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Abstract: Transient ischemic attack (TIA) refers to a momentary neurologic deficit caused by focal
cerebral, spinal or retinal ischemic insult. TIA is associated with a high risk of impending acute
ischemic stroke (AIS), a neurologic dysfunction characterized by focal cerebral, spinal or retinal infarc-
tion. Understanding the differences in molecular pathways in AIS and TIA has merit for deciphering
the underlying cause for neuronal deficits with long-term effects and high risks of morbidity and
mortality. In this study, we performed comprehensive investigations into the circulating microRNA
(miRNA) profiles of AIS (n = 191) and TIA (n = 61) patients. We performed RNA-Seq on serum
samples collected within 24 hrs of clinical diagnosis and randomly divided the study populations
into discovery and validation cohorts. We identified a panel of 11 differentially regulated miRNAs at
FDR < 0.05. Hsa-miR-548c-5p, -20a-5p, -18a-5p, -484, -652-3p, -486-3p, -24-3p, -181a-5p and -222-3p
were upregulated, while hsa-miR-500a-3p and -206 were downregulated in AIS patients compared to
TIA patients. We also probed the previously validated gene targets of our identified miRNA panel to
highlight the molecular pathways affected in AIS. Moreover, we developed a multivariate classifier
with potential utilization as a discriminative biomarker for AIS and TIA patients. The underlying
molecular pathways in AIS compared to TIA may be explored further in functional studies for
therapeutic targeting in clinical translation.

Keywords: microRNA; miRNome; ischemic; stroke; acute ischemic stroke; transient ischemic attack

1. Introduction

Stroke is the second leading cause of global mortality and the third leading cause of
death and disability combined, responsible for an estimated 6.5 million deaths in 2019 [1].
It is described as a neurological deficit attributed to acute focal injury to the central nervous
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system (CNS) due to impaired blood perfusion and is broadly classified as ischemic, hem-
orrhagic or subarachnoid [2]. Ischemic strokes refer to incident neurological dysfunction
due to acute cerebral, spinal or retinal infarction by ischemic insult [2] and constitute the
majority (62.4%) of all incident stroke cases [1]. Stroke diagnosis and management require
clinical investigations and brain imaging to assess the extent of neuronal damage and to
determine reperfusion therapies.

Transient ischemic attack (TIA) refers to focal neurological deficits that resolve within
minutes to 24 h after onset, and imaging reveals no acute stroke in the majority of cases.
Stroke risk is high (~7.5–17.4%) in the initial days following a TIA [3–6]. TIA occurs in ~20%
of ischemic stroke patients in the short time preceding stroke [7]. The risk of myocardial
infarction and nonvascular mortality is also high in both TIA and stroke cases [8]. Thus,
TIA requires immediate diagnosis and management to mitigate stroke risk. However, a
significant proportion of TIA cases remain underdiagnosed due to lack of reporting [9]. The
fundamental difference between TIA and AIS is the lack of acute infarction in most patients
with TIA. The lack of residual incident neuronal deficits and absence of sustained clinical
presentations in TIA hinders the risk stratification for the development of subsequent
AIS. Understanding the differences in molecular pathways in AIS and TIA has merit for
deciphering the underlying cause of neuronal deficits with long-term risks of morbidity
and mortality.

MicroRNAs (miRNAs) are non-coding RNA molecules, which can regulate the expres-
sion of specific gene targets by affecting target mRNA stability or repressing translational
efficiency. These molecules are detectable in circulation and are recurrently explored as
predictive, diagnostic or prognostic biomarkers for various physiological conditions [10].
Investigating the disturbances in miRNA profile (miRNome) can decipher the physiological
and molecular disturbances in various diseases, including cardiovascular disease [11]. Sev-
eral groups have investigated circulating miRNAs in ischemic strokes [12]. However, these
studies have predominantly utilized targeted approaches using microarrays to identify
distinct circulating miRNAs in AIS patients or excluded other types of strokes including
TIAs. Next-generation sequencing (NGS) technologies have emerged as a robust technique
in miRNA expression profiling and combination with in silico tools can enhance their
utilization as blood-based biomarkers due to high detection sensitivity and accuracy [13].
However, the few studies that have utilized next-generation sequencing technologies for
miRNA profiling of stroke patients were limited by the modest patient sample size [14–17].
Thus, comprehensive miRNA profiling of AIS and TIA patients is warranted for the robust
identification of differentially regulated miRNAs, which may be explored as discriminative
biomarkers for AIS and TIA.

We have previously reported a panel of 10 differentially regulated circulating miRNAs
to distinguish between AIS patients and healthy individuals [18], and a panel of 5 circulating
miRNAs between AIS patients with type 2 diabetes mellitus (T2DM), a known risk factor
for stroke that is also associated with worse disease outcomes, compared to non-diabetic
AIS patients [19]. In the present study, we compared the circulating miRNA profiles of
clinically diagnosed AIS and TIA patients using serum samples for identifying differentially
regulated circulating miRNAs. We also probed the molecular pathways associated with the
experimentally validated gene targets of these miRNAs and investigated the clinical pathol-
ogy endpoints and diseases associated with disruptions in these pathways. Importantly,
we developed a classifier based on our identified panel of dysregulated miRNAs to differ-
entiate between AIS and TIA cases as a potential low-invasive miRNA-based biomarker.
The underlying molecular pathways in AIS compared to TIA may be explored further in
functional studies for therapeutic targeting and clinical translation.



Int. J. Mol. Sci. 2023, 24, 108 3 of 14

2. Results
2.1. Identification of Differentially Regulated Circulating miRNAs in AIS Patients Compared to
TIA Patients

Serum samples from AIS and TIA patients were analyzed for the identification of
distinct circulating miRNAs. The study design and analysis workflow are depicted in
Figure 1 and the characteristic features of study population are listed in Table 1.
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Age  48.23 ± 9.68 50.38 ± 9.40 49.43 ± 10.84 50.01 ± 9.50 
Gender (Male/Female) 28/3 86/10 26/4 90/5 

Diabetes mellitus (DM) (no/yes) 19/12 49/47 17/13 50/45 
Hypertension (no/yes) 19/12 26/70 * 13/17 25/70 * 

Smoking (no/yes) 14/17 56/40 19/11 51/44 
DM medication (no/yes) 23/8 73/23 22/8 66/29 

Statin medication (no/yes) 22/9 83/13 * 21/9 78/17 
Total cholesterol (mmol/L) 4.16 ± 0.96 4.85 ± 1.22 * 4.54 ± 0.73 5.16 ± 1.20 * 

LDL-C (mmol/L) 2.65 ± 1.04 3.15 ± 1.08 2.84 ± 0.82 3.34 ± 1.12 * 
Triacyl glycerides (mmol/L) 1.74 ± 0.63 1.54 ± 0.81 1.38 ± 0.60 1.90 ± 1.09 * 

Figure 1. Study design and analysis workflow. (A). Serum samples were collected from acute ischemic
stroke (AIS) and transient ischemic attack (TIA) patients within 24 h of clinical diagnosis, to purify
circulating microRNAs (miRNAs) for transcriptomic analysis by RNA-Seq. Stringent analyses criteria
enabled identification of differentially regulated circulating miRNAs in AIS patients compared to TIA
patients. Downstream analyses for the gene targets of identified miRNA panel were performed to
highlight the molecular pathways and networks affected in AIS. (B). The study population comprised
TIA (n = 61) and AIS (n = 191) patients who were randomly divided into discovery and validation
cohorts for identification of replicated, differentially regulated circulating miRNAs in AIS patients
compared to TIA patients.

Table 1. Characteristic features of the study cohort.

Characteristic
Discovery Cohort Validation Cohort

TIA † AIS ‡ TIA AIS

Number 31 96 30 95
Age 48.23 ± 9.68 50.38 ± 9.40 49.43 ± 10.84 50.01 ± 9.50

Gender (Male/Female) 28/3 86/10 26/4 90/5
Diabetes mellitus (DM) (no/yes) 19/12 49/47 17/13 50/45

Hypertension (no/yes) 19/12 26/70 * 13/17 25/70 *
Smoking (no/yes) 14/17 56/40 19/11 51/44

DM medication (no/yes) 23/8 73/23 22/8 66/29
Statin medication (no/yes) 22/9 83/13 * 21/9 78/17
Total cholesterol (mmol/L) 4.16 ± 0.96 4.85 ± 1.22 * 4.54 ± 0.73 5.16 ± 1.20 *

LDL-C (mmol/L) 2.65 ± 1.04 3.15 ± 1.08 2.84 ± 0.82 3.34 ± 1.12 *
Triacyl glycerides (mmol/L) 1.74 ± 0.63 1.54 ± 0.81 1.38 ± 0.60 1.90 ± 1.09 *

† Transient ischemic attack. ‡ Acute ischemic stroke. * Statistically significant compared to TIA.
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The principal component analysis (PCA) of the miRNA profiles of AIS and TIA
patients did not show any distinct clustering of the two cohorts (Figure 2A). The differential
expression analyses for miRNA transcripts of AIS and TIA patients were compared in
the discovery and validation datasets separately to identify the statistically significant
(FDR < 0.05), differentially regulated circulating miRNAs that were replicated in both
analyses. In the discovery dataset, 24 miRNAs showed varying degrees of fold change
(FC) and fulfilled the analyses criteria (FDR < 0.05, Supplementary Table S1). Out of these,
11 miRNAs were replicated in the validation cohort by meeting the analysis cutoff (Table 2).
Moreover, the datasets showed the same direction of effect in the discovery and validation
sets for all 11 miRNAs (Table 2). Out of the 11 miRNAs, 9 miRNAs were upregulated and
2 were downregulated in AIS compared to TIA patients (Figure 2B,C). Overall, this panel
of 11 miRNAs is presented as differentially regulated miRNAs in AIS versus TIA patients.
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Figure 2. Circulating miRNA profiles of acute ischemic stroke (AIS) and transient ischemic attack
(TIA) patients. (A). PCA plot depicts the variability in miRNA expression between TIA and AIS
patients. (B). Box and whiskers plots show the differences in counts per million (CPM) in AIS
and TIA patients of the 11 differentially regulated, validated miRNAs. Mean with minimum and
maximum values, and upper and lower quartiles are depicted for each data set with significant
comparisons annotated by an asterisk (*) on top (p < 0.0001). (C). Heatmap shows the dysregulation
in identified miRNA panel (Z-scores calculated CPM) between AIS and TIA patients in the overall
study population.
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Table 2. Differentially regulated miRNAs in AIS versus TIA patients.

Discovery Validation Combined
miRNA FC * FDR ** FC FDR FC FDR

hsa-miR-548c-5p 1.80 2.44 × 10−2 1.90 1.56 × 10−2 1.70 1.13 × 10−4

hsa-miR-20a-5p 1.69 1.52 × 10−7 1.73 1.19 × 10−4 1.69 1.72 × 10−14

hsa-miR-18a-5p 1.55 2.29 × 10−2 1.73 1.48 × 10−2 1.72 5.01 × 10−6

hsa-miR-484 1.52 1.08 × 10−3 1.55 8.32 × 10−3 1.47 2.64 × 10−6

hsa-miR-652-3p 1.49 4.76 × 10−3 1.62 1.08 × 10−3 1.53 2.31 × 10−7

hsa-miR-486-3p 1.46 3.93 × 10−3 1.49 9.51 × 10−3 1.46 5.73 × 10−7

hsa-miR-24-3p 1.45 3.93 × 10−3 1.63 6.79 × 10−4 1.48 1.13 × 10−7

hsa-miR-181a-5p 1.45 4.25 × 10−3 1.61 1.19 × 10−4 1.44 2.44 × 10−7

hsa-miR-222-3p 1.19 4.46 × 10−2 1.34 3.85 × 10−3 1.24 1.39 × 10−5

hsa-miR-500a-3p −1.67 1.41 × 10−2 −1.65 4.02 × 10−2 −1.63 8.05 × 10−5

hsa-miR-206 −3.18 3.92 × 10−4 −2.39 2.57 × 10−2 −3.20 2.95 × 10−9

* Fold change. ** False discovery rate.

In addition, we divided AIS patients into two groups based on the National Institutes
of Health Stroke Scale (NIHSS) scores; minor to moderate stroke (NIHSS score: 0–5, n = 152)
and severe stroke (NIHSS score: ≥6, n = 39), and compared the expression levels of our
identified miRNA panel. We found that only hsa-miR-652-3p showed dysregulation in AIS
patients with severe stroke, but this was with borderline significance (fold change = −1.23,
FDR = 0.05). Moreover, we also found that 2 miRNAs out of our identified miRNA
panel also showed significant dysregulation in AIS patients compared to healthy controls
(Supplementary Table S2), based on our previously reported datasets comparing AIS
patients with healthy controls [18].

2.2. Predictive Capacity of the Identified miRNA Panel in AIS Patients

To determine the predictive performance of our identified miRNA panel to distin-
guish between AIS and TIA patients, we performed multivariate discriminant analyses
(Figure 3). The orthogonal projections to latent structures discriminant analysis (OPLS-DA)
method was adopted using the top FDR-significant differentially regulated miRNAs (n = 24,
Supplementary Table S1) identified from the discovery cohort data (Figure 3A) and testing
the classifier model on the validation cohort (Figure 3B) to determine its performance.
The classifier showed high predictive performance, evidenced by an AUC value of 0.901
generated on the ROC curve analysis (Figure 3C).

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 5 of 15 
 

 

Table 2. Differentially regulated miRNAs in AIS versus TIA patients. 

 Discovery Validation Combined 
miRNA FC * FDR ** FC FDR FC FDR 

hsa-miR-548c-5p 1.80 2.44 × 10−2 1.90 1.56 × 10−2 1.70 1.13 × 10−4 
hsa-miR-20a-5p 1.69 1.52 × 10−7 1.73 1.19 × 10−4 1.69 1.72 × 10−14 
hsa-miR-18a-5p 1.55 2.29 × 10−2 1.73 1.48 × 10−2 1.72 5.01 × 10−6 

hsa-miR-484 1.52 1.08 × 10−3 1.55 8.32 × 10−3 1.47 2.64 × 10−6 
hsa-miR-652-3p 1.49 4.76 × 10−3 1.62 1.08 × 10−3 1.53 2.31 × 10−7 
hsa-miR-486-3p 1.46 3.93 × 10−3 1.49 9.51 × 10−3 1.46 5.73 × 10−7 
hsa-miR-24-3p 1.45 3.93 × 10−3 1.63 6.79 × 10−4 1.48 1.13 × 10−7 

hsa-miR-181a-5p 1.45 4.25 × 10−3 1.61 1.19 × 10−4 1.44 2.44 × 10−7 
hsa-miR-222-3p 1.19 4.46 × 10−2 1.34 3.85 × 10−3 1.24 1.39 × 10−5 

hsa-miR-500a-3p −1.67 1.41 × 10−2 −1.65 4.02 × 10−2 −1.63 8.05 × 10−5 
hsa-miR-206 −3.18 3.92 × 10−4 −2.39 2.57 × 10−2 −3.20 2.95 × 10−9 

* Fold change. ** False discovery rate. 

In addition, we divided AIS patients into two groups based on the National Institutes 
of Health Stroke Scale (NIHSS) scores; minor to moderate stroke (NIHSS score: 0–5, n = 
152) and severe stroke (NIHSS score: ≥6, n = 39), and compared the expression levels of 
our identified miRNA panel. We found that only hsa-miR-652-3p showed dysregulation 
in AIS patients with severe stroke, but this was with borderline significance (fold change 
= −1.23, FDR = 0.05). Moreover, we also found that 2 miRNAs out of our identified miRNA 
panel also showed significant dysregulation in AIS patients compared to healthy controls 
(Supplementary Table S2), based on our previously reported datasets comparing AIS pa-
tients with healthy controls [18]. 

2.2. Predictive Capacity of the Identified miRNA Panel in AIS Patients 
To determine the predictive performance of our identified miRNA panel to distin-

guish between AIS and TIA patients, we performed multivariate discriminant analyses 
(Figure 3). The orthogonal projections to latent structures discriminant analysis (OPLS-
DA) method was adopted using the top FDR-significant differentially regulated miRNAs 
(n = 24, Supplementary Table S1) identified from the discovery cohort data (Figure 3A) 
and testing the classifier model on the validation cohort (Figure 3B) to determine its per-
formance. The classifier showed high predictive performance, evidenced by an AUC 
value of 0.901 generated on the ROC curve analysis (Figure 3C). 

 
Figure 3. Discriminative performance of the identified miRNA panel to identify AIS patients. Or-
thogonal projections to latent structures-discriminant analysis (OPLS-DA) was performed using



Int. J. Mol. Sci. 2023, 24, 108 6 of 14

the top differentially regulated miRNAs (n = 24) in the discovery cohort data. The classifier was
trained on data from all participants in (A). discovery cohort (n = 122) and tested on the (B). validation
cohort (n = 119). Scatter plots show the predictive component to discriminate AIS cases from TIA
cases (blue dots—x-axis) versus the orthogonal component representing a multivariate confounding
effect that is independent of stroke (maroon dots—y-axis). (C). ROC curve analysis generated an area
under the curve (AUC) of 0.901.

2.3. Identification of Molecular Pathways Modulated by Circulating miRNAs in AIS Patients

miRNAs can regulate the gene expression of multiple genes, thereby affecting the
molecular function of their transcribed proteins. To decipher the potential molecular
pathways affected in AIS compared to TIA, we first identified the known gene targets
(experimentally validated with strong evidence) of our miRNA panel (Total n = 345 genes,
n = 252 unique genes; Supplementary Table S3). We then generated protein–protein
interaction (PPI) networks using STRING tool to explore and annotate pathways associated
with proteins encoded by the gene targets of our identified miRNA panel (Figure 4). The PPI
network showed high enrichment and associations of multiple proteins in mediating several
pathways. Gene Ontology (Biological Processes; GO-Term BP) annotations predominantly
corresponded to cardiac vascularity and neuronal cell functionality annotations, alongside
protein processing and other cellular processes (Figure 4).
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Figure 4. Functional enrichment analysis of the proteins encoded by the gene targets of dysregulated
miRNAs in AIS versus TIA patients. (A). The protein–protein interaction (PPI) network generated for
the 345 gene targets (unique genes; n = 292, protein coding genes; n = 288) of the identified miRNA
panel is shown. Network nodes represent proteins, while edges depict protein–protein associations.
They key network statistics are also presented. (B). The top functional enrichment annotations from
Gene Ontology (GO) Biological Process are listed.
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2.4. Cellular Processes and Clinical Pathology Endpoints Associated with Gene Targets of the
Dysregulated miRNAs in AIS Patients

Identifying the molecular and cellular pathways that contribute to the underlying
pathologies leading to the high mortality associated with AIS is crucial for therapeutic
intervention. We investigated the molecular networks that involved the gene targets
of our identified dysregulated miRNA panel in AIS patients (Figure 5A–C). We found
that our genes of interest are intensely involved in cellular growth and interactions in
tissue development, mediated by MYC activation (Figure 5A). In addition, we found the
involvement of these genes in the aberrant molecular networks mediated by p53 and ESR1
in cancer; hematological development and pathologies; organismal injuries that include
edema, hemorrhage and lesions; and cellular chemotaxis associated with tissue morphology
and development (Figure 5B,C).

Identifying the clinical pathology endpoints associated with deviations in these molec-
ular networks showed associations with hepatorenal and cardiac pathologies (Figure 5D).
In addition, a broad spectrum of diseases covering cancer, hematological, neurological,
immunological, endocrinological and metabolic disorders were associated with deviancies
in these networks (Figure 5E).
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3. Discussion

We investigated the differences in circulating miRNA regulatory network of AIS and
TIA patients to highlight the potential molecular pathways affected in AIS patients. We
identified a panel of 11 differentially regulated miRNAs in AIS compared to TIA patients
using stringent criteria. Many of the identified miRNAs are broadly involved in cere-
brovascular integrity or function via neuroprotection or in promoting neuroinflammation.
Previous studies have reported dysregulation of many of these miRNAs in various cere-
brovascular disorders and suggested them as disease biomarkers [20–22] or associated
variants of their gene targets with stroke [23] or cardiac diseases [24].

The dysregulation of hsa-miR-548c-5p has been previously associated with intracra-
nial aneurysm [25] and hypertension [26]. Moreover, its downregulation in plasma was
associated with venous thrombosis [27]. These findings indicate the roles of miR-548c-5p in
the modulation of circulation and vascularity, but it has not been directly linked with stroke.
Moreover, numerous putative gene targets of miR-548c-5p have been predicted but none
have been experimentally validated till present. Our novel findings of upregulation of miR-
548c-5p in AIS patients as one of the most significantly dysregulated miRNAs highlights its
relevance to the pathogenesis of stroke, which warrants further investigations.

In agreement with our findings, the upregulation of circulating miR-20a-5p, miR-18a-5p
and miR-181a-5p has been previously reported in AIS patients compared to healthy con-
trols [28]. MiR-20a-5p has been presented as a discriminatory biomarker between em-
bolic and thrombotic strokes [29]. Notably, one of the common validated gene targets
of miR-20a-5p and miR-206, VEGFA has been previously associated with stroke severity.
Circulating VEGF levels were higher in ischemic stroke patients and showed prognostic
significance [30]. Moreover, serum VEGF levels were associated with severe disability in
AIS patients [31]. In addition, genome-wide association studies (GWAS) have associated
variants in VEGFA with coronary heart disease [32] and myocardial infarction [24], and
variants in other gene targets of miR-20a-5p, CDKN1A (also a common gene target of
miR-181a-5p) [23] and PRKG1 [33] with stroke.

Hsa-miR-18a-5p promotes the differentiation of vascular smooth muscle cells [34]
and has been reported as a biomarker for venous malformation [35]. Serum hsa-miR-
18a-5p levels have also been associated with cardiovascular anomalies and proposed as
a circulating biomarker for atherosclerosis [22]. The protein encoded by one of its gene
targets, CTGF (also known as CCN2) is over-expressed in atherosclerotic plaques [36]. CTGF
levels were higher in stroke than TIA and are associated with plaque stabilization following
stroke [37]. Moreover, GWAS have associated CTGF with coronary artery calcification
in type 2 diabetes patients [38]. Upregulation of miR-18a-5p in AIS patients indicates its
potential roles in thrombotic or embolic ischemic strokes but needs further investigation.

The upregulation of miR-484 was reported in patients with hyperacute cerebral in-
farction [39] and its dysregulation has been reported in patients with ruptured intracranial
aneurysms compared to those with intact intracranial aneurysm, along with miR-486-3p,
miR-181a-5p, miR-222-3p and miR-500a-3p [25]. MiR-652-3p was significantly upregulated
in freshly resected brain tissues of stroke patients with severe infarction and life-threatening
cerebral swelling, compared to control temporal lobe samples [40]. Notably, the shared gene
target of miR-484 and miR-652-3p, ZEB1 was previously explored in relation to ischemic
neuronal injury. ZEB1 was induced in response to cerebral ischemia and is involved in
neuronal cell survival [41], while its upregulation in microglia associated with alleviating
post-AIS cerebral injury by reducing neuroinflammation [42].

The dysregulation of miR-486-3p has been associated with aneurysmal subarachnoid
hemorrhage [43], while miR-24-3p has been associated with delayed cerebral vasospasm,
which occurs in around one-third of aneurysmal subarachnoid hemorrhage patients [44].
Among the gene targets of miR-486-3p, FASN has been reported as a critical mediator in
de novo lipogenesis in astrocytes following cerebral ischemic injury [45], while SYK is
involved in cerebral inflammatory activation after ischemic stroke [46]. The upregulation
of miR-24-3p in AIS patients concurs with previous reports of its upregulation as exosomal
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miRNA in AIS patients [47]. Additionally, the neuroprotective role of its gene target
ACVR1B in promoting remyelination has been reported previously in a mouse model of
ischemic stroke [48]. Importantly, GWAS have associated variants of several of the gene
targets of miR-24-3p;FAF1 [49], GATA3 [50], MMP14 [51], NOS3 and PTPRF [23] with stroke.

Hsa-miR-181a-5p is associated with inflammation, upregulated in response to TGFβ
signaling [52], and has been identified as a critical regulatory miRNA in ischemic strokes [53].
Serum levels of the protein encoded by its gene targets ATG5 is presented as a biomarker for AIS
patients [54], while another gene target, ATM is involved in neuroprotection in the initiation of
protective mechanisms in ischemic preconditioning but promotes neuronal cell death following
the ischemic insult [55]. Additionally, upregulation of miR-222-3p was previously observed in
acute myocardial infarction patients [56]. Moreover, its gene target AR1D1A associated with
cerebral lesions of white matter hyperintensities in stroke patients in GWAS [57].

Several gene targets have been predicted for miR-500a-3p, but none experimentally
validated. Our findings of its significant downregulation in AIS patients compared to
TIA patients suggest its regulation by post-stroke neuroprotective mechanisms but further
investigations are warranted to explore its role in the pathophysiology of stroke. In contrast,
the levels of miR-206 were higher in cardioembolic stroke patients with hemorrhagic
transformation [58]. Moreover, in line with our findings, the downregulation of miR-206
in circulation of AIS patients has been reported previously and was also associated with
diagnostic significance [20].

The proteins encoded by the gene targets of our identified miRNA panel showed
strong interactions indicating the pathophysiological processes, which may be disrupted in
AIS patients compared to TIA patients. These networks showed strong annotations with
processes involved in cardiac vascularity and muscle regeneration, neuronal differentiation
and apoptosis, angiogenic pathways with possible involvement in wound healing, and
catabolic protein biochemical processing. Collectively, these processes highlight the un-
derlying protein pathways responsible for long-term effects and clinical complications of
AIS compared to TIA patients. In addition, deciphering the aberrant molecular pathways
in AIS patients showed homeostasis-associated processes in tissue maintenance and func-
tionality. In relation to AIS, we found that disruptions in these pathways are associated
with hepatorenal and cardiac anomalies, and vast diseases covering metabolic, inflamma-
tory, endocrine and immunological disorders, which may be involved in morbidity and
mortality associated with AIS.

Uncovering the pathophysiological and molecular imbalances in stroke has potentials
of improving the understanding of the etiopathogenesis of the cerebrovascular neurological
events with high risk of permanent neurologic disability and mortality. Tissue infarction due
to cerebral ischemia triggers necrotic and apoptotic neuronal cell death. The ischemic core
in the brain experiences irreversible insult and necrotic cell death, while the cells in ischemic
penumbra undergo apoptosis via mitochondria-mediated intrinsic mechanisms, and cell
death receptor-mediated extrinsic mechanisms of apoptosis [59,60]. Additional mechanisms
of post-ischemic neuronal damage include necroptosis, autophagy and excitotoxicity [61].
We report that our identified dysregulated miRNAs target several critical mediators of
cell death, most notably P53, Bcl-2, tumor necrosis factor family proteins, protein kinases
such as Akt, and autophagy-related (ATG) proteins, among others. These findings indicate
the involvement of the processes involved in neuronal cell death and may be investigated
further in relation to AIS.

Our panel of dysregulated miRNAs showed high discriminative performance in
assessing AIS and TIA patients, which shows promising clinical utilization. Importantly,
despite identification of several candidate biomarkers, TIA remains a clinical diagnosis
and development of robust diagnostic protocols is necessitated [62]. Moreover, the current
individual blood-based biomarkers for AIS diagnosis also lack robust performance for
use in clinical settings [63]. Notably, while these biomarkers predominantly discriminate
between TIA or AIS and healthy controls, our identified miRNA panel distinguishes
between AIS and TIA patients and benefits more from superior discriminatory performance
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than candidate biomarkers for stroke, such as C-reactive protein levels (AUC 0.73 [64,
65]). However, further experimental validations for confirming expression are required.
Moreover, we highlighted the crucial pathways potentially disrupted or exploited in AIS,
showed potential utilization of differentially regulated circulating miRNAs as discriminatory
biomarkers for AIS and TIA patients and identified several gene targets and pathways, which
may be investigated further. However, the lack of confirmation of miRNA/gene/protein
expression, functional validation, modest sample size of TIA patients and absence of validation
in an external dataset necessitate additional investigations. Overall, the remarkably distinct
circulating miRNA profiles of AIS patients compared to TIA patients strengthens the rationale
for further research into their clinical application as low-invasive disease biomarkers.

4. Materials and Methods
4.1. Study Population

The study population (n = 252) comprised clinically diagnosed acute ischemic stroke
(AIS; n = 191) and transient ischemic attack (TIA; n = 61) patients admitted to Hamad
General Hospital (Doha, Qatar). All patients provided written informed consent prior to
sample donation. This study was approved by the institutional review boards of Qatar
Biomedical Research Institute, Doha, Qatar (Protocol no. 2019-013) and Hamad Medical
Corporation (Protocol no. 15304/15), Doha, Qatar. Patients’ medical records were also
accessed to retrieve relevant information. Characteristic features of the study population
are listed in Table 1. AIS patients were also divided into two groups based on the clinical
severity of stroke as assessed on the NIHSS scale.

4.2. Study Design

Fresh serum samples (200 µL) were collected from AIS and TIA patients within 24 h
of the cerebrovascular event and stored at −80 ◦C for subsequent miRNA profiling by
RNA-Seq. The study population was divided randomly into discovery and validation
cohorts with proportionate distribution of covariates (age, gender, prior administration of
DM management and cholesterol lowering drugs).

The miRNA profiles of AIS patients (n = 96) were first compared with TIA patients
(n = 31) in the discovery cohort. The differential expression analyses were performed while
adjusting for age, gender, diabetes and statin treatment to identify significant (false discov-
ery rate (FDR) < 0.05) miRNAs in the discovery cohort. Similar analysis was performed
on the validation cohort (AIS; n = 95, TIA; n = 30) to identify the FDR-significant miRNAs,
which were replicated from analyses of the discovery cohort. These miRNAs were pre-
sented as the panel of differentially regulated miRNAs in AIS versus TIA patients. A
metanalysis for the overall datasets was also performed to confirm our findings. The study
design and analysis workflow are depicted in Figure 1. Downstream analyses to explore
the potential pathways affected by the panel of dysregulated miRNAs in AIS patients were
also performed (explained in succeeding sections).

4.3. miRNA Isolation and Sequencing

The miRNA transcripts from serum samples were sequenced as described previ-
ously [18]. Briefly, miRNeasy Serum/Plasma Advanced Kit (Qiagen, Hilden, Germany)
was used to purify total RNA from serum samples. RNA quantification was carried out us-
ing Qubit RNA Broad Range Assay Kit (Invitrogen, Carlsbad, CA, USA). The libraries were
prepared using QIAseq miRNA next-generation sequencing (NGS) Library Kit (Qiagen)
using QIAseq miRNA NGS 96 Index IL kit (Qiagen) for indexing. The quality-passed
libraries, assessed using Qubit dsDNA HS assay kit (Invitrogen) and Agilent 2100 Bioan-
alyzer DNA1000 chip (Agilent Technologies, Santa Clara, CA, USA), were pooled using
TruSeq PE Cluster Kit v3-cBot-HS kit (illumina, San Diego, CA, United States). HiSeq
3000/4000 SBS kit (illumina) was used to perform sequencing on illumina HiSeq 4000
system (10 million reads per sample).
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4.4. Data Curation and Analyses

The sequencing data were generated as single reads (at 75 cycles) and alignment was
carried out on CLC Genomics Workbench (v.21.0.5, Qiagen) utilizing the human miRbase v22
reference genome. miRNA transcript expression levels were computed as counts per million
(CPM) from the total counts of mapped miRNA reads. Calibration for RNA spike-in (RNA
transcript of known sequence and quantity) was also performed. The differential expression
analyses were carried out on RStudio (version 4.1.1; RStudio, Boston, MA, USA) utilizing the
DSEq2 method [66], while adjusting for covariates (age, gender, DM and statin treatment).
Statistical analyses and representations were performed using GraphPad Prism 9.1.2 (GraphPad
Software, Columbia, ML, USA). A p value of <0.05 was considered statistically significant.

4.5. Discriminant Analyses

Discriminant analysis and classification was performed to determine the predictive
performance of our identified panel of miRNAs to discriminate between AIS and TIA
patients. The orthogonal projections to latent structures discriminant analysis (OPLS-DA)
classifier was first trained on the findings of the discovery datasets (statistically significant
differentially regulated miRNAs in AIS versus TIA patients) using SIMCA multivariate
data analysis software (version 16; Umetrics, Vasterbottens Lan, Sweden). The model was
then tested on the validation dataset and the performance was assessed by determining the
area under the curve (AUC) value of the receiver operating characteristic (ROC) curve.

4.6. Downstream Pathway and Network Analyses

The previously identified gene targets with strong evidence of experimental validation
of the identified miRNA panel dysregulated in AIS patients compared to TIA patients
were retrieved from the miRTargetLink 2.0 database [67]. Target gene enrichment and
protein–protein interaction (PPI) network analysis was performed by STRING [68]. The
functional pathway network analyses were performed on QIAGEN Ingenuity Pathway
Analysis (IPA) software (QIAGEN Inc., https://digitalinsights.qiagen.com/IPA (accessed
on 12 September 2022)) [69].
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