outperformed the unoptimized network and achieved an improved accuracy
of 97.69% for COVID-19, 97.82% for viral pneumonia, and 98.91% for the normal class.
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Table 4. Performance measures for VGG 16 without optimization for X-ray images.

Category Accuracy (%) Specificity (%) Precision (%) Recall (%) F1-Score (%) FPR FNR Error Rate

Normal 94.86 94.91 93.52 94.24 93.88 0.0509 0.0576 0.0514
COVID-19 93.52 93.36 92.67 94.38 93.52 0.0664 0.0562 0.0648

Viral Pneumonia 92.89 94.82 94.83 90.14 92.43 0.0518 0.0986 0.0711

Table 5. Performance measures for VGG 16 after optimization for X-ray images.

Category Accuracy (%) Specificity (%) Precision (%) Recall (%) F1-Score (%) FPR FNR Error Rate

Normal 98.91 98.65 97.67 97.59 97.63 0.0253 0.0648 0.0218
COVID-19 97.69 96.25 96.57 96.78 96.67 0.0135 0.0241 0.0109

Viral Pneumonia 97.82 97.47 98.18 93.52 95.79 0.0375 0.0322 0.0231

Tables 6 and 7 present the performance measures for GoogleNet without and with
optimized hyperparameters, respectively. The maximum achieved accuracy of the un-
optimized network was 96.52% for COVID-19, 96.39% for viral pneumonia, and 96.86%
for normal. On the other hand, optimizing the same network using our proposed ideas
outperformed the unoptimized network and achieved an improved accuracy of 98.49% for
COVID-19, 98.18% for viral pneumonia, and 98.93% for the normal class.

Table 6. Performance measures for GoogleNet without optimization for X-ray images.

Category Accuracy (%) Specificity (%) Precision (%) Recall (%) F1-Score (%) FPR FNR Error Rate

Normal 96.86 96.91 95.52 96.24 95.88 0.0309 0.0376 0.0314
COVID-19 96.52 96.51 96.67 96.38 96.52 0.0349 0.0362 0.0348

Viral Pneumonia 96.39 96.82 96.83 96.14 96.48 0.0318 0.0386 0.0361

Table 7. Performance measures for GoogleNet after optimization for X-ray images.

Category Accuracy (%) Specificity (%) Precision (%) Recall (%) F1-Score (%) FPR FNR Error Rate

Normal 98.93 98.88 98.93 98.54 98.73 0.0112 0.0146 0.0107
COVID-19 98.49 98.29 98.78 98.88 98.83 0.0171 0.0112 0.0151

Viral Pneumonia 98.18 98.28 98.58 97.12 97.84 0.0172 0.0288 0.0182

Tables 8 and 9 present the performance measures for ResNet-50 without and with opti-
mized hyperparameters, respectively. The maximum achieved accuracy of the unoptimized
network was 96.84% for COVID-19, 96.87% for viral pneumonia, and 97.58% for normal.
On the other hand, optimizing the same network using our proposed ideas outperformed
the unoptimized network and achieved an improved accuracy of 98.98% for COVID-19,
98.75% for viral pneumonia, and 99.84% for normal. Optimizing the hyperparameters
using our proposed has a positive impact on the network performance in terms of training
time and accuracy.

Table 8. Performance measures for ResNet-50 without optimization for X-ray images.

Category Accuracy (%) Specificity (%) Precision (%) Recall (%) F1-Score (%) FPR FNR Error Rate

Normal 97.58 97.56 97.52 97.47 97.49 0.0265 0.0365 0.0313
COVID-19 96.84 96.92 96.95 96.87 96.91 0.0244 0.0253 0.0242

Viral Pneumonia 96.87 97.35 97.27 96.35 96.81 0.0308 0.0313 0.0316
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Table 9. Performance measures for ResNet-50 after optimization for X-ray images.

Category Accuracy (%) Specificity (%) Precision (%) Recall (%) F1-Score (%) FPR FNR Error Rate

Normal 99.84 99.79 99.48 99.57 99.52 0.0021 0.0043 0.0016
COVID-19 98.98 98.88 98.78 98.88 98.83 0.0112 0.0112 0.0102

Viral Pneumonia 98.75 98.95 98.58 98.49 98.53 0.0105 0.0151 0.0125

Moreover, the optimized ResNet model for X-ray images was fine-tuned using the CT
chest imaging data set via transfer learning, and the obtained results are listed in Table 9.
It is clear that the performance was improved in terms of achieved accuracy and time
required for training as the fine-tuned model was capable of achieving excellent accuracy
(99.79%) for COVID-19, 98.53% for viral pneumonia, and 99.79% for the normal class.

Table 10 present the performance measures for ResNet-50 with optimized hyperpa-
rameters for the CT data set. The maximum achieved accuracy is 98.78% for COVID-19,
98.53% for viral pneumonia, and 99.79% for normal.

Table 10. Performance measures for optimized ResNet-50 for CT images.

Category Accuracy (%) Specificity (%) Precision (%) Recall (%) F1-Score (%) FPR FNR Error Rate

Normal 99.79 99.65 99.25 99.36 99.30 0.0118 0.0162 0.0147
COVID-19 98.78 98.75 98.63 98.59 98.61 0.0035 0.0064 0.0021

Viral Pneumonia 98.53 98.82 98.58 98.38 98.48 0.0125 0.0141 0.0122

The results in Tables 4–10 show that our proposed optimization strategy for obtaining
the optimal learning rate and momentum of the CNN’s hyperparameters using the grid
search method succeeded in improving the network performance for both X-ray or CT data
sets [52].

Furthermore, Tables 11 and 12 show the performance comparison of our proposed
technique with previous related work in terms of detection accuracy for the X-ray and CT
data sets, respectively. As shown in the two tables, our envisioned method achieves the
highest accuracy compared to others confirming its efficiency and accurate results.

Table 11. X-ray data set performance comparison.

Reference Technique Accuracy (%)

[56] Resnet50 92.74
[57] CNN 93.37
[25] Transfer Learning 95.23
[58] CNN 95.92

This paper Optimal CNN Hyperparameters 98.98

Table 12. CT data set performance comparison.

Reference Technique Accuracy (%)

[59] Random forest 88.6
[60] 3D-CNN 90.7
[61] Statistical Analysis 89.9
[62] CNN Future Fusion 94.8

This paper Optimal CNN Hyperparameters 98.78

Finally, Table 13 provides the computational time for optimizing the hyperparameters
for three different models used in the study, it was added to the revised manuscript.
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Table 13. Computational time for optimizing the hyperparameters for different models.

Data Type Model with Optimal Parameters Time (s)

X-ray VGG16 26.451
X-ray Google Net 22.372
X-ray ResNet 20.003

CT ResNet 21.145

6. Conclusions

The early detection of COVID-19 is a vital step to preventing its spread. CNN-aided
solutions can help in the extraction of essential features from X-ray and CT images to assist
in the early diagnosis of COVID-19. In this paper, we present an efficient hyperparameter
optimization procedure that can efficiently improve the classification accuracy of well-
known CNN models. We employed the grid search method to get the optimal learning
rate and momentum with different epoch numbers for different retrained networks to
be used for more reliable diagnostic performance. Compared to unoptimized models,
our optimization approach has a great impact on the performance of the used models.
Simulation results confirm the efficiency of the proposed techniques in terms of achieved
accuracy, sensitivity, specificity, precision, recall, F-score, FPR, and FNR, leading to precise
disease detection. In terms of achieved accuracy, our proposed optimization approach
outperforms all recent state-of-the-art techniques, achieving classification accuracies of
98.98% and 98.78% for the X-ray and CT data sets, respectively.
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