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Abstract: Central nervous system (CNS) trauma, such as traumatic brain injury (TBI) and spinal cord
injury (SCI), represents an increasingly important health burden in view of the preventability of most
injuries and the complex and expensive medical care that they necessitate. These injuries are character-
ized by different signs of neurodegeneration, such as oxidative stress, mitochondrial dysfunction, and
neuronal apoptosis. Cumulative evidence suggests that the transcriptional factor nuclear factor erythroid
2-related factor 2 (Nrf2) plays a crucial defensive role in regulating the antioxidant response. It has been
demonstrated that several natural compounds are able to activate Nrf2, mediating its antioxidant response.
Some of these compounds have been tested in experimental models of SCI and TBI, showing different
neuroprotective properties. In this review, an overview of the preclinical studies that highlight the positive
effects of natural bioactive compounds in SCI and TBI experimental models through the activation of the
Nrf2 pathway has been provided. Interestingly, several natural compounds can activate Nrf2 through
multiple pathways, inducing a strong antioxidant response against CNS trauma. Therefore, some of these
compounds could represent promising therapeutic strategies for these pathological conditions.
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1. Introduction

Injuries to the central nervous system (CNS), such as traumatic brain injury (TBI) and
spinal cord injury (SCI), represent a serious medical burden. The heterogeneity of the
lesions by age and severity makes it difficult to find appropriate treatments [1–3].

The primary lesion triggers a dramatic inflammatory response that results in the activation
of microglia, the invasion of peripheral immune cells, and the release of inflammatory media-
tors that damage tissue and lead to scar formation [4]. In this way, over the hours or months
following the insult, the secondary lesion induces necrosis and apoptosis in both the dam-
aged and healthy peripheral tissue [5]. The pathophysiological mechanisms underlying CNS
lesions are complex and involve an inflammatory response, oxidative stress, mitochondrial
dysfunction, blood-brain barrier (BBB) disruption, and so on. Among these, oxidative stress,
one of the important mechanisms, occurs at the beginning of the damage and accompanies
the entire traumatic event [6]. The reactive oxygen species (ROS) are small molecules derived
from oxygen that are highly responsive, such as peroxides, superoxides, hydroxyl radicals,
and singlet oxygen. ROS can affect both the severity and size, as well as the progression of
TBI and SCI [7]. Under physiological conditions, a certain ROS level is important to maintain
normal cellular function and adequately balance ROS levels [8]. However, an imbalance of
these molecules results in their harmful interaction with nucleic acids, carbohydrates, lipids,
and proteins [9,10]. Indeed, the interaction of these molecules with the lipid double layer
determines the lipid peroxidation that induces damage and cell death [11]. Furthermore, it
has been demonstrated that after TBI and SCI, oxidative stress can induce the oxidation of
mitochondrial proteins, with a consequent reduction of mitochondrial activity and bioenergetic
capacities [12,13]. However, low levels of these modifications, under physiological conditions,
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can serve the cell as beneficial responses to stress [14,15]. Contrarily, high levels of these modi-
fications are responsible for enzymatic dysfunctions. In this regard, in recent decades, nuclear
factor erythroid 2-related factor 2 (Nrf2) has received more attention due to its important role
in cellular defense against different endogenous and exogenous stresses [16,17].

Nrf2 is a pleiotropic transcription factor that is responsible for the defense mechanism
against oxidative stress and inflammatory damage, by regulating the expression of several
genes [16]. Cumulative evidence suggests that Nrf2 plays a crucial role in orchestrating
the antioxidant response in the brain [18], promoting the expression of several antioxidant
enzymes, such as heme oxygenase-1 (HO-1), NADPH Quinone Dehydrogenase 1 (NQO1),
glutathione (GSH) peroxidase, and other antioxidant proteins [19]. Indeed, Nrf2 demon-
strates a protective role in many pathological processes, and its activation is involved in
several CNS diseases [18,20], including TBI and SCI [21,22].

In this review, the pathophysiology of SCI and TBI will be illustrated, describing in detail the
potential role of Nrf2 underlying oxidative stress as a trigger in the pathological process of these
conditions. The biological role of Nrf2 and its involvement in the regulation of the intracellular
redox balance will also be mentioned. There is growing interest in understanding the molecular
mechanisms underlying Nrf2 activation or inhibition, for potential therapeutic purposes. In this
regard, this article intends to analyze in depth the mechanism of Nrf2 as the main regulator of
oxidative stress, also summarizing the natural compounds based on the regulation of the Nrf2
pathway for the future development of more effective treatments for TBI and SCI.

2. Methodology

In this review, the selected publications range from 2018 to 2022. In order to write
the paragraphs, “5. Therapeutics interventions targeting the Nrf-2 in Spinal Cord Injury
(SCI)” and “6. Therapeutics interventions targeting the Nrf-2 in Traumatic Brain Injury
(TBI)”, the bibliography research in PubMed was performed using the following keywords:
“spinal cord injury”, or “traumatic brain injury”, and “Nrf-2” and “oxidative stress”. We
have specifically selected in vivo and in vitro studies that describe the progress of the
investigations of natural compounds in the activation of Nrf2 signaling and their potential
applications in TBI and SCI management (Figure 1).
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Nrf2, encoded in humans by the NFE2L2 gene, is a transcription factor that regulates 
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element found in many cytoprotective genes, and therefore, Nrf2 plays an important role 
in the cellular defense systems against ARE-dependent environmental stresses. Nrf2 be-
longs to the Cap’n’Collar (CNC) subfamily of basic region leucine zipper (bZIP) tran-
scription factors [24]. Nrf2 possesses seven conserved Nrf2-ECH homology (Neh) do-
mains with different functions to control Nrf2 transcriptional activity (Figure 2). The bZip 
in the Neh1 domain interacts with AREs for gene transcription activation, while the Neh2 
domain specifically recognizes the domain of Kelch-like erythroid cell-derived protein 
with CNC homology-associated protein 1 (Keap1), to mediate the ubiquitination and 
degradation of Nrf2. The Neh3-5 domains bind various transcriptional components, 
acting as transcriptional activation domains, while the Neh6 domain binds the E3 ubiq-
uitin ligase protein β-transducin repeat-containing protein (β-TrCP), involved in the 
degradation of Nrf2 in cells subjected to oxidative stress [25]. The Neh7 domain mediates 
interaction with the retinoic X receptor alpha (RXRα), a repressor of Nrf2 activity [26]. 
The presence of multiple domains allows Nrf2 to regulate the transcriptional activation of 
its target genes at different levels, thus regulating transcriptional, post-transcriptional, 
and post-translational regulation. Nrf2 activation is induced during oxidative stress, in-

Figure 1. Prisma flow diagram details the methodology that was applied to choose the preclinical studies
that were used for the writing of the review. Duplicate articles were excluded from the total number of
studies that were recorded. Instead, we selected the articles that describe the role of natural compounds
in the activation of Nuclear Factor Erythroid-2 Related Factor 2 (Nrf-2) signaling, which is important to
promote injury repair and restore functional deficits (The PRISMA Statement is published in [23]).
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3. The Biological Role of Nrf-2

Nrf2, encoded in humans by the NFE2L2 gene, is a transcription factor that regulates
the gene expression of several antioxidant and cytoprotective enzymes through a promoter
sequence known as the antioxidant response element (ARE). ARE is a promoter element
found in many cytoprotective genes, and therefore, Nrf2 plays an important role in the
cellular defense systems against ARE-dependent environmental stresses. Nrf2 belongs
to the Cap’n’Collar (CNC) subfamily of basic region leucine zipper (bZIP) transcription
factors [24]. Nrf2 possesses seven conserved Nrf2-ECH homology (Neh) domains with
different functions to control Nrf2 transcriptional activity (Figure 2). The bZip in the Neh1
domain interacts with AREs for gene transcription activation, while the Neh2 domain
specifically recognizes the domain of Kelch-like erythroid cell-derived protein with CNC
homology-associated protein 1 (Keap1), to mediate the ubiquitination and degradation of
Nrf2. The Neh3-5 domains bind various transcriptional components, acting as transcrip-
tional activation domains, while the Neh6 domain binds the E3 ubiquitin ligase protein
β-transducin repeat-containing protein (β-TrCP), involved in the degradation of Nrf2 in
cells subjected to oxidative stress [25]. The Neh7 domain mediates interaction with the
retinoic X receptor alpha (RXRα), a repressor of Nrf2 activity [26]. The presence of mul-
tiple domains allows Nrf2 to regulate the transcriptional activation of its target genes at
different levels, thus regulating transcriptional, post-transcriptional, and post-translational
regulation. Nrf2 activation is induced during oxidative stress, inflammation, and exposure
to various stimuli such as growth factors, allowing cells to respond to different forms of
stress. Indeed, Nrf2 is responsible for the regulation of more than 200 genes, all of which
have the ARE promoter. Nrf2-regulated genes encode enzymes involved in xenobiotic and
endobiotic metabolism, inflammatory responses, oxidative stress, and lipid, carbohydrate,
and protein degradation metabolism [27].
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Figure 2. The structural architecture of Nrf2. The structure of Nrf2 contains seven domains, Neh
domains, Neh1-Neh7. Neh1 contains a bZip motif, where the basic region is responsible for DNA
binding and the zip dimerizes with other binding partners such as sMAFs. Neh2 contains ETGE and
DLG motifs, involved in the interaction with Keap1 and subsequent Keap1-mediated proteasomal
degradation. Neh3, Neh4, and Neh5 domains are transactivation domains of Nrf2. In particular,
Neh4 and five domains interact with the Hrd1 responsible for Nrf2 degradation. The Neh6 do-
main contains two redox-independent degrons, DSGIS and DSAPGS, that bind to the E3 ubiquitin
ligase β-TrCP involved in the Nrf2 degradation in oxidatively stressed cells. The neh7 domain
mediates the interaction with RXRα, which represses Nrf2 activity. Nuclear factor erythroid 2-related
factor 2: Nrf2; Nrf2-ECH homology: Neh; basic region leucine zipper: bZip; Cap’n’Collar: CNC;
small muscleaponeurotic fibrosarcoma: sMAF; Kelch-like erythroid cell-derived protein with CNC
homology-associated protein 1: Keap1; β-transducing repeat-containing protein: β-TrCP; retinoic
X receptor alpha: RXRα; Glycogen synthase kinase-3: GSK-3β; HMG-CoA reductase degradation
1: Hrd1.
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Nrf2 is a transcription factor expressed in all cell types and is regulated, under differ-
ent conditions, mainly by four ubiquitylation, by ubiquitin ligase E3, and by proteasomal
degradation. Under physiological conditions, its basal protein levels are generally kept
low due to proteasome degradation mediated by its negative regulator Keap1 [28]. Indeed
in the cytoplasm, Keap1 creates a ubiquitin E3 ligase complex with Cullin3 which, by
targeting Nrf2, induces its polyubiquitination and the rapid degradation of the protea-
some [29,30]. During oxidative stress, electrophiles and ROS react with Keap1 sensor
cysteines, protecting Nrf2 from Keap1-driven polyubiquitination and proteasome degra-
dation [31,32]. This induces the translocation of the Nrf2 into the nucleus, where its ac-
cumulation allows the binding with the small muscleaponeurotic fibrosarcoma (sMAF)
oncogene, with consequent activation of the expression of cytoprotective genes containing
ARE [28,30,33]. Nrf2 activity is modulated at multiple levels, including regulation of the sta-
bility of the Nrf2 protein. Glycogen synthase kinase-3 β (GSK-3β) phosphorylates a motif
present in the Neh6 domain, promoting the ubiquitination and degradation of Nrf2 [34,35].
GSK-3β phosphorylates Nrf2, creating a degradation domain that is recognized by β-TrCP
and tagging for proteasomal degradation by the Keap1-Cullin 1 (CUL1) and RING-box
protein 1 (RBX1) complex [36,37]. Likewise, CR6-interacting Factor 1, involved with pro-
teins inducible by DNA damage, by binding the Neh2 domain and the C-terminal regions
of Neh1 and Neh3 induce the degradation of Neh2 [38]. Nrf2 activity is also modulated
by post-translational modifications that induce changes in its binding partners. Some pro-
teins, such as c-jun N-terminal kinase (JNK) [39], protein kinase C (PKC) [40], extracellular
signal-regulated protein kinases (ERK) [39], protein kinase R-like endoplasmic reticulum
kinase [41], phosphoinositide 3-kinase (PI3K)/AKT, and casein kinase 2 [42], regulate Nrf2
phosphorylation by increasing its stability and transcriptional activity. Instead, proteins
such as p38 and GSK-3β induce the phosphorylation of Nrf2 reducing its stability [35].

It is known that the Nrf2-Keap1 axis exerts a protective effect in various disorders
that see oxidative stress and inflammation as the main pathological mechanisms [43]. Nrf2
is initially controlled at the transcriptional level by several transcription factors, such as
the nuclear factor kappa-light chain-enhancer of activated B lymphocytes (NF-kB) [44,45].
The NFE2L2 promoter contains an NF-kB binding site which allows it to regulate Nrf2.
Some signaling pathways, such as the PI3K-AKT pathway [46] and the Notch signaling
pathway [47], seem to increase NFE2L2 transcription in order to allow Nrf2 to carry out
the basal Nrf2 antioxidant program. It was discovered that at the post-transcriptional level
it can also be regulated by microRNAs such as miR-144, which appears to be linked to
a reduction in the transcriptional Nrf2 activity [48]. Other miRNAs, such as miR-28 [49],
miR-34 [50], miR-93 [51], and miR-153 [52], appear to be involved in the regulation of Nrf2.

Nrf2/ARE signaling protects cells and tissues from oxidative stress [53] by negatively
controlling the NF-kB signaling pathway that regulates inflammatory responses and cell
damage [54]. Indeed, once translocated to the NF-κB nucleus, it induces the expression
of proinflammatory cytokines (IL-1, IL-6, TNF-α), COX-2, and iNOS. Nrf2 inhibits the
transcription of NF-κB by inhibiting its nuclear translocation [55]. Furthermore, high levels
of Nrf2 enhance the levels of cellular HO-1, and consequently, increase the expression levels
of phase II enzymes, blocking the degradation of IκB-α and the inhibitor of IκB-α [56]. Nrf2
can directly modulate ROS and RNS activating antioxidant enzymes, such as superoxide
dismutase (SOD), GSH peroxidase, and members of peroxiredoxin [57,58]. Following
oxidative stress, Nrf2 translocates into the nucleus where it induces the transcription of
several antioxidant enzymes, such as GSH-dependent antioxidant enzymes (glutathione
peroxidase 2, GPX2) and glutathione S-transferases (GST) [58]. Nrf2 also promotes the
conversion of glutathione disulfide (GSSG) to GSH by glutathione reductase (GSR) [59],
reducing oxidized thioredoxins by thioredoxin reductase (TrxR) [60] and Prx-SO2H by
sulfiredoxin (Srx), as illustrated in Figure 3 [61].
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Figure 3. Regulation of the Nrf2 pathway. (a) Regulation of Nrf2 under basal conditions. Under basal
conditions, Nrf2 is sequestered by Keap1 in the cytosol and ubiquitinated. The formation of the Keap1-
Cul3-Rbx1 complex induces the degradation of the Nrf2 proteasome. In this way, Nrf2 expression
is maintained in the cytosol at low levels. However, the degradation of Nrf2 can also be promoted
by GSK-3β. GSK-3β by phosphorylating Nrf2 forms a recognition motif for the E3 ligase adapter
β-TrCP. Formation of the GSK-3β/β-TrCP/Cul1 complex promotes Keap1-independent degradation
of Nrf2. (b) Regulation of Nrf2 under oxidative stress. When cells are under severe oxidative stress,
Nrf2 is released from Keap1 binding and is translocated from the cytosol to the nucleus. In the
nucleus, it binds to ARE gene sequences and promotes the transcription of cytoprotective genes
responsible for the translation of ROS scavenging enzymes (HO-1, NQO1, SOD, SOD2, CAT and
GSH peroxidase) and antiapoptotic proteins. Furthermore, Nrf2 positively regulates PINK1 by
promoting mitochondrial homeostasis through several mechanisms, such as the removal of damaged
mitochondria. The image was created using the image bank of Servier Medical Art (Available online:
http://smart.servier.com/, accessed on 15 November 2022), licensed under a Creative Commons
Attribution 3.0 Unported License (Available online: https://creativecommons.org/licenses/by/3.0/,
accessed on 15 November 2022). Nuclear factor E2-related factor 2: Nrf2; antioxidant response
element: ARE; small muscleaponeurotic fibrosarcoma: sMAF; Kelch-like erythroid cell-derived
protein with CNC homology-associated protein 1: Keap1; β-transducing repeat-containing protein:
β-TrCP; Cullin 3: CUL3; RING-box protein 1: RBX1; PTEN Induced Kinase 1: PINK1; Glycogen
synthase kinase-3 β: GSK-3β; heme oxygenase-1: HO-1; NADPH Quinone Dehydrogenase 1: NQO1;
reactive oxygen species: ROS; superoxide dismutase: SOD; glutathione: GSH; catalase: CAT.

Noteworthily, Nrf2 regulates mitochondrial function through the regulation of some
key metabolic genes, for example, by improving glycolytic flux, amino acid metabolism,
and glutaminolysis. Active Nrf2 is also involved in maintaining the integrity of mito-
chondrial DNA, an important regulator of cell death and inflammation [62]. Furthermore,
Nrf2 is also a regulator of mitochondrial biogenesis via the activation of the mitochondrial
transcription factor A (TFAM), the mitochondrial transcription factor B2 (TFBM2), and
the nuclear respiratory factor-1 (Nrf-1) [63]. Additionally, regulating the expression of the
transcriptional co-activator peroxisome proliferator activator gamma co-activator 1 alpha
(PGC-1α), which is a major regulator of mitochondrial function and biogenesis, is another
example of Nrf2 activity [64]. Additionally, when cells are subjected to oxidative stress,
Nrf2 influences mitochondrial biogenesis also by inducing the process of mitophagy [65,66].
Nrf2 improves autophagy by promoting the expression of autophagic genes encoding
SQSTM1/p62 [67], protein 2 containing the calcium-binding domain and spiral coil (CAL-
COCO2/NDP52), kinase 1 similar to unc-51 (ULK1), protein autophagic 5 (ATG5), and
gamma-protein-like 1 associated with the aminobutyric acid receptor (GABARAPL1) [68].

For the purpose of improving the neuroprotective potential of Nrf2 signaling pathway
activation, several natural flavanol compounds with antioxidant, anti-inflammatory, and
iron-chelating properties have been tested. In this regard, it was demonstrated that intra-

http://smart.servier.com/
https://creativecommons.org/licenses/by/3.0/


Int. J. Mol. Sci. 2023, 24, 199 6 of 24

venous or oral administration of epicatechin passes the BBB, improving vascular function
and leading to the reduction both of oxidant species and free radicals through the activation
of the Nrf2 signaling pathway [69]. Besides the activation of the Nrf2 pathway, it was high-
lighted that epicatechin can act also on activator protein-1 (AP-1) signaling pathways, thus
protecting the astrocytes exposed to hemoglobin [70]. Additionally, it was demonstrated
that epicatechin has a neuroprotective effect in the brain after TBI, by activating the Nrf2
pathway and inhibiting the expression of HO-1, and reducing iron deposition [71].

It is known that HO-1 overexpression could alter iron homeostasis and aggravate iron
deposition in the brain. Excess iron is a pathological feature, promoting ROS generation
and subsequent DNA damage; lipid peroxidation leads to BBB destruction, neuronal death,
and neurological deficits [72,73]. Second, HO-1 overexpression and increased brain iron
deposition could be linked to chronic inflammation. A previous study [74] demonstrated
that exacerbated oxidative stress and iron accumulation could be promoted by inflam-
matory processes. Thus, natural compounds such as epicatechin, by activating Nrf2 and
also inhibiting HO-1 expression and iron deposition, may show important neuroprotective
effects. Nevertheless, several studies in Nrf2- and HO-1-deficient mice confirmed the
neuroprotective function of Nrf2, and the deleterious effects of HO-1 in the pathologic
process of intracerebral hemorrhage [20,75].

4. Pathophysiology of SCI

SCI is a pathological condition with a high mortality rate, and it reduces life expectancy
depending on the severity of the insult and the age of the patient [76]. The available
treatments for this condition are generally aimed at relieving the symptoms of patients by
improving their quality of life [77]. Most spinal cord injuries are due to road accidents, falls,
assaults, and sports injuries [78]. However, SCI can also be caused by other conditions,
such as musculoskeletal diseases, congenital problems such as spinal bifida, infectious
diseases, and cancers [79].

The initial phase immediately following the injury is known as the “primary injury”, it is
an irreversible process that can be caused by bone fragmentation and ligament tear [80,81].
The primary lesion is followed by a cascade of events, including increased cell permeabil-
ity, apoptotic signaling, excitotoxicity, and vascular and inflammatory damage, which will
eventually lead to neuronal damage and death, known as the “secondary injury” [82–84]. The
secondary lesion can be divided into three phases: acute (within a few days), subacute
(from 2 days to 2 weeks), and chronic (over 2 weeks). During the acute phase, vascular dam-
age can cause bleeding and disruption of the spinal cord barrier, which attracts the rapid
infiltration of inflammatory cells such as neutrophils, resulting in the release of various pro-
inflammatory cytokines, such as tumor necrosis factor-alpha (TNF-α), interleukin 1-alpha
(IL-1α), interleukin 1-beta (IL-1β), and interleukin-6 (IL-6) [85,86]. During the subacute
phase, arterial vessel damage impairs vascular supply and causes edema, leading to further
neuronal and vascular damage, in particular causing the death of the oligodendrocytes
responsible for the demyelination of the axons [87,88]. Furthermore, during this phase, the
alteration of ionic homeostasis causes mitochondrial dysfunction [89,90], responsible for
the excessive production of ROS and reactive nitrogen species (RNS) contributing to tissue
damage [91]. During the chronic SCI phase, the damage expansion leads to the activation
of astrocytes that produce excessive levels of the extracellular matrix. This alters vascular
remodeling, the composition of the extracellular matrix, and the reorganization of neural
circuits, inducing the formation of cystic cavities, axonal death, and the maturation of
glial scars [92–94].

Since the complex pathophysiological changes make the secondary lesion more lethal
than the primary one, the most promising approach in the treatment of SCI is to inhibit the
secondary lesion and promote functional recovery [95]. In this regard, a large amount of
evidence has shown that Nrf2 is involved in the pathogenesis of SCI and easily responds to
traumatic injuries [96].
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5. Therapeutics Interventions Targeting the Nrf-2 in SCI

Several evidences have shown that the Nrf2 improves spinal cord ischemia–reperfusion
injury in neurons, and astrocytes, by activating antioxidant, antiapoptotic, and survival neu-
ronal responses [97,98]. Therefore, strategies that can activate the Nrf2 pathway could be
employed as a therapeutic tool to reduce oxidative stress and inhibit apoptotic processes that
are activated in the damaged spinal cord. In a study performed on SCI rats, the effects of polya-
dine on oxidative stress, apoptosis, and the Nrf2 pathway underlying the SCI were evaluated.
Polydatin administration (20 or 40 mg/kg, intraperitoneal) improved spinal cord impairment
and locomotor function in SCI rats and also reduced injury-induced congestion, edema, and
structural damage. Polydatin upregulated SOD and reduced malondialdehyde (MDA) levels,
decreasing oxidative damage. Furthermore, it also decreased the levels of caspase-3 and split
Bax and increased the levels of Bcl-2 in the spinal cord tissues, demonstrating its anti-apoptotic
effect. Polydatin may have exerted its antioxidant and antiapoptotic action probably via the
Nrf2 signaling pathway. Indeed, after treatment with the compound, the levels of nuclear
Nrf2 and cytoplasmic HO-1 in spinal cord tissues were significantly elevated. Consistent with
the findings observed in spinal cord tissues, including lipopolysaccharides (LPS)-stimulated
BV2 microglia, polydatin treatment significantly reduced ROS and lactate dehydrogenase
(LDH) production and inhibited BV2 cell apoptosis. These results, instead, were reversed with
the Nrf2-knockdowns (KO) in LPS-induced BV2 cells [99].

Rosmarinic acid is a water-soluble polyphenolic phytochemical compound that has
been shown to be protective against ischemic stroke [100], and against the neuronal cell
damage induced by H2O2 [101]. These findings prompted researchers to investigate the ef-
fect of this compound on SCI and its underlying molecular mechanisms. After 7 days from
the initial injury, the administration of rosmarinic acid (10, 20 or 40 mg/kg, intraperitoneal)
reduced the areas of hemorrhage and swelling, the area of nerve cell destruction, reduced
glial cell proliferation, and inflammatory cell infiltration. The treatment also increased
the number of neurons in a dose-dependent manner, inducing functional recovery and a
reduction in tissue damage, also after 28 days of treatment, highlighting the long-term effect
of this compound. Like polydatin, rosmarinic acid also attenuated the damage-induced
apoptosis by reducing the levels of Bax, cleaved caspase-9, and cleaved caspase-3, and
increasing the level of Bcl-2. It promoted neuroprotection by increasing the expression
of neurotrophic factors such as, neurofilament H (NF-H) and brain-derived neurotrophic
factor (BDNF). Furthermore, the compound reduced oxidative stress by significantly in-
creasing the activity of SOD, catalase (CAT), and GSH peroxidase, and reducing MDA.
Subsequently, the proteomic analysis identified Nrf2 and NF-κB pathways as possible
targets of rosmarinic acid, demonstrating that these beneficial effects could be mediated by
this pathway. To confirm these data, the in vitro models of H2O2-induced oxidative injury
and LPS-induced inflammatory injury in PC12 cells were used. PC12 cells is a cell line of
rat, originated from the neural crest and widely used as model for neural differentiation
as well as to evaluate the effects of differentiation. Additionally, in vitro, rosmarinic acid
improved the antiapoptotic response and oxidative damage via Nrf2/HO-1 signaling [102].

Ginsenoside Rb1 is a natural compound that regulates the immune balance and acts
as a scavenger of free radicals; therefore, the potential antioxidant effect has been evaluated
in SCI. Treatment with ginsenoside Rb1 (10 mg/kg, intraperitoneal) improved hind limb
motor function in rats that showed higher scores than those in the untreated SCI group.
Histopathologically the compound reduced hemorrhage, neuronal degeneration/necrosis,
and the infiltration of mononuclear cells and lymphocytes. After 7 days, the treatment sig-
nificantly reduced serum MDA levels but increased SOD, CAT, and GSH levels. Instead,
compared to the untreated SCI group, ginsenoside Rb1 significantly increased the expression
of eNOS, HSP90, Nrf2, NQO1, and HO-1 proteins in the spinal cord. Ultimately, the SCI rats
treated with ginsenoside Rb1 were injected with the eNOS inhibitor L-name to investigate
the mechanism behind the protective effect. In this way, it was shown that ginsenoside Rb1
protected the spinal cord from damage-induced oxidative stress via the eNOS/Nrf2/ARE
signaling pathway [103]. In another study, ginsenoside Rg1 decreased neuronal edema and
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bleeding in the damaged spinal cord and reduced inflammatory cell infiltration and cell
necrosis. In addition, the treatment preserved the spinal cord structure from further injury
and improved the motor function of the hind limbs in the SCI rat model. The treatment of SCI
rats with ginsenoside Rb1 and Nrf2 inhibitor all-trans retinoic acid confirmed that the com-
pound’s antioxidant and anti-inflammatory effects are regulated by the Nrf2/HO-1 signaling
pathway [104]. The same results were obtained in rats administrated with notoginsenoside R1
(25 mg/kg/day, intraperitoneal) for 21 days, 2 h after SCI. These antioxidative, antiapoptotic,
and anti-inflammatory effects of notoginsenoside R1 were reversed when SCI rats that had
received notoginsenoside R1 were also treated with ML385, an inhibitor of the Nrf2/HO-1
signaling pathway. This confirmed that activation of the Nrf2/HO-1 signaling pathway after
SCI may have an important implication in the management of SCI [105].

Luteolin, a flavonoid that possesses antioxidant [106], anti-inflammatory, and neu-
roprotective properties [107], has also been observed to be capable of activating Nrf2
gene expression. In in an ischemia–reperfusion SCI model, luteolin pretreatment (50 and
100 mg/kg, intraperitoneal) exhibited an improvement in neurological dysfunction of the
lower hind limbs, demonstrating that this compound could protect animals from SCI. Pre-
treatment significantly reduced cellular apoptosis in the spinal cord of rats with an injury
in a dose-dependent manner, and counteracted oxidative stress by lowering the oxidative
activity of MDA and xantina oxidase. It also increased the antioxidant activity of SOD
and GSH peroxidase and increased the levels of Nrf2 protein in the spinal cord 48 h after
injury [108]. In this regard, in a subsequent study, it was explored whether pretreatment
with this compound would improve recovery from SCI by activating Nrf2 and downstream
target genes. Therefore, luteolin-pretreated animals were also treated with an Nrf2 in-
hibitor ML385 (30 mg/kg daily) for 14 consecutive days prior to the injury. Pretreatment
with ML385 also reversed luteolin-induced pathological and functional improvements.
Therefore, the results of the study showed that the anti-inflammatory, antioxidant, and
neuroprotective activities of luteolin were closely related to the activation of Nrf2 [109].

Mulberrin is a natural compound of Ramulus mori which exhibits anti-inflammatory
and antioxidant effects, therefore, it could be considered an effective therapeutic strategy to
prevent the progression of SCI [110]. Mulberrin (15 or 30 mg/kg, by gavage), for 28 days,
induced an improvement in motor function and attenuated the damage-induced apoptosis
by the reduction of pro-apoptotic molecules (Bax, caspase-3, and PARP), and by the increase
in the anti-apoptotic ones. Furthermore, the treatment resulted in a significant reduction of
HO-1 and Nrf2 in the spinal cord tissue samples. These antioxidant effects of mulberrin
were further confirmed in astrocytes treated with LPS in vitro. Therefore, the data of this
study suggest that mulberrin could attenuate SCI by reducing miR-337 expressions which
by regulating Nrf2 would reduce apoptosis, inflammation, and oxidative stress [111].

Another substance that appears to activate the Nrf2/HO-1 signaling pathway in the
brain by attenuating oxidative stress and apoptosis-mediated cell death is maltol [112,113]. In
the advanced phase of the damage (on the 7th and 14th days), the maltol (100 mg/kg, by gavage)
improved locomotor function by decreasing the expression levels of the proapoptotic protein
Bax and upregulating the antiapoptotic protein Bcl-2, thus attenuating neuronal apoptosis.
Maltol could significantly inhibit H2O2-induced apoptosis in PC12 cells and could facilitate the
expression of Nrf2 in the nucleus, thus suggesting that maltol could activate significantly the
Nrf2 signaling pathway. This hypothesis was confirmed by the use of its ML385 inhibitor which
reversed the inhibitory effect of maltol on ROS formation. Furthermore, maltol increased the
level of mitophagy by activating the Nrf2/PINK1/Parkin signaling pathway in PC12 cells [114].

Perillaldehyde has been shown to be an activator of Nrf2 [115], therefore, it could be a
potential therapeutic strategy for SCI. This hypothesis prompted a research group to explore
these effects in an ischemia—reperfusion SCI rat model. The rats were pretreated for 7 days
with perillaldehyde (36 and 72 mg/kg) administered intragastrically. Pretreatment-induced
recovery of motor and neurological function also improved histological damage. In treated
animals, functional and histological recovery was probably induced by the reduction of pro-
inflammatory cytokines (IL-18 and IL-1β), by the inhibition of NLRP3 inflammasome activation,
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by the reduction of MDA, and by the increase in antioxidant enzymes (SOD, mitochondrial
SOD, GSH peroxidase, and CAT). Furthermore, compared to the control group, the animals
pretreated with the compound showed high Nrf2 and HO-1 expression. Moreover, pretreatment
effectively inhibited the expression of phospho-NF-κB p65. The in vitro results also confirmed
that perillaldehyde (0, 0.01, 0.1, 1, 10, 50, 100, 500 µM) counteracts the oxidative stress induced
by the lesion probably by activating Nrf2/HO-1 [116]. Another natural compound that has
been investigated for its possible role as an activator of Nrf2 is sinomenine [117,118]. After
14 days from the lesion, sinomenine (40 mg/kg, intraperitoneal) improved neurological deficits
and reduced neuronal apoptosis, significantly decreasing inflammatory cytokines (IL-1β, IL-6,
and TNF-α) and oxidative stress factors (MDA) in SCI rats. Contrarily, the treatment increased
the activity of antioxidant enzymes such as SOD in the spinal cord. Furthermore, treatment
with sinomenine induced an increase in the translocation of Nrf2 from the cytoplasm to the
nucleus. To evaluate the role of sinomenineas as an activator of Nrf2, H2O2-stimulated and
LPS-stimulated PC12 cells were treated with Nrf2 small RNA interference, demonstrating that
Nrf2 silencing blocks the antioxidant and anti-inflammatory effects of sinomenine (10 µM) [119].

The data are summarized in Table 1, which shows that most natural compounds have
a potential therapeutic efficacy for SCI management by inhibiting oxidative stress via Nrf2
activation (Figure 4). Indeed, once active, Nrf2 can downregulate inflammatory mediators
(such as chemokines, and cytokines), and can downregulate NF-κB activity to achieve
anti-inflammatory effects and regulate genes related to antioxidant mechanisms. Prevailing
studies focus on the neuroprotective potential of these compounds by employing several
mechanisms, including Nrf2/Keap1/ARE, Nrf2/PINK1/Parkin, NF-κB/TNF-α/ILs, and
Bax/Bcl-2/caspases. Thus, the employment of these compounds that activate Nrf2 to
effectively treat SCI could be a direction of future research.
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Table 1. Potential natural compounds Nrf2 activators for controlling SCI symptoms and improving functional recovery.

Compound Type of
Compound SCI Time Frame Experimental SCI Model Targets Potential Effects Type of Study Ref.

Polydatin A stilbenoid glucoside Acute SCI
Rats

Nuclear Nrf2 and
cytoplasmic HO-1

Polydatin is effective in ameliorating SCI, reducing oxidative
stress and promoting antiapoptotic response via the

Nrf2/HO-1 pathway.

In vivo
[99]LPS-stimulated

BV2 microglia In vitro

Rosmarinic acid A polyphenol Sub-acute and chronic SCI
Rats

Nrf2/HO-1 and NF-κB

Rosmarinic acid exerts a neuroprotective effect on SCI and
ameliorated the locomotor function by attenuating oxidative

stress, apoptosis, and inflammation via modulating the
Nrf2/HO-1 and NF-κB pathways.

In vivo
[102]H2O2– and LPS-induced

PC12 cells In vitro

Ginsenoside Rb1 A saponin Sub-acute SCI Rats Endothelial
NOS/Nrf2/ARE

Ginsenoside Rb1 improved the hind limb function score,
protected the physiological function of spinal cord tissue, and

exerted a protective effect against oxidative stress injury,
enhancing the activity of the antioxidant enzyme and blocking

lipid peroxidation, via the eNOS/Nrf2/HO-1 pathway.

In vivo [103]

Ginsenoside Rb1 A saponin Acute SCI Rats Nrf2 and HO-1

Ginsenoside Rg1 promoted a neuroprotective effect on SCI and
ameliorated motor dysfunction after an injury, exerting

antioxidative and anti-inflammatory effects via regulating the
Nrf2/HO-1 signaling pathway.

In vivo [104]

Notoginsenoside R1 A saponin Acute SCI Rats Nrf2 and HO-1
Notoginsenoside R1 ameliorates the SCI condition by
countering oxidative stress, neuronal apoptosis, and

inflammation via activating the Nrf2/HO-1 signaling pathway.
In vivo [105]

Luteolin A flavonoid Acute SCI Ischemia–reperfusion
SCI rats Nrf2

Luteolin exhibited a neuroprotective effect by alleviating
oxidative stress, inhibiting inflammatory and neuronal

apoptosis, probably through the signaling pathway Nrf2.
In vivo [108]

Luteolin A flavonoid Acute SCI Rats Nrf2

The neuroprotective efficacy of luteolin depends on the
suppression of oxidative stress and neuronal apoptosis

through signaling pathways involving Nrf2 activation and
downstream gene expression.

In vivo [109]

Mulberrin
An oxyresveratrol

glycoside Acute SCI
Rats

Nrf2
Mulberrin could promote SCI recovery by reducing miR-337

expressions which, by regulating Nrf2, would reduce
apoptosis, inflammation, and oxidative stress.

In vivo
[111]LPS-stimulated

Astrocytes In vitro

Maltol An organic compound SCI
Rats

Nrf2/PINK1/Parkin
Maltol could stimulate mitophagy and counteract the oxidative
response and neuronal cell death induced by SCI by activating

the Nrf2/PINK1/Parkin pathway.

In vivo
[114]

H2O2—induced PC12 cells In vitro

Perillaldehyde An aldehyde Acute SCI
Ischemia–reperfusion

SCI rats Nrf2/HO-1
Perillaldehyde reduces oxidative stress and ameliorates

ischemia–reperfusion SCI symptoms, probably activating the
Nrf2/HO-1 signaling pathway.

In vivo
[116]

BV2 microglia OGD/R In vitro

Sinomenine An active alkaloid Acute SCI
Rats

Nrf2
Sinomenine has the potential therapeutic efficacy agent for SCI
management by inhibiting inflammation and oxidative stress

via Nrf2 activation.

In vivo
[119]

H2O2– and LPS-induced
PC12 cells In vitro

Spinal cord injury: SCI; lipopolysaccharides: LPS; nuclear factor E2-related factor 2: Nrf2; heme oxygenase-1: HO-1; nuclear factor kappa-light chain-enhancer of activated B lymphocytes:
NF-κB; nitric oxide synthase: NOS; catalase: CAT; antioxidant response element: ARE; BV2 microglia oxygen and glucose deprivation/reoxygenation: OGD/R.
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6. Pathophysiology of TBI

TBI is defined as acquired intracranial damage caused by a mechanical injury that
occurs in the brain and compromises its function. TBI is caused by an external force such
as a bump, a jolt to the head, a severe blow from an object, or a deep puncture of the skull
through brain tissue [120]. When patients maintain good neurological function and the
sequelae can be resolved completely without any treatment, TBI is referred to as mild.
Conversely, a TBI is defined as moderate or severe when the injury causes a disability that
makes the quality of life negligible [121].

The pathophysiology of TBI is divided into primary and secondary lesions. The
primary damage occurs at the time of the exposure to external force and causes a mechanical
breakdown of brain tissue [122]. The secondary injury has its onset hours after the traumatic
event and it is due to the cascade of biochemical, cellular, and physiological events that are
activated after the injury responsible for further damages [123,124]. Within 24 h of TBI, there
is a disruption of normal blood flow, which generally causes ischemic events responsible for
increases in ionic gradients and oxidative phosphorylation with consequent accumulation
of lactate. High concentrations of lactate cause neuronal damage and disruption of the
BBB and cerebral edema [125]. These mechanisms cause the depolarization of neurons
and an increase in neurotransmitters, such as glutamate and aspartate, responsible for
calcium (Ca2+), potassium, and sodium homeostasis [126]. The increase in intracellular
Ca2+ promotes the activation of enzymes, such as caspases, responsible for cell death
by apoptosis.

Oxidative stress also plays an important role in the development and pathogenesis of
TBI. Indeed, it has been shown that ROS production induces lipid peroxidation of cell mem-
branes, especially at the axonal level, increasing the neurodegeneration process [126,127].
Soon after, these events also cause the activation of an inflammatory response that stimu-
lates macrophages, glial T cell lymphocytes, and neutrophils, to release pro-inflammatory
cytokines, such as TNFα, IL-1β, and IL-6, and also contribute to the production of superox-
ide radicals [128,129]. It is worth noting that an increase in iron is also generated, which
catalyzes the reaction of oxygen radicals and induces ferroptosis [130]. In this regard, it
has been shown that Nrf2 plays a protective role in TBI by counteracting the oxidative and
inflammatory response [44].

7. Therapeutics Interventions Targeting the Nrf-2 in TBI

To date, there is no efficacy treatment against TBI; therefore, it is important to find
effective therapeutic strategies for TBI treatment [131]. Same as for SCI, recent evidence has
demonstrated that the activation of Nrf2 mediated by different natural compounds and
drugs could be a valid therapeutic strategy for TBI.

Oridonine is the main constituent of Rabdosia rubescens, which acquired great interest
for its role as a powerful activator of Nrf2 [132]. These properties prompted a research group
to evaluate the potential effect of oridonine as an activator of Nrf2 in TBI management.
Already 7 days after the injury, oridonine (20 mg/kg, intraperitoneal) improved the motor
and cognitive function, reducing the volume of the cortical lesion, cerebral edema, the
accumulation of macrophages reactivated after the lesion, and neuronal apoptosis. These
outcomes are directly linked to the protective effect of oridonine against oxidative stress.
Indeed, in the injured cortex a decrease in ROS, MDA, mitochondrial membrane, and
adenosine triphosphate content was detected, which on the contrary were elevated after
TBI. The same antioxidant effect of oridonine (0.5, 1, 2, and 4 µM) was also confirmed in
H2O2-exposed mouse neuroblastoma (N2a) cells [133].

Breviscapine is an aglycone flavonoid extracted from the Erigeron plant that appears
to be involved in the activation of ATPase and SOD after trauma [134]. Breviscapine
(50 mg/kg, intraperitoneal) promoted the recovery of neurobehavioral functions and re-
duced lesion-induced apoptosis of neuronal cells. Indeed, in the brain tissues of treated TBI
rats, the expression of Bax was inhibited, while that of Bcl-2 was increased. Furthermore, the
treatment promoted the increased expression of Nrf2 and its related downstream proteins
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(HO-1 and NQO-1), consistent with mRNA levels, thus, highlighting its neuroprotective
role via modulating Nrf2 [135].

Isoliquiritigenins are chalcone compounds, already known as a regulator of the
Nrf2/ARE signaling pathway in animal models [136]. In line with these findings, isoliquir-
itigenin (20 mg/kg; intraperitoneally) one hour after injury improved neurological deficits,
histopathologic lesion air, brain content, and vascular permeability. In agreement with the
reduced water content, an increased expression of aquaporins was detected. Conversely,
the expression level of the cleaved-caspase-3 was reduced, demonstrating the antiapoptotic
effects exerted by the compound. The treatment counteracts TBI-induced oxidative stress by
reducing the levels of MDA and increasing those of SOD and GSH peroxidase in the brain
cortex tissue via Nrf2 activation. Indeed, in Nrf2-KO mice, isoliquiritigenin treatment failed
to protect against damage-induced oxidative stress. These results obtained in vivo were
also replicated in vitro in the OGD/R model using SH-SY5Y cells, where treatment with
isoliquiritigenin (2, 5, 10, 20, and 40 µM) highlighted its role in activating the Nrf2 pathway,
promoting the transfer of the Nrf2 protein from the cytoplasm to the nucleus [137].

7-D-Glucuronic acid-5,6-dihydroxyflavone (baicalin) is a flavonoid that crosses the
BBB exerting neuroprotective effects in SCI [138]. These data have encouraged the study
of the effects of this compound in a TBI mouse model. Baicalin (50, 100, and 150 mg/kg,
intraperitoneal) improved neurological damage, reduced edema, and neuronal apoptosis,
as demonstrated by an increased Bcl-2 protein expression and a decreased Bax and cleaved
caspase-3. Furthermore, this compound exerted antioxidant effects by reducing MDA and
increasing GSH peroxidase and SOD in the injured cerebral cortex. These effects are medi-
ated by Nrf2 pathway activation, as demonstrated by the increased nuclear translocation of
Nrf2 and its downstream antioxidant enzymes (NQO-1 and HO-1) after treatment with
baicalin. Furthermore, the use of the PI3K/Akt inhibitor demonstrated the involvement
of Akt in promoting the translocation of Nrf2 from the cytoplasm to the nucleus [139].
Another flavonoid that exerts antioxidant effects by activating Nrf2/HO-1 signaling in a
PI3K/Akt-dependent manner is wogonin. Wogonin (40 mg/kg intraperitoneal), reduced
cerebral edema, and improved behavioral deficits. This compound protected neuronal
cells against apoptosis by increasing Bcl-2 protein expression in the CA1 region of the
hippocampus of TBI rats and decreasing the apoptotic proteins caspase-3 and Bax. Fur-
thermore, the compound exerted antioxidant actions, increasing the levels of antioxidant
enzymes (GSH, CAT, and SOD) and decreasing ROS, MDA, and NOX2. Wogonin promoted
the expression of phosphorylated Akt, Nrf2, and HO-1 in the hippocampus of TBI rats,
demonstrating the antioxidant effects as mediated by the activation of Nrf2/HO-1 pathway
in a PI3K/Akt-dependent manner [140]. One more flavonoid known for its antioxidant and
neuroprotective effects is quercetin. In a model of TBI induced by a modified weight-drop
device, treatment with intraperitoneal quercetin (5, 20, or 50 mg/kg) administered 0.5, 12,
and 24 h after the injury, reduced cerebral edema and microgliosis 3 days after the injury.
Furthermore, the compound counteracted oxidative stress by reducing MDA levels and
increasing SOD, CAT, and GSH peroxidase in the cortex through Nrf2/HO-1 pathway
activation [141]. The same result was also obtained following treatment with fisetin, an-
other flavonoid extracted from vegetables and fruits [142], known for its anti-inflammatory
and antioxidant properties [143]. Furthermore, after 3 days from the injury, treatment
with fisetin (25, 50, and 75 mg/kg) protected against neuronal apoptosis, increasing Bcl-2
expression and reducing caspase-3 and Bax expression, and promoting the translocation
of Nrf2 from the cytoplasm to the nucleus, thus activating the Nfr2/ARE pathway. Data
was also confirmed by the use of Nrf2-KO mice, where the fisetin failed to counteract
oxidative stress [144].

Another natural compound that exerts neuroprotective effects after TBI through
possible involvement of the Nrf2-ARE pathway is curcumin, extracted from Curcuma longa L.
Curcumin (50 and 100 mg/kg; intraperitoneal), especially at the higher dose, reduced injury-
induced secondary brain damage, attenuated oxidative stress, and improved neurological
function. Furthermore, the compound exerted anti-apoptotic effects by increasing the
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expression of Bcl-2 and reducing that of the cleaved caspase-3 in brain tissues. Furthermore,
curcumin enhanced the translocation of Nrf2 from the cytoplasm to the nucleus, and by
increasing the expression of downstream factors such as HO-1 and NQO1, demonstrated
the role of this compound in counteracting the oxidative stress induced by the lesion [145].
In another study, at 24 h after the damage, curcumin reduced the levels of Nrf2 and
related proteins. In Nrf2-KO mice, the neuroprotective effects of curcumin treatment were
significantly reduced, highlighting that the therapeutic effect of this compound in TBI is
related to the activation of the Nrf2 pathway [146].

Sodium aescinate, extracted from chestnut seeds, showed anti-inflammatory prop-
erties and exerted antioxidant effects in an SCI model [147]. In this regard, a research
group led by Zhang L. et al. explored the effects of this saponin in the TBI mouse model.
Sodium aescinate (0.5, 1, and 2 mg/kg; intraperitoneal) reduced TBI-induced neurological
deficits, brain injury, and counteracted oxidative stress and neuronal apoptosis. Treatment
promoted Nrf2 nuclear translocation and enhanced Nrf2-ARE binding. The same data were
also obtained in vitro, suggesting that this compound provided neuroprotective effects,
especially at 10 µM. Treatment with sodium aescinate in Nrf2-KO mice failed to counteract
the oxidative stress induced by TBI, suggesting that also this compound exerts an activating
effect on the Nrf2-ARE pathway [148].

Likewise, β-carotene exerts neuroprotective effects after TBI, through the possible
involvement of the Nrf2-ARE pathway. In a TBI mouse model, administration of β-carotene
(10, 20, 30, and 50 mg/kg; by gavage) improved both the cognitive and neural function. The
β-carotene has increased the permeability to the BBB and protected the brain tissue from
the oxidative stress TBI-induced. Indeed, especially at the dose of 30 mg/kg, the compound
increased the levels of SOD and decreased those of MDA. The β-carotene after 7 days of
treatment protected the neuronal cortex from TBI-induced apoptosis. Furthermore, it was
shown that the treatment increased the translocation of Nrf2 into the nucleus, decreased
the expression of Keap1, and increased the expression of the Nrf2′s downstream effectors
(NQO-1 and HO-1), both at the protein level and mRNA [149].

Another carotenoid pigment that exhibits antioxidant, anti-inflammatory, immunomod-
ulatory, and neuroprotective properties, is astaxanthin, which has also shown promise in
counteracting oxidative stress in TBI [150,151]. In this regard, the mechanisms underlying
the effects of the compound were studied in a mouse model of TBI. Already one day after
the injury, astaxanthin (100 mg/kg; intraperitoneal) improved the neuronal function and
significantly increased the expression levels of the Nrf2 protein and mRNA, consequently
also increasing that of its downstream expression (HO-1 and NQO1). Furthermore, 24 h
after injury, the treatment induced an increase in Nrf2 nuclear translocation, suggesting that
the neuroprotective effects of Nrf2 against TBI-induced oxidative stress may be mediated
by activation of the Nrf2/HO-1 pathway [152]. In another study, astaxanthin (25, 75, and
150 mg/kg) counteracted oxidative stress 1, 3, and 7 days after injury. Moreover, 3 days after
the damage, this compound induced an improvement of the neurological functions compro-
mised by the lesion, increasing the expression of peroxiredoxin 2 (Prx2), Nrf2, and sirtuin 1
(SIRT1). Conversely, it reduced the phosphorylation of kinase 1 for the regulation of the
apoptosis signal (ASK1) and p38. Thus, it was demonstrated that astaxanthin could inhibit
oxidative insults and neuronal apoptosis via activation of SIRT1/Nrf2/Prx2/ASK1/p38 sig-
naling. Furthermore, 21 days after the damage induction, the treatment reduced neuronal
apoptosis and lesion volume, suggesting that astaxanthin could improve TBI-induced neu-
rological deficits even long term. Effects of astaxanthin on SIRT1/Nrf2/Prx2/ASK1/p38
signaling were also confirmed in vitro in H2O2-induced primary cortical neurons [153].

Tannic acid is a natural compound, recently known for reducing neurodegeneration
and behavioral deficits in an ischemic stroke model [154]. For this reason, its neuromod-
ulatory properties were investigated in a rat model of TBI. Treatment with tannic acid
(50 mg/kg) was performed intraperitoneally 30 min before and 6 and 18 h after the injury.
A total of 24 h after the injury, the treatment reduced neuronal damage, decreased brain
edema, and improved behavioral changes. This polyphenol induced these effects by restor-
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ing GSH levels in penumbra tissue and increasing levels of antioxidant enzymes (GST, GSH
peroxidase, CAT, and SOD). Additionally, the treatment also significantly increased the
protein expression of PGC-1α and Nrf2, mitochondrial transcription factor A, and HO-1
after TBI. Tannic acid improves behavioral deficits, oxidative damage, and mitochondrial
damage by activating the PGC-1α/Nrf2/HO-1 signaling pathway [155].

Furthermore, some isothiocyanates such as allyl isothiocyanate, extracted from radish,
mustard, and wasabi, are already known for their ability to activate Nrf2 in cultured
fibroblasts [156]. Treatment with allyl isothiocyanate given after an injury reduced the
brain edema and BBB permeability by decreasing glial fibrillary acid protein (GFAP) and
NF-κB levels, and increasing the levels of Nrf2, protein growth-associated 43 (GAP43),
and neural cell adhesion molecules. This demonstrates how allyl isothiocyanate enhanced
the expression of neuronal plasticity markers and endogenous antioxidant mechanisms
through Nrf2 upregulation [157]. Similarly, treatment with lupeol (50 mg/kg), 7 days
after the injury inhibited TBI-induced apoptotic cell death in mouse brains by reducing
mitochondrial apoptotic signaling (caspase-3, Bax, cytochrome-C and Bcl2), and reduced
the activation of glial cells in the cortex and hippocampus of the brain. Furthermore, lupeol
promoted Nrf2/HO-1 expression and thereby reduced oxidative stress in the TBI mouse
brain [158]. Furthermore, Huperzine-A, a natural sesquiterpene alkaloid, has been shown
to have efficacy in improving behavioral alterations in a model of TBI [159]. In this regard,
Huperzine-A (0.5 mg/kg) was administered intraperitoneally 30 min after the first injury,
and once daily for one month. The treatment reduced brain edema, restored behavioral
changes, and improved cognition by increasing synaptic proteins. The Huperzine-A
treatment also inhibited the inflammatory response and enhanced the activity of antioxidant
enzymes. Finally, this compound exerted its antioxidant effects by activating the Nrf2
pathway and promoting the translocation of Nrf2 from the cytoplasm to the nucleus [160].

Rutaecarpine derived from Euodia rutaecarpa can also activate the Nrf2 pathway and
inhibit oxidative damage, as demonstrated in a model of craniofacial injury [161]. In a
model of TBI, rutaecarpine (5, 10, 20 mg/kg) 24 h and 30 min before the lesion, and 2,
24, 48 and 72 h after TBI, improved cognitive impairment, inhibited neuronal apoptosis,
and counteracted lesion-induced oxidative stress. The same result was also obtained in
H2O2-induced PC12 cells. Furthermore, rutaecarpine promotes PGK1 and Nrf2 expres-
sions, suggesting that it may exert its neuroprotective effects against TBI by activating
the PGK1/Keap1/Nrf2 pathway [162]. The same result was also obtained by treatment
with evodiamine (5, 10, 20 mg/kg), a quinazoline alkaloidal extracted from the fruit of
Evodia rutaecarpa [163]. Similarly, aubucin, an iridoid glycoside, has been shown to be
a promising compound due to its neuroprotective, antioxidant, and anti-inflammatory
properties [164]. Its properties were tested in an in vitro model of H2O2-induced oxidative
stress in primary cortical neurons. Cells were treated for 12 h with aubucin (50, 100 or
200 µg/mL). Treatment promoted the translocation of Nrf2 from the cytoplasm to the
nucleus, activating the expression of antioxidant enzymes and thereby reducing oxida-
tive stress and reducing apoptosis. Furthermore, in vivo treatment with aubucin (20 or
40 mg/kg) administered intraperitoneally at 30 min, 12, 24, and 48 h after the injury reduced
brain edema, ameliorated histological damage, cognitive deficit, and short and long-term
neurologic functions. In Nrf-KO mice, aubucin treatment did not reverse oxidative damage,
demonstrating the implication of Nrf2 underpinning the neuroprotective and antioxidant
effects of this compound [165].

The results are summarized in Table 2, which shows that most natural compounds
activate the Nrf2 pathway as illustrated in Figure 5. The experimental studies have shown
that the Nrf2 activation signaling pathway mediated by these compounds protects against
oxidative damage mitochondrial dysfunction, apoptosis, and inflammation. The studies
above-mentioned highlight that the neuroprotective potential of these compounds is linked
to different mechanisms, including Nrf2/Keap1/ARE, Nrf2/PINK1/Parkin, NF-κB/TNF-
α/ILs, Bax/Bcl-2/caspases, PGK1/Keap1/Nrf2, and SIRT1/Nrf2/Prx2/ASK1/p38. Thus,
targeting Nrf2 signaling pathway activation is a promising therapeutic strategy for TBI.
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Table 2. Potential natural compound Nrf2 activators for controlling TBI symptoms and improving functional recovery.

Compund Type of Compound TBI Time Frame Experimental TBI Models Targets Potential Effects Type of Study Ref.

Oridonine An organic compound Acute TBI
Mice

Nrf2/HO-1 pathway

Oridonine ameliorated functional damage and neuropathological
changes in animals with TBI, enhancing mitochondrial function

and reducing oxidative stress-induced neuroinflammation through
activating the Nrf2/HO-1 pathway.

In vivo
[133]

H2O2-induced oxidant
damage in N2a cells In vitro

Breviscapine An aglycone flavonoid Acute TBI Rats Nrf2/HO-1 pathway

Breviscapin treatment ameliorated TBI-induced neuron cell
apoptosis and improved neurobehavioral functions through the

activation of the Nrf2 pathway and its related downstream
proteins (HO-1 and NQO-1).

In vivo [135]

Isoliquiritigenin A flavonoid Acute TBI

Mouse TBI and
Nrf2-KO mice Nrf2 pathway

Isoliquiritigenin treatment attenuated lesion-induced damage by
counteracting oxidative stress via Nrf2 activation, highlighting its

important therapeutic potential in TBI treatment.

In vivo
[137]

SH-SY5Y OGD/R In vitro

Baicalin A major bioactive flavone Acute TBI Mice Akt/Nrf2 pathway Baicalin induces neuroprotection and prevents TBI-induced
oxidative stress by activating the Akt/Nrf2 pathway. In vivo [139]

Wogonin A flavonoid Acute TBI Mice PI3K/Akt/Nrf2/HO-1
pathway

Wogonin protected the hippocampal damage TBI-induced by
counteracting oxidative stress and neuronal death by activating the

Nrf2/HO-1 pathway in a PI3K/Akt-dependent manner.
In vivo [140]

Quercetin A flavonoid Acute TBI Rats Nrf2/HO-1 pathway Quercetin activated the Nrf2/HO-1 pathway, thus protecting the
animals from TBI-induced oxidative stress. In vivo [141]

Fisetin A flavonoid Acute TBI Mice Nrf2-ARE pathway
Fisetin treatment activated the Nrf2/HO-1 pathway, thus

protecting the animals from TBI-induced oxidative stress and
neuronal apoptosis.

In vivo [144]

Curcumin A diferuloylmethane Acute TBI Mice Nrf2-ARE pathway
Curcumin attenuated the injury-induced oxidative stress and

prevented neurological damage, possibly by activating the
Nrf2-ARE pathway.

In vivo [145]

Curcumin A diferuloylmethane Acute TBI Mouse TBI and
Nrf2-KO mice Nrf2/HO-1 pathway

Curcumin has shown a neuroprotective role associated with the
activation of the Nrf2 pathway, proving to be a potential

therapeutic intervention in TBI management.
In vivo [146]

Sodium aescinate A triterpene saponin

Mouse TBI and
Nrf2-KO mice

Nrf2-ARE pathway

Sodium aescinate, by activating the Nrf2-ARE pathway, exerts
neuroprotective effects against oxidative stress and neuronal

apoptosis TBI-induced, thus highlighting its promising therapeutic
effects in the management of this pathology.

In vivo
[148]

Neuron model of TBI In vitro

β-carotene A carotenoid Acute TBI Mice Nrf2/HO-1 pathway β-carotene ameliorated brain injury after TBI by regulating the
Nrf2/Keap1-mediated antioxidant pathway. In vivo [149]

Astaxanthin A carotenoid pigment Acute TBI Mice Nrf2/HO-1 pathway
Astaxanthin treatment promoted neuroprotective effects in the TBI

mouse model probably activating the Nrf2/HO-1
signaling pathway.

In vivo [152]
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Table 2. Cont.

Compund Type of Compound TBI Time Frame Experimental TBI Models Targets Potential Effects Type of Study Ref.

Astaxanthin A carotenoid pigment Acute and chronic TBI

Mouse TBI and
Nrf2-KO mice

SIRT1/Nrf2/Prx2/ASK1/p38
signaling

Astaxanthin decreased oxidative stress and neuronal death
regulating the SIRT1/Nrf2/Prx2/ASK1/p38 signaling pathway,

highlighting its promising therapeutic potential in TBI even in the
long term.

In vivo

[153]
H2O2-induced oxidant

damage in Primary
Cortical Neurons

In vitro

Tannic acid A natural polyphenol Acute TBI Rats PGC-1α/Nrf2/HO-1
signaling pathway

Pretreatment with tannin acid 30 min before, and 6 and 18 h after
injury improved behavioral deficits, counteracting TBI-induced

oxidative stress and mitochondrial damage probably by activating
PGC-1α/Nrf-2/HO-1 signaling pathway.

In vivo [155]

Allyl isothiocyanate A organosulfur compound Acute TBI Mice Nrf2 pathway

Allyl isothiocyanate treatment ameliorated TBI damage and
neurological deficit, enhancing the expression of neuronal
plasticity markers and reducing oxidative stress through

Nrf2 upregulation.

In vivo [157]

Lupeol A triterpenoid Acute TBI Mice Nrf2

Lupeol exerted neuroprotective effects and ameliorated memory
and behavioral deficits, TBI-induced reducing glial cell activation,

oxidative stress, and apoptosis likely through increasing Nrf2
levels in the brain.

In vivo [158]

Huperzine-A A sesquiterpene alkaloid Acute and chronic TBI Mice Nrf2
Huperzine-A induces neuroprotective effects in a TBI mouse

model, reducing the oxidative stress response via the
Nrf2 pathway.

In vivo [160]

Rutaecarpine An alkaloid Acute TBI
Mice

PGK1/Keap1/Nrf2
pathway

Rutaecarpine protected against neuronal apoptosis and oxidative
stress induced by TBI, by activating the

PGK1/Keap1/Nrf2 pathway.

In vivo

[162]
H2O2-induced oxidant

damage PC12 In vitro

Evodiamine A quinazoline alkaloidal Acute TBI
Mice PGK1/Keap1/Nrf2

pathway

Evodiamine protected against neuronal apoptosis and oxidative
stress induced by TBI, by activating the

PGK1/Keap1/Nrf2 pathway.

In vivo
[163]

H2O2-induced PC12 In vitro

Aucubin An iridoid glycoside Acute TBI

H2O2-induced oxidant
damage in primary

cortical neurons Nrf2-ARE
signaling pathway

Aubucin, by activating the Nrf2 pathway, attenuated TBI-induced
oxidative stress and neuronal apoptosis, improving neurological

outcomes, and behavioral and cognitive deficits.

In vitro
[165]

Mouse TBI and
Nrf2-KO mice In vivo

Traumatic brain injury: TBI; nuclear factor E2-related factor 2: Nrf2; heme oxygenase-1: HO-1; NADPH Quinone Dehydrogenase 1: NQO1; Nrf2-knockout: Nrf2-KO; antioxidant response
elements: ARE; peroxisome proliferator–activated receptor gamma co-activator 1 alpha: PGC-1α; peroxiredoxin 2: Prx2; sirtuin 1: SIRT1; Phosphoinositide 3-kinases: PI3Ks; apoptosis
signal-regulating kinase 1: ASK1; Kelch-like erythroid cell-derived protein with CNC homology-associated protein 1: Keap1; oxygen and glucose deprivation/reoxygenation: OGD/R.



Int. J. Mol. Sci. 2023, 24, 199 17 of 24

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 16 of 26 
 

 

evodiamine (5, 10, 20 mg/kg), a quinazoline alkaloidal extracted from the fruit of Evodia 
rutaecarpa [163]. Similarly, aubucin, an iridoid glycoside, has been shown to be a promising 
compound due to its neuroprotective, antioxidant, and anti-inflammatory properties [164]. 
Its properties were tested in an in vitro model of H2O2-induced oxidative stress in primary 
cortical neurons. Cells were treated for 12 h with aubucin (50, 100 or 200 μg/mL). Treat-
ment promoted the translocation of Nrf2 from the cytoplasm to the nucleus, activating the 
expression of antioxidant enzymes and thereby reducing oxidative stress and reducing 
apoptosis. Furthermore, in vivo treatment with aubucin (20 or 40 mg/kg) administered in-
traperitoneally at 30 min, 12, 24, and 48 h after the injury reduced brain edema, ameliorated 
histological damage, cognitive deficit, and short and long-term neurologic functions. In 
Nrf-KO mice, aubucin treatment did not reverse oxidative damage, demonstrating the im-
plication of Nrf2 underpinning the neuroprotective and antioxidant effects of this com-
pound [165]. 

The results are summarized in Table 2, which shows that most natural compounds 
activate the Nrf2 pathway as illustrated in Figure 5. The experimental studies have shown 
that the Nrf2 activation signaling pathway mediated by these compounds protects against 
oxidative damage mitochondrial dysfunction, apoptosis, and inflammation. The studies 
above-mentioned highlight that the neuroprotective potential of these compounds is linked 
to different mechanisms, including Nrf2/Keap1/ARE, Nrf2/PINK1/Parkin, 
NF-κB/TNF-α/ILs, Bax/Bcl-2/caspases, PGK1/Keap1/Nrf2, and SIRT1/Nrf2/Prx2/ASK1/p38. 
Thus, targeting Nrf2 signaling pathway activation is a promising therapeutic strategy for 
TBI. 

 
Figure 5. The potential molecular mechanism of natural compounds on TBI. These natural com-
pounds can activate the expression of Nrf2 and facilitate Nrf2′s translocation from the cytosol to the 
nuclear, thus, inhibiting oxidative stress and protecting from neuronal apoptosis. Tannic acid pos-
itively regulates the protein expression of PGC-1α, thereby activating the Nrf2/ARE pathway. In-
stead, aicalin and wogonin increase the level of phosphorylated AKT and PI3K and activates Nrf2, 
which translocates into the nucleus to increase its downstream effectors’ production, which are 
responsible for anti-apoptosis and anti-oxidative effects, thus realizing the repair of TBI. The image 
was created using the image bank of Servier Medical Art (Available online: 
http://smart.servier.com/, accessed on 15 November 2022), licensed under a Creative Commons 

Figure 5. The potential molecular mechanism of natural compounds on TBI. These natural com-
pounds can activate the expression of Nrf2 and facilitate Nrf2’s translocation from the cytosol to the
nuclear, thus, inhibiting oxidative stress and protecting from neuronal apoptosis. Tannic acid posi-
tively regulates the protein expression of PGC-1α, thereby activating the Nrf2/ARE pathway. Instead,
aicalin and wogonin increase the level of phosphorylated AKT and PI3K and activates Nrf2, which
translocates into the nucleus to increase its downstream effectors’ production, which are responsible
for anti-apoptosis and anti-oxidative effects, thus realizing the repair of TBI. The image was created us-
ing the image bank of Servier Medical Art (Available online: http://smart.servier.com/, accessed on
15 November 2022), licensed under a Creative Commons Attribution 3.0 Unported License (Available
online: https://creativecommons.org/licenses/by/3.0/, accessed on 15 November 2022). Trau-
matic brain injury: TBI; nuclear factor E2-related factor 2: Nrf2; antioxidant response element: ARE;
small muscleaponeurotic fibrosarcoma: sMAF; Kelch-like erythroid cell-derived protein with CNC
homology-associated protein 1: Keap1; β-transducing repeat-containing protein: β-TrCP; Cullin 3:
CUL3; RING-box protein 1: RBX1; PTEN Induced Kinase 1: PINK1; peroxisome proliferator–activated
receptor gamma co-activator 1 alpha: PGC-1α; Phosphoinositide 3-kinases: PI3Ks.

8. Conclusions

The activation of Nrf2 mediated by several natural compounds promotes its transloca-
tion within the nucleus and induces the transcription of enzymes involved in counteracting
oxidative stress, the mitochondrial response, and neuronal apoptosis. Nrf2 activation
strategies are likely effective in preventing disease and slowing its progression. However,
the current understanding of the mechanisms underlying the pathogenesis of these patho-
logical conditions is still limited, and the different mechanisms following the activation of
Nrf2/ARE remain to be further explored. Furthermore, clinical trials in patients with SCI
and TBI that evaluate the therapeutic implications of these compounds are needed.
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