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Abstract: Antioxidants are being explored as novel therapeutics for the treatment of neurodegen-
erative diseases such as Alzheimer’s disease (AD) through strategies such as chemically linking
antioxidants to synthesize novel co-drugs. The main objective of this study was to assess the cyto-
protective effects of the novel antioxidant compound VANL-100 in a cellular model of beta-amyloid
(Aβ)-induced toxicity. The cytotoxic effects of Aβ in the presence and absence of all antioxidant com-
pounds were measured using the 3-(4,5-dimethylthiazol-2-yl)2-5-diphenyl-2H-tetrazolium bromide
(MTT) assay in SH-SY5Y cells in both pre-treatment and co-treatment experiments. In pre-treatment
experiments, VANL-100, or one of its parent compounds, naringenin (NAR), alpha-lipoic acid (ALA),
or naringenin + alpha-lipoic acid (NAR + ALA), was administrated 24 h prior to an additional 24-h in-
cubation with 20 µM non-fibril or fibril Aβ25–35. Co-treatment experiments consisted of simultaneous
treatment with Aβ and antioxidants. Pre-treatment and co-treatment with VANL-100 significantly
attenuated Aβ-induced cell death. There were no significant differences between the protective effects
of VANL-100, NAR, ALA, and NAR + ALA with either form of Aβ, or in the effect of VANL-100
between 24-h pre-treatment and co-treatment. These results demonstrate that the novel co-drug
VANL-100 is capable of eliciting cytoprotective effects against Aβ-induced toxicity.

Keywords: Alzheimer’s disease; beta-amyloid; antioxidants; naringenin; alpha lipoic acid

1. Introduction

Alzheimer’s disease (AD) is currently the leading cause of dementia and is projected
to affect over 130 million people globally by the year 2050 [1–5]. Despite advancements in
research and biomedical technology over the last two decades, its prevalence and incidence
rates continue to rise, and the currently available treatment options do not prevent, delay
the progression of, or cure AD [6–9]. In an effort to uncover novel therapies for AD,
researchers have begun exploring compounds that target mechanisms implicated in the
development and progression of AD. Based on promising pre-clinical findings, human
clinical trials began assessing the effectiveness of individual antioxidants or antioxidant
combinations that included antioxidant compounds solely or antioxidants combined with
drugs currently used to treat AD [10–32]. Antioxidant compounds can be administered
together but unbound (combination) or chemically linked (conjugated). The application of
antioxidant conjugate therapy (ACT) particularly for AD is based on the role of oxidative
stress during the onset and progression of AD. This is outlined in the oxidative stress
hypothesis of AD, which postulates the potential mechanisms by which oxidative stress
contributes to AD pathology [33–37].

Oxidative stress can be defined as an imbalance between the production and accumu-
lation of toxic reactive oxygen species (ROS) and endogenous antioxidants within the body,
resulting in an insufficient or dysfunctional antioxidant defense system [38–41]. During
oxidative stress, ROS target and damage essential cellular structures and biomolecules
such as DNA, proteins, and lipids via oxidation [38–41]. ROS have also been implicated
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with other pathological hallmarks of AD such as the abnormal aggregation of tau and
beta-amyloid (Aβ), further inducing cellular toxicity [42–48].

Two notable antioxidants that have been explored for their neuroprotective effects
in models of neurodegeneration are naringenin (NAR), a naturally occurring polyphenol
found in plants and citrus fruit, and alpha-lipoic acid (ALA), an endogenously produced
compound that is also found in food such as red meat, broccoli, and spinach [49–54].
The individual effects of NAR and ALA in models of AD are well explored in the litera-
ture [50,55–79] and presented as potential therapeutic modalities for targeting and treating
AD, as well as functioning as potential chemical constituents for ACT.

A previous study conducted by Saleh et al. (2017) explored the neuroprotective
effects of NAR, ALA, and the novel co-drug VANL-100 (Figure 1), which is the product
of the covalent linkage of NAR and ALA. The findings demonstrated the heightened
neuroprotective effects of VANL-100, both in vitro by increasing antioxidant capacity
and in vivo by reducing infarct volume in a rodent model of an ischemic stroke [80].
Additionally, the novel co-drug VAN-100 was 100 times more potent than the parent
compounds, eliciting neuroprotection at lower doses. However, the potential benefits of
VANL-100 in other models of neurodegeneration such as AD have not been explored.
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In this study, we evaluated the cytoprotective effects of the novel co-drug VANL-100
against Aβ-induced cytotoxicity. Additionally, we compared the effects of VANL-100 to its
parent compounds, NAR and ALA, alone and together (NAR + ALA) in a mixture but not
covalently bound. This is the first report to explore the effects of NAR and ALA as conjugate
therapy in a cellular model of AD. For the purposes of this study, a co-drug is defined as
the conjugated drug product from the covalent linkage of two or more chemical entities.

2. Results
2.1. Non-Fibril and Fibril Aβ25–35 Induced Dose-Dependent Cell Death

Prior to testing the neuroprotective effects of the antioxidant compounds, the toxicities
of non-fibril and fibril Aβ25–35 were individually tested in SH-SY5Y cells (Figure 2A,B).
Considering that the toxicity profile of Aβ differs across various formulations [81,82], we
explored the effect of Aβ in its non-fibril and fibrillated states to assess and compare the
effects of different compositions on toxicity. Additionally, we utilized the 25–35 protein
fragment of Aβ due to its characteristic high toxicity and proven ability to exert neurotoxic
effects in AD models [83–85]. Since the Aβ25–35 peptide is a well-characterized biologically
active fragment that retains the toxic properties of Aβ1–42, we chose this fragment to
assess the potential protective effects of our novel antioxidant and its parent compounds
in vitro. Cell viability was evaluated using the 3-(4,5-dimethylthiazol-2-yl)2-5-diphenyl-2H-
tetrazolium bromide (MTT) assay after 24 h of Aβ25–35 exposure. There were no significant
differences in the toxicity levels of non-fibril compared to fibril Aβ25–35 in the SH-SY5Y
cells in this study. Cell viability was significantly decreased as Aβ concentrations increased
compared to untreated controls (*** p = 0.0001; **** p < 0.0001). We selected 20 µM for
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both non-fibril and fibril Aβ25–35 as the effective dose to carry out subsequent experiments
with the antioxidant compounds. This is in line with the literature on effective doses
for Aβ treatment to induce cell death in this cell line without completely eradicating
all cells [63,86–92].
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Figure 2. Effects of beta-amyloid (Aβ)25–35 on cell viability. Cell viability, represented as % control, is
shown on the y-axis, and Aβ25–35 concentrations are displayed on the x-axis. The bars represent the
mean ± standard error of the mean (SEM) of six independent experiments. Cells were incubated with
increasing concentrations (10, 20, 30, 40, and 50 µM) of non-fibril (A) or fibril (B) Aβ25–35. Non-fibril
and fibril Aβ25–35 reduced cell viability in a dose-dependent manner. Statistical significance vs.
controls was assessed using one-way analysis of variance (ANOVA). *** p = 0.0001; **** p < 0.0001.

2.2. Antioxidant Compounds Did Not Induce Cell Loss or Reduce Cell Viability

Figure 3 depicts the effects of VANL-100, NAR, ALA, and NAR + ALA on SH-SY5Y
cell viability. None of the antioxidant compounds or combinations resulted in cell loss
at 0.2, 2.0, 20, 50, 100, or 200 µM (p > 0.05). Cell viability was evaluated using the MTT
assay 24 h after exposure to the antioxidant compounds. This assessment was necessary to
confirm that the antioxidant compounds were not exerting toxic effects on the cells alone,
prior to treatment with Aβ.
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Figure 3. Effects of VANL-100, NAR, ALA, and NAR + ALA on cell viability. Cell viability, repre-
sented as % control, is shown on the y-axis, and antioxidant concentrations are displayed on the
x-axis. The bars represent the mean ± SEM of three independent experiments. Cells were incubated
with different concentrations of each antioxidant and combination (0.2, 2.0, 20, 50, 100 and 200 µM).
(A) VANL-100; (B) NAR alone; (C) ALA alone; (D) NAR + ALA. None of the antioxidant compounds
at any dose significantly induced cell loss or reduced cell viability. Statistical significance vs. controls
was assessed using one-way ANOVA. p < 0.05.

2.3. Effect of Antioxidant Compounds on Aβ-Induced Cell Death

In 24-h pre-treatment and co-treatment experiments, the effect of VANL-100, NAR,
ALA, and NAR + ALA were assessed against non-fibril and fibril Aβ25–35 in SH-SY5Y
cells. During pre-treatment, cells were treated with 0.2, 2.0, 20, 50, 100, or 200 µM of each
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antioxidant 24 h prior to Aβ25–35 addition. After 24 h, cells were co-incubated with the
same doses of the antioxidants in addition to 20 µM non-fibril or fibril Aβ25–35, which was
followed by cell viability measurement via MTT assay 24 h later. In co-treatment, cells
received 0.2, 2.0, 20, 50, 100, or 200 µM of each antioxidant simultaneously with 20 µM
non-fibril and fibril Aβ25–35, and cell viability was measured 24 h later via MTT assay.
Results from pre-treatment experiments (Figure 4A–H) revealed significant improvements
in cell viability for all antioxidant compounds when combined with Aβ25–35 compared to
treatment with Aβ25–35 alone. VANL-100 significantly increased cell viability compared to
non-fibril Aβ25–35 alone at doses of 20, 50, 100 (p < 0.0001), and 200 µM (p = 0.0066) and
fibril Aβ25–35 at doses of 2.0 (p = 0.0051), 20 (p = 0.0001), 50 (p = 0.0013), 100 (p = 0.0022) and
200 µM (p = 0.0041), as shown in Figure 4A,B, respectively. NAR significantly increased
cell viability compared to non-fibril Aβ25–35 at 2.0 (p = 0.0008), 20 (p < 0.0001), 50 (p = 0017),
100 (p = 0.0004) and 200 µM (p = 0.0104), and fibril Aβ25–35 at doss of 2.0 (p = 0.0139), 20
(p < 0.0001), 50 (p = 0018), 100 (p < 0.0001), 200 µM (p = 0.0061), as shown in Figure 4C,D,
respectively. ALA significantly attenuated the reduction in cell viability induced by non-
fibril Aβ25–35 at doses of 20 (p = 0.0070), 50 (p = 0.0451), 100 (p = 0.0058), 200 µM (p = 0.0063),
and fibril Aβ25–35 at doses of 20 (p = 0.0025), 50 (p = 0.0230), 100 (p = 0.0045), 200 µM
(p = 0.0059) as shown in Figure 4E,F, respectively. The combination of NAR + ALA also
significantly increased cell viability compared to non-fibril Aβ25–35 alone at doses of 2.0
(p = 0.0018), 20 (p = 0.0002), 50 (p = 0020), 100 (p = 0.0001), 200 µM (p = 0.0423), and fibril
Aβ25–35 at doses of 20 (p = 0.0008), 50 (p = 0129), 100 (p = 0.0005), 200 µM (p = 0.0044), as
shown in Figure 4G,H, respectively.
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Figure 4. Viability of SH-SY5Y cells pre-treated with VANL-100, NAR, ALA, or NAR + ALA for
24 h followed by 24-h treatment with Aβ25–35. Cell viability, represented as % control, is shown
on the y-axis, and antioxidant concentrations are displayed on the x-axis. The bars represent the
mean ± SEM of six independent experiments. (A,B) VANL-100 + non-fibril and fibril Aβ25–35, re-
spectively. (C,D) NAR + non-fibril and fibril Aβ25–35, respectively. (E,F) ALA + non-fibril and fibril
Aβ25–35, respectively. (G,H) NAR + ALA + non-fibril and fibril Aβ25–35, respectively. Statistical signif-
icance vs. Aβ was assessed using one-way ANOVA. * p <0.05; ** p< 0.01; *** p < 0.001; **** p < 0.0001.

Similarly, results from co-treatment experiments (Figure 5A–H) indicated significant
improvement in viability when cells were treated with Aβ25–35 in combination with each of
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the antioxidant compounds compared to treatment with Aβ25–35 alone. Co-treatment with
VANL-100 significantly improved cell viability compared to non-fibril Aβ25–35 at 20 µM
(p = 0.0017) and fibril Aβ25–35 at 20 µM (p = 0.0019), as shown in Figure 5A,B, respectively.
NAR co-treatment significantly increased cell viability compared to non-fibril Aβ25–35 at 20
(p = 0.0014), 50 (p = 0038), 100 (p = 0.0001), and 200 µM (p = 0.0161), and fibril Aβ25–35 at 2.0
(p = 0.0115), 20 (p = 0.0001), 50 (p = 0.0005), 100 (p < 0.0001), and 200 µM (p = 0.0023), as
shown in Figure 5C,D, respectively. ALA co-treatment significantly increased cell viability
compared to non-fibril Aβ25–35 at 20 (p = 0.0003), 50 (p = 0.0011), 100 (p = 0.0010), and
200 µM (p = 0.0207), and fibril Aβ25–35 at 20 (p < 0.0001), 50 (p = 0.0011), 100 (p = 0.0031),
and 200 µM (p = 0.0005), as shown in Figure 5E,F, respectively. Co-treatment with the
combination of NAR + ALA significantly improved cell viability compared to non-fibril
Aβ25–35 at 20 (p = 0.034), 50 (p = 0.0026), 100 (p = 0.0002), 200 µM (p = 0.0012), and fibril
Aβ25–35 at 20 (p = 0.0036), 50 (p = 0.0338), and 100 (p = 0.0066), as shown in Figure 5G,H,
respectively. A summary of these results is shown in Table 1.
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Figure 5. Viability of SH-SY5Y cells co-treated with VANL-100, NAR, ALA, or NAR + ALA
and Aβ25–35 for 24 h. Cell viability, represented as % control, is shown on the y-axis, and
antioxidant concentrations are displayed on the x-axis. The bars represent the mean ± SEM
of six independent experiments. (A,B) VANL-100 + non-fibril and fibril Aβ25–35, respectively.
(C,D) NAR + non-fibril and fibril Aβ25–35, respectively. (E,F) ALA + non-fibril and fibril Aβ25–35,
respectively. (G,H) NAR + ALA + non-fibril and fibril Aβ25–35, respectively. Statistical significance
vs. Aβ was assessed using one-way ANOVA. * p <0.05; ** p< 0.01; *** p < 0.001; **** p < 0.0001.

2.4. Cytoprotective Effects of VANL-100 Are Not Significantly Different to Parent Compounds

Of the three doses (20, 50, and 100 µM) that elicited the greatest neuroprotective effects
on cell survival, we selected the 20 µM dose to compare the protective effects of VANL-100
to NAR, ALA, and NAR + ALA to determine if VANL-100 elicits greater protective effects
than its parent compounds. Comparisons were made for both pre-treated and co-treated
cells in combination with either 20 µM non-fibril or fibril Aβ25–35. For both non-fibril and
fibril Aβ25–35 (Figure 6A,B, respectively), the cytoprotective effects of cells pre-treated with
VANL-100 were not significantly different from those observed in cells pre-treated with
20 µM NAR, ALA, or NAR + ALA. Similarly, following co-treatment with non-fibril and
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fibril Aβ25–35 (Figure 6C,D, respectively), the cytoprotective effects of VANL-100 were not
significantly different (p > 0.05) from its parent compounds alone or when combined but
not covalently linked.

Table 1. Summary of results. NAR: Naringenin; ALA: Alpha-lipoic acid; NAR + ALA; Naringenin +
Alpha-lipoic acid; NF: Non-fibril; F: Fibril.

Timepoint Antioxidant
Compound(s) Treatment Result

(p-Value) Figure

24-h
pre-treatment VANL-100 0.2 µM + 20 µM NF Aβ

0.2 µM + 20 µM F Aβ

p > 0.05
p > 0.05 Figure 4A,B

2.0 µM + 20 µM NF Aβ

2.0 µM + 20 µM F Aβ

p > 0.05
p = 0.0051

20 µM + 20 µM NF Aβ

20 µM + 20 µM F Aβ

p < 0.0001
p = 0.0001

50 µM + 20 µM NF Aβ

50 µM + 20 µM F Aβ

p < 0.0001
p = 0.0013

100 µM + 20 µM NF Aβ

100 µM + 20 µM F Aβ

p < 0.0001
p = 0.0022

200 µM + 20 µM NF Aβ

200 µM + 20 µM F Aβ

p = 0.0066
p = 0.0041

NAR 0.2 µM + 20 µM NF Aβ

0.2 µM + 20 µM F Aβ

p > 0.05
p > 0.05 Figure 4C,D

2.0 µM + 20 µM NF Aβ

2.0 µM + 20 µM F Aβ

p = 0.0008
p = 0.0139

20 µM + 20 µM NF Aβ

20 µM + 20 µM F Aβ

p < 0.0001
p < 0.0001

50 µM + 20 µM NF Aβ

50 µM + 20 µM F Aβ

p = 0.017
p = 0.0018

100 µM + 20 µM NF Aβ

100 µM + 20 µM F Aβ

p = 0.0004
p < 0.0001

200 µM + 20 µM NF Aβ

200 µM + 20 µM F Aβ

p = 0.0104
p = 0.0061

ALA 0.2 µM + 20 µM NF Aβ

0.2 µM + 20 µM F Aβ

p > 0.05
p > 0.05 Figure 4E,F

2.0 µM + 20 µM NF Aβ

2.0 µM + 20 µM F Aβ

p > 0.05
p > 0.05

20 µM + 20 µM NF Aβ

20 µM + 20 µM F Aβ

p = 0.0070
p = 0.0025

50 µM + 20 µM NF Aβ

50 µM + 20 µM F Aβ

p = 0.0451
p = 0.0230

100 µM + 20 µM NF Aβ

100 µM + 20 µM F Aβ

p = 0.0058
p = 0.0045

200 µM + 20 µM NF Aβ

200 µM + 20 µM F Aβ

p = 0.0063
p = 0.0059

NAR + ALA 0.2 µM + 20 µM NF Aβ

0.2 µM + 20 µM F Aβ

p > 0.05
p > 0.05 Figure 4G,H

2.0 µM + 20 µM NF Aβ

2.0 µM + 20 µM F Aβ

p = 0.0018
p > 0.05

20 µM + 20 µM NF Aβ

20 µM + 20 µM F Aβ

p = 0.0002
p = 0.0008

50 µM + 20 µM NF Aβ

50 µM + 20 µM F Aβ

p = 0.0020
p = 0.0129

100 µM + 20 µM NF Aβ

100 µM + 20 µM F Aβ

p = 0.0001
p = 0.0005

200 µM + 20 µM NF Aβ

200 µM + 20 µM F Aβ

p = 0.0423
p = 0.0044



Int. J. Mol. Sci. 2023, 24, 442 7 of 21

Table 1. Cont.

Timepoint Antioxidant
Compound(s) Treatment Result

(p-Value) Figure

Co-treatment VANL-100 0.2 µM + 20 µM NF Aβ

0.2 µM + 20 µM F Aβ

p > 0.05
p > 0.05 Figure 5A,B

2.0 µM + 20 µM NF Aβ

2.0 µM + 20 µM F Aβ

p > 0.05
p > 0.05

20 µM + 20 µM NF Aβ

20 µM + 20 µM F Aβ

p = 0.0017
p = 0.0019

50 µM + 20 µM NF Aβ

50 µM + 20 µM F Aβ

p > 0.05
p > 0.05

100 µM + 20 µM NF Aβ

100 µM + 20 µM F Aβ

p > 0.05
p > 0.05

200 µM + 20 µM NF Aβ

200 µM + 20 µM F Aβ

p > 0.05
p > 0.05

NAR 0.2 µM + 20 µM NF Aβ

0.2 µM + 20 µM F Aβ

p > 0.05
p > 0.05 Figure 5C,D

2.0 µM + 20 µM NF Aβ

2.0 µM + 20 µM F Aβ

p > 0.05
p = 0.0115

20 µM + 20 µM NF Aβ

20 µM + 20 µM F Aβ

p = 0.0014
p = 0.0001

50 µM + 20 µM NF Aβ

50 µM + 20 µM F Aβ

p = 0.0038
p = 0.0005

100 µM + 20 µM NF Aβ

100 µM + 20 µM F Aβ

p < 0.0001
p = 0.0001

200 µM + 20 µM NF Aβ

200 µM + 20 µM F Aβ

p = 0.0161
p = 0.0023

ALA 0.2 µM + 20 µM NF Aβ

0.2 µM + 20 µM F Aβ

p > 0.05
p > 0.05 Figure 5E,F

2.0 µM + 20 µM NF Aβ

2.0 µM + 20 µM F Aβ

p > 0.05
p > 0.05

20 µM + 20 µM NF Aβ

20 µM + 20 µM F Aβ

p = 0.0003
p < 0.0001

50 µM + 20 µM NF Aβ

50 µM + 20 µM F Aβ

p = 0.0011
p = 0.0011

100 µM + 20 µM NF Aβ

100 µM + 20 µM F Aβ

p = 0.0010
p = 0.0031

200 µM + 20 µM NF Aβ

200 µM + 20 µM F Aβ

p = 0.0207
p = 0.0005

NAR + ALA 0.2 µM + 20 µM NF Aβ

0.2 µM + 20 µM F Aβ

p > 0.05
p > 0.05 Figure 5G,H

2.0 µM + 20 µM NF Aβ

2.0 µM + 20 µM F Aβ

p > 0.05
p > 0.05

20 µM + 20 µM NF Aβ

20 µM + 20 µM F Aβ

p = 0.034
p = 0.0036

50 µM + 20 µM NF Aβ

50 µM + 20 µM F Aβ

p = 0.0026
p = 0.0338

100 µM + 20 µM NF Aβ

100 µM + 20 µM F Aβ

p = 0.0002
p = 0.0066

200 µM + 20 µM NF Aβ

200 µM + 20 µM F Aβ

p = 0.0012
p > 0.05
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Figure 6. Effects of pre-treatment and co-treatment with VANL-100 compared to parent com-
pounds. Cell viability, represented as % control, is shown on the y-axis, and antioxidant con-
centrations are displayed on the x-axis. The bars represent the mean ± SEM of six independent
experiments. (A,B) Pre-treatment with VANL-100 compared to parent compounds against non-fibril
and fibril Aβ25–35, respectively. (C,D) Co-treatment with VANL-100 compared to parent compounds
against non-fibril and fibril Aβ25–35, respectively. Statistical significance vs. VANL-100 was assessed
using one-way ANOVA. p < 0.05.

2.5. Effect of Treatment Timepoint on Cell Survival

Finally, we evaluated the overall protective effects of 24-h pre-treatment compared to
co-treatment with 20 µM VANL-100, NAR, ALA, or NAR + ALA against 20 µM non-fibril
and fibril Aβ25–35 (Figure 7). Although all antioxidant compounds elicited cytoprotection
and increased cell survival in non-fibril and fibril Aβ25–35 treated cells, there was no
significant difference in cell survival between the overall effect of 24-h pre-treatment and
co-treatment (p > 0.05) for VANL-100, NAR, ALA, or NAR + ALA.
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Figure 7. Effect of antioxidant treatment timepoint on overall cell survival. Cell viability, represented
as % control, is shown on the y-axis, and antioxidant treatment time is displayed on the x-axis. The
bars represent the mean ± SEM of three independent experiments. (A) Comparison of pre-treatment
and co-treatment of antioxidants in combination with non-fibril Aβ25–35. (B) Comparison of pre-
treatment and co-treatment of antioxidants in combination with fibril Aβ25–35. Statistical significance
of pre-treatment vs. co-treatment was assessed using two-way ANOVA. p < 0.05.

2.6. Effect of VANL-100 on ROS Levels in SH-SY5Y Cells

To determine the generation of intracellular ROS induced by Aβ25–35, we utilized the
2′,7′-dichllorodihydrofluorescein diacetate (H2DCFDA) fluorescence assay. SH-SY5Y cells
were treated with 20 µM fibril Aβ25–35, as well as increasing doses of VANL-100 either alone
or co-treated with 20 µM fibril Aβ25–35. Cells were treated with 100 µM hydrogen peroxide
(H2O2) as a positive control, and the H2DCFDA assay results showed that treatment with
H2O2 significantly increased ROS generation (p = 0.0149; Figure 8A). Although relative
ROS levels were consistently higher in cells treated with Aβ25–35 alone (Figure 8A), this
increase was not statistically different from control ROS levels. Treatment with increasing
doses of VANL-100 alone (0.2, 2, 20, 50, 100, and 200 µM) did not significantly increase ROS
production (p > 0.05; Figure 8A), supporting our viability results that VANL-100 does not
induce cellular toxicity when administered alone. The level of ROS following co-treatment
with VANL-100 and 20 µM fibril Aβ25–35 was not significantly different from Aβ25–35
exposure alone (Figure 8B); however, values were also not statistically different from those
detected in control cells. These results indicate that VANL-100 alone does not induce ROS
production, but its ability to scavenge ROS may be impaired by the presence of Aβ25–35.

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 10 of 22 
 

 

 
Figure 8. Effect of VANL-100 treatment on ROS generation in SH-SY5Y cells. Relative ROS genera-
tion is shown on the y-axis, and individual treatments are displayed on the x-axis. The bars repre-
sent the mean ± SEM of four independent experiments. (A) Effect of H2O2, Aβ25–35, and VANL-100 
alone on ROS production. (B) Effect of Aβ25–35 alone and VANL-100 with Aβ25–35 on ROS production. 
Statistical significance was assessed using one-way ANOVA. * p < 0.05. 

3. Discussion 
The objectives of this study were to assess the neuroprotective capability of the novel 

antioxidant co-drug VANL-100 in an in vitro model of AD and to determine whether its 
cytoprotective effects were greater than its parent compounds, NAR and ALA, either 
alone or combined but not covalently linked (NAR + ALA). Additionally, we aimed to 
explore the applicability of VANL-100 as a form of ACT for the prevention (pre-treatment) 
or treatment of neurotoxicity associated with AD pathology. We first assessed the neuro-
toxicity induced by various doses of both non-fibril and fibril Aβ25–35. The results indicated 
a dose-dependent decrease in SH-SY5Y cell viability as Aβ concentrations increased. We 
then selected the 20 μM dose as the treatment of non-fibril and fibril Aβ25–35 to be applied 
in subsequent antioxidant experiments, as this dose induced cell death but did not eradi-
cate all cells. This is in line with the current literature, which identifies this as an appro-
priate dose for assessing Aβ25–35-induced cell death, particularly in the SH-SY5Y cell line 
[63,86–92]. We then assessed whether the antioxidant compounds VANL-100, NAR, ALA, 
or NAR + ALA exerted any toxic effects on the cells. Results indicated that these com-
pounds did not reduce cell viability or induce cell death. Overall, our results indicate that 
the novel conjugate drug VANL-100 can provide cytoprotection against Aβ-induced cell 
loss. This protection was observed at various doses (20, 50, 100, and 200 μM) and both 
when cells were pre-treated 24 h prior to Aβ exposure and when co-treated with Aβ. Ad-
ditionally, both parent compounds, NAR and ALA, when alone and when combined but 
not covalently linked (NAR + ALA), also attenuated the reduction in cell viability induced 
by Aβ at similar concentrations (2.0, 20, 50, 100, and 200 μM), during both pre-treatment 
and co-treatment. For all treatment conditions, there were no significant differences in the 
neuroprotective effects of VANL-100, NAR, ALA, or NAR + ALA and no significant dif-
ference in the cytoprotective effects elicited by the antioxidant compounds following ei-
ther 24-h pre-treatment or co-treatment. 

The involvement of oxidative stress in AD has been validated, and our findings pro-
vide early evidence of the potential use of antioxidants, alone and in combined or conju-
gated forms, to address Aβ toxicity. Since the currently available treatment options for 
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Figure 8. Effect of VANL-100 treatment on ROS generation in SH-SY5Y cells. Relative ROS generation
is shown on the y-axis, and individual treatments are displayed on the x-axis. The bars represent the
mean ± SEM of four independent experiments. (A) Effect of H2O2, Aβ25–35, and VANL-100 alone
on ROS production. (B) Effect of Aβ25–35 alone and VANL-100 with Aβ25–35 on ROS production.
Statistical significance was assessed using one-way ANOVA. * p < 0.05.
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3. Discussion

The objectives of this study were to assess the neuroprotective capability of the novel
antioxidant co-drug VANL-100 in an in vitro model of AD and to determine whether its
cytoprotective effects were greater than its parent compounds, NAR and ALA, either alone
or combined but not covalently linked (NAR + ALA). Additionally, we aimed to explore
the applicability of VANL-100 as a form of ACT for the prevention (pre-treatment) or treat-
ment of neurotoxicity associated with AD pathology. We first assessed the neurotoxicity
induced by various doses of both non-fibril and fibril Aβ25–35. The results indicated a
dose-dependent decrease in SH-SY5Y cell viability as Aβ concentrations increased. We
then selected the 20 µM dose as the treatment of non-fibril and fibril Aβ25–35 to be ap-
plied in subsequent antioxidant experiments, as this dose induced cell death but did not
eradicate all cells. This is in line with the current literature, which identifies this as an
appropriate dose for assessing Aβ25–35-induced cell death, particularly in the SH-SY5Y cell
line [63,86–92]. We then assessed whether the antioxidant compounds VANL-100, NAR,
ALA, or NAR + ALA exerted any toxic effects on the cells. Results indicated that these
compounds did not reduce cell viability or induce cell death. Overall, our results indicate
that the novel conjugate drug VANL-100 can provide cytoprotection against Aβ-induced
cell loss. This protection was observed at various doses (20, 50, 100, and 200 µM) and
both when cells were pre-treated 24 h prior to Aβ exposure and when co-treated with Aβ.
Additionally, both parent compounds, NAR and ALA, when alone and when combined but
not covalently linked (NAR + ALA), also attenuated the reduction in cell viability induced
by Aβ at similar concentrations (2.0, 20, 50, 100, and 200 µM), during both pre-treatment
and co-treatment. For all treatment conditions, there were no significant differences in
the neuroprotective effects of VANL-100, NAR, ALA, or NAR + ALA and no significant
difference in the cytoprotective effects elicited by the antioxidant compounds following
either 24-h pre-treatment or co-treatment.

The involvement of oxidative stress in AD has been validated, and our findings
provide early evidence of the potential use of antioxidants, alone and in combined or
conjugated forms, to address Aβ toxicity. Since the currently available treatment options
for AD such as donepezil, rivastigmine, and memantine [7,93,94] are ineffective in pre-
venting, reversing, or slowing the progression of the disease and are primarily indicated
for symptom management, it is necessary to explore alternative methods for preventing
and treating AD. More recently, researchers have explored disease-modifying candidate
compounds and drugs [8,95]. However, they have proven ineffective, likely due to an
insufficient understanding of the intricate pathophysiology of AD and an inappropriate
selection of treatment targets and dosages. Addressing the presence of oxidative stress
in AD pathology via antioxidants and ACT serves as a promising approach to mitigating
oxidative damage and targeting the interaction between ROS and Aβ that contributes to
the onset and development of AD.

Researchers have reported the role of Aβ-induced oxidative stress through mecha-
nisms that include the presence of extracellular senile plaques/fibrils comprised of aggre-
gated Aβ peptides with the metal ions iron, copper, and zinc [96–98]. These redox-active
metals can catalyze the production of ROS when bound to Aβ [96–98]. Subsequently,
newly generated ROS can oxidize both Aβ peptides as well as surrounding biomolecules.
The oxidation of biomolecules such as lipids within neuronal membranes obstructs mem-
brane integrity [99]. Due to its oxidation by ROS and redox-active metals, Aβ clearance
is impaired and significantly decreased in those with AD [42,100]. In turn, Aβ exerts
toxic effects through the dysregulation of calcium homeostasis and membrane potential
depletion, disrupting the cytoskeleton and synaptic function which stimulates neuronal
apoptosis [101–106]. This has led researchers to explore antioxidant-based targets to address
the involvement of oxidative stress in AD pathology.

The improvement in cellular metabolism observed in cells treated with Aβ25–35 and
the antioxidant compounds (VANL-100, NAR, or ALA) compared to cells treated with
Aβ25–35 alone can be attributed to various factors including the pathways proposed to be
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involved in Aβ-induced cell death and the ability of the current antioxidant compounds to
attenuate the activation of these pathways. It is reported in the literature that Aβ induces
neuronal death via apoptotic mechanisms such as c-Jun N-terminal kinase (JNK) activa-
tion, caspase-3 activation, and p38 mitogen-activated protein kinase (MAPK) activation,
including neuroinflammatory pathways such as nuclear factor kappa B (NFκB) [107–113].
These pathways have also been implicated in oxidative stress-induced cell death, and the
utilization of compounds that stimulate the production of antioxidant and detoxifying
enzymes has been shown to inhibit apoptosis, resulting in reduced cell death [114–116].
Our current results are in line with the literature and support the neuroprotective role of
antioxidants NAR and ALA against Aβ-induced toxicity.

Interestingly, both NAR and ALA have been reported to elicit their neuroprotective
antioxidant effects through similar mechanisms and using similar intracellular antioxidant
signaling pathways, including through the activation of nuclear factor erythroid 2-related
factor 2 (Nrf2) [117–128]. Nrf2 is the primary transcription factor responsible for the activity
of the antioxidant defense system; it regulates the expression of antioxidant and detoxifying
genes and the subsequent production of antioxidant and detoxifying enzymes [129–132].
Nrf2 may serve as a potential mechanism of protection for VANL-100 (Figure 9). We propose
that VANL-100 activates Nrf2 by stimulating the cytoplasmic dissociation of Nrf2 from the
inhibitory protein Kelch-like ECH-associated protein 1 (Keap1) via phosphorylation by
kinases such as PKC. Activation of Nrf2 leads to the nuclear translocation of phosphorylated
Nrf2, where Nrf2 binds to small Maf proteins on the antioxidant response element (ARE)
in the promoter region of antioxidant genes such as superoxide dismutase (SOD), heme-
oxygenase 1 (HO-1), glutamate-cysteine ligase modifiers and catalytic subunits (GCLM
and GCLC, respectively). This stimulates the transcription of antioxidant and detoxifying
genes that code for enzymes that inhibit oxidative stress and the subsequent production of
Aβ plaques.
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Our results demonstrated the cytoprotective effects of all antioxidant compounds
studied, but in contrast to the findings of Saleh et al. (2017), we did not see enhanced
protection from VANL-100 compared to NAR and ALA when alone or in combination but
not covalently bound (NAR + ALA). There are several factors that may have contributed
to these findings. It is important to recognize that Saleh et al. (2017) tested the effects
of VANL-100 and its parent compounds in a rodent model of an ischemic stroke. Since
the pathophysiologies of an ischemic stroke and AD are significantly different, and the
complexity of in vivo neurotoxicity is not always captured in vitro, it is expected that
discrepancies in our findings may exist when utilizing two different models of neurodegen-
eration. Additionally, Saleh et al. (2017) used oxygen and glucose deprivation in mixed
neocortical primary cultures for their in vitro experiments, whereas we used SH-SY5Y
cells treated with Aβ in our cellular model. It is plausible that, compared to its parent
compounds, the effects of this conjugated drug, VANL-100, may have a distinctive impact
based on the mechanisms of neurotoxicity and/or in neuronal cells compared to the neu-
roblastoma cell line. Taken together, these factors likely contributed to the observation
that the neuroprotective effects of VANL-100 in the present study were not significantly
different from those of the parent compounds.

Researchers have reported increased ROS production following Aβ exposure in vari-
ous cell lines including SH-SY5Y cells [133–140]. Additionally, antioxidant compounds such
as NAR and ALA have been shown to attenuate cell stress due to elevated ROS production
induced by Aβ exposure and other mediators of oxidative stress [64,68,76,118,141,142].
Since the neuroprotective effects of the parent compounds NAR and ALA against ROS
generation have already been described in the literature, it was necessary to also assess
whether the novel compound VANL-100 exerts similar effects on ROS generation in vitro.
H2O2 was used as a positive control and significantly increased ROS generation. When
administered alone, VANL-100 did not significantly increase ROS production, which sup-
ports results from cell viability experiments that indicate that VANL-100 does not exert
toxic effects on SH-SY5Y cells. Although not statistically significant, Aβ25–35 treatment
alone consistently resulted in higher ROS levels which remained elevated when cells were
co-treated with Aβ25–35 and VANL-100. It is possible that Aβ25–35 may be inducing an an-
tioxidant response that masks some of the effects of Aβ25–35 on ROS levels. Future studies
should examine ROS target molecules to gain a better understanding of the mechanism
of Aβ25–35-induced cell death in SH-SY5Y cells. The results also suggest that VANL-100 is
not protecting SH-SY5Y cells via the inhibition of ROS generation. While this is possible,
additional experiments would be needed to better understand the mechanisms involved.
It is possible that the toxic effects of Aβ25–35-induced ROS generation may interfere with
the capacity of VANL-100 to scavenge ROS. Additionally, the variability in the data, along
with the lack of significant increase in ROS following Aβ25–35 treatment, indicates that
additional optimization of the assay or alternative methods for examining ROS should
be carried out. Although significant improvements in viability were observed following
24 h of co-treatment with Aβ25–35 and VANL-100, this timepoint may not be optimal for
assessing ROS levels. Reproducing these experiments across various time points may
provide evidence for the impact of VANL-100 on ROS levels. Additional experiments,
including the examination of ROS targets, are necessary to discern the neuroprotective
effects VANL-100 exerts on reducing intracellular ROS production in this cell line.

The SH-SY5Y cell line is widely utilized in studies requiring a reliable neuron-like cell
culture model, which supports our use of SH-SY5Y in this study. However, the utilization
of this neuroblastoma cell line is also the main limitation of our study. It is arguable that
the cell line may not be the most appropriate model of AD since it is a cancer cell line. The
SH-SY5Y cell line can be further manipulated using agents such as retinoic acid to stimulate
differentiation and morphological characteristics comparable to neuronal cells [143,144].
Additionally, an alternative method for modelling AD could include the utilization of
primary neurons with genetic modifications that mimic AD. These include, but are not
limited to, neurons derived from single, double, and triple transgenic AD mouse models,
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which are frequently utilized in preclinical studies [145]. Utilizing animal models that
meticulously recapitulate some of the clinical pathologies of AD are necessary next steps
for discerning molecular mechanisms and advancing preclinical investigations of ACTs.

Future directions include exploring the mechanisms by which VANL-100 elicits neu-
roprotective effects in the SH-SY5Y cellular model of AD. As previously mentioned, the
parent compounds of VANL-100, NAR, and ALA, possess antioxidant neuroprotective
effects through their mechanism of action as activators of Nrf2, the primary transcription
factor involved in the body’s endogenous antioxidant response to oxidative stress [117–128].
It is plausible that VANL-100 may provide neuroprotection by acting through similar mech-
anisms as NAR and ALA to activate Nrf2 signaling pathways and stimulate the production
of antioxidant and detoxifying enzymes that target perpetrators of oxidative stress such as
ROS. Additionally, it is necessary to assess the effects of VANL-100 in other models of AD,
including, but not limited to, primary neurons, including those obtained from transgenic
AD mice and in vivo explorations, since researchers have reported the neuroprotective
effects of its parent compounds, NAR and ALA, in transgenic and non-transgenic AD
rodent models [58,66,72,73,146–149]. Although both parent compounds of VANL-100 have
been shown to provide neuroprotective effects in various models of AD, our work is the
first to explore the role of VANL-100 as a form of ACT in an early cellular model of AD.

4. Materials and Methods
4.1. Materials

VANL-100 was synthesized following the synthesis and proton NMR validation
protocol previously described [80]. NAR was obtained from Sigma-Aldrich (Cat. No.
N5893). ALA was obtained from EMD Millipore (Cat. No. 437692). VANL-100, NAR,
and ALA were dissolved in DMSO (Sigma Life Science, Cat. No. D2650). Aβ25–35 was
purchased from Cedarlane (product No. A15416-25) and prepared in sterile distilled water
at a concentration of 1 mM. Aliquots were stored at−20 ◦C until treatment. For experiments
examining the effects of soluble Aβ25–35, aliquots were used immediately after thawing, to
limit aggregation of the peptide. Aggregates were prepared as described previously, with
aliquots incubated at 37 ◦C for four days prior to treatment [150]. MTT was purchased
from EMD Millipore (Cat. No. 475989) and dissolved in phosphate buffer saline (PBS).
H2DCFDA was purchased from Invitrogen by Thermo Fisher Scientific (Cat. No. C6827)
and dissolved in DMSO.

4.2. Cell Culture

The human neuroblastoma SH-SY5Y cell line was obtained from ATCC (CRL-2266) and
maintained in Dulbecco’s Modified Eagle Medium (DMEM; Gibco by Life Technologies)
supplemented with 10% fetal bovine serum (FBS; Gibco by Life Technologies) and 5%
penicillin-streptomycin (Gibco by Life Technologies). The cells were grown and maintained
at 37 ◦C in a humidified environment of 5% CO2 and 95% air.

4.3. Antioxidant Treatments

SH-SY5Y cells were seeded in 96-well plates and treated with antioxidants once they
reached 70–80% confluence. Pre-treatment experiments consisted of 24-h treatment with
0.2, 2.0, 20, 50, 100, and 200 µM of VANL-100, NAR alone, ALA alone, or NAR + ALA,
followed by co-incubation with 20 µM non-fibril or fibril Aβ25–35 for an additional 24 h.
Co-treatment experiments consisted of simultaneous co-treatment with 0.2, 2.0, 20, 50,
100, and 200 µM of each antioxidant compound with 20 µM non-fibril or fibril Aβ25–35.
Twenty-four hours after Aβ25–35 administration, cell viability was assessed using the MTT
assay. DMSO was used to dissolve the antioxidants and was therefore used as the vehicle
in all experiments. The final concentration of DMSO in all wells was 0.1%.
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4.4. Cell Viability and Toxicity Assay

After 24 h of incubation, the media was aspirated and 100 µL of the MTT reagent
(0.75 mg/mL in PBS) was added to each well and incubated for 3 h. Post incubation, the
MTT reagent was removed and 100 µL of DMSO was added to each well. Following
incubation for 15 min, absorbance was read at 600 nm. The cell viability and toxicity
of all antioxidant compounds and Aβ25–35 were individually established in addition to
the protective effects of VANL-100 and its parent compounds against non-fibril or fibril
Aβ25–35-treated cells.

4.5. Reactive Oxygen Species Determination

ROS levels were detected by the H2DCFDA fluorescence assay [151]. Cells were seeded
in black clear-bottom 96-well plates in phenol-red free media and incubated overnight.
On the day of the experiment, 20 µM H2DCFDA was prepared in phenol-red free media,
100 µL was added to each well, and the plates were incubated for 30 min. The media was
aspirated, and the cells were fed with fresh phenol-red free media. Cells were then treated
with antioxidant compounds and Aβ25–35. After 24 h of incubation, ROS generation was
measured with fluorescence plate spectroscopy at an excitation of 485 nm and an emission
of 520 nm. Cells treated with 100 µM H2O2 served as a positive control. Because cell
viability was reduced following 24-h treatment with Aβ25–35, MTT assay measurements
from the same wells were used to normalize the ROS values.

4.6. Statistical Analysis

All data are represented as a mean ± standard error of the mean (SEM). Statistical
analyses were performed and interpreted using GraphPad Prism 9. One-way analysis
of variance (ANOVA) was conducted to compare control groups and treatment groups,
followed by Dunnett’s post-hoc test. Two-way ANOVA was conducted to compare the
effects of pre-treatment and co-treatment time points, followed by Sidak’s post-hoc test.
Statistical significance was defined by p < 0.05.

5. Conclusions

Our results demonstrate for the first time the neuroprotective effects of the novel
co-drug VANL-100 in an Aβ-induced cellular model of AD. These findings support the
use of antioxidant combinations or conjugate compounds as a potential novel therapeutic
strategy for combating oxidative stress and the impact of abnormal protein aggregation
during the onset and progression of AD. Additionally, our results support the role of
oxidative stress in the pathogenesis of AD and the necessary presence of antioxidants to
maintain optimal cellular conditions and overall cell health. Future studies exploring the
mechanisms by which VANL-100 elicits neuroprotection are necessary to elucidate the
underlying molecular pathways involved in its protection of and applicability to other
models/conditions of neurodegeneration. This would further elucidate the efficacy and
appropriateness of VANL-100 and other antioxidant-based co-drugs as potential drug
candidates for the prevention and/or treatment of neurodegenerative diseases that are
characterized by oxidative stress and/or abnormal protein aggregation.
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