
Learning is shaped by abrupt changes in neural engagement

Jay A. Hennig1,2,3,✉, Emily R. Oby2,4,5, Matthew D. Golub2,6,7, Lindsay A. Bahureksa2,8, 
Patrick T. Sadtler2,5, Kristin M. Quick2,5, Stephen I. Ryu7,9, Elizabeth C. Tyler-
Kabara2,10,11,12, Aaron P. Batista2,5,13, Steven M. Chase1,2,8,13, Byron M. Yu1,2,6,8,13

1Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA.

2Center for the Neural Basis of Cognition, Pittsburgh, PA, USA.

3Machine Learning Department, Carnegie Mellon University, Pittsburgh, PA, USA.

4Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA.

5Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.

6Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, 
USA.

7Department of Electrical Engineering, Stanford University, Stanford, CA, USA.

8Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA.

9Department of Neurosurgery, Palo Alto Medical Foundation, Palo Alto, CA, USA.

10Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, 
USA.

11Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA.

12Department of Neurosurgery, Dell Medical School, University of Texas at Austin, Austin, TX, 
USA.

Reprints and permissions information is available at www.nature.com/reprints.
✉Correspondence and requests for materials should be addressed to J.A.H., jhennig@andrew.cmu.edu.
Author contributions
J.A.H. performed the analyses. M.D.G., P.T.S., K.M.Q., A.P.B., S.M.C. and B.M.Y. designed the animal experiments. E.R.O., L.A.B. 
and P.T.S. performed the animal experiments. E.R.O., S.I.R. and E.C.T.-K. performed the animal surgeries. J.A.H., A.P.B., S.M.C. and 
B.M.Y. wrote the manuscript. All authors discussed the results and commented on the manuscript.

Online content
Any methods, additional references, Nature Research reporting summaries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author contributions and competing interests; and statements of data and code 
availability are available at https://doi.org/10.1038/s41593-021-00822-8.

Reporting Summary. Further information on research design is available in the Nature Research Reporting Summary linked to this 
article.

Code availability
The code used in this study for performing analyses and generating figures can be found at https://github.com/mobeets/neural-
engagement/.

Competing interests
The authors declare no competing interests.

Extended data is available for this paper at https://doi.org/10.1038/s41593-021-00822-8.

Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/
s41593-021-00822-8.

HHS Public Access
Author manuscript
Nat Neurosci. Author manuscript; available in PMC 2023 January 06.

Published in final edited form as:
Nat Neurosci. 2021 May ; 24(5): 727–736. doi:10.1038/s41593-021-00822-8.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.nature.com/reprints
https://github.com/mobeets/neural-engagement/
https://github.com/mobeets/neural-engagement/


13These authors contributed equally: Aaron P. Batista, Steven M. Chase, Byron M. Yu.

Abstract

Internal states such as arousal, attention and motivation modulate brain-wide neural activity, but 

how these processes interact with learning is not well understood. During learning, the brain 

modifies its neural activity to improve behavior. How do internal states affect this process? Using 

a brain–computer interface learning paradigm in monkeys, we identified large, abrupt fluctuations 

in neural population activity in motor cortex indicative of arousal-like internal state changes, 

which we term ‘neural engagement.’ In a brain–computer interface, the causal relationship 

between neural activity and behavior is known, allowing us to understand how neural engagement 

impacted behavioral performance for different task goals. We observed stereotyped changes in 

neural engagement that occurred regardless of how they impacted performance. This allowed 

us to predict how quickly different task goals were learned. These results suggest that changes 

in internal states, even those seemingly unrelated to goal-seeking behavior, can systematically 

influence how behavior improves with learning.

As we move about the world, we experience fluctuations in internal states such as arousal, 

motivation and engagement. Such fluctuations, which do not directly reflect sensory stimuli 

or intended movements, are governed by the modulation of neural activity throughout 

the brain1–5. The manner in which these modulations relate to the ongoing computations 

performed by the cerebral cortex is not well understood. In predominantly sensory areas of 

cortex, changes in an animal’s internal state are known to affect neural response magnitude, 

signal-to-noise ratio, timing and variability2,6–8. Depending on how these changes align with 

respect to neural encoding of stimulus information or downstream readout, changes in an 

animal’s internal state can impact perceptual processing and decision-making9–12. Changes 

in internal state are also known to impact motor control and behavior, as the speed and 

latency of both eye movements and arm reaches are known to be modulated by signals such 

as motivation, intrinsic value and reward expectation13–16. These studies and others illustrate 

the importance of understanding the influence of internal states on sensory processing and 

behavior.

What has been less well studied is the impact of internal state changes on learning 

(Fig. 1a). When we learn to perform a task, such as shooting a basketball, the firing 

activity of populations of neurons in the brain (Fig. 1a) is modified in a particular 

manner to drive improved behavior17–29. We also know that while animals perform a 

task, neural activity undergoes internal state fluctuations that are not directly related to 

task performance4,12,30–34. Depending on the task goals, changes in internal state have 

the potential to make some learning-related neural changes easier to achieve, while other 

changes may be made more difficult (Fig. 1a). When changes due to internal state 

are incongruous with learning, how do neural populations modify their activity to drive 

improved behavior? One possibility is that the internal state fluctuations that make learning 

more difficult might be suppressed. Alternatively, the impact of internal state fluctuations on 

learning may be unavoidable, such that some task goals are harder to achieve than others.
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Answering this question is challenging because the causal relationship between neural 

activity and behavior is not known in general. This makes it difficult to understand which 

changes to neural activity would yield improved performance, as well as how fluctuations in 

internal state would either interfere or augment that performance. To address this difficulty, 

we can leverage a brain–computer interface (BCI)35–38, where the causal relationship, or 

‘mapping,’ between neural activity and behavior is known exactly and determined by the 

experimenter.

We trained three rhesus monkeys to modulate the activity of ~90 units in primary motor 

cortex (M1) to move a computer cursor on a screen using a BCI23. In previous work, we 

compared the neural population activity before versus after monkeys learned to use a new 

BCI mapping26,39. Here we study how neural activity changes throughout learning, and the 

degree to which these changes are influenced by fluctuations in the monkey’s internal state.

We first identified the dimensions of the largest fluctuations in M1 population activity. 

Surprisingly, abrupt changes in population activity along these dimensions were triggered by 

changes in various aspects of the task, ranging from brief pauses in the task to perturbations 

of the BCI mapping. Furthermore, trial-to-trial changes in population activity along these 

dimensions were correlated with changes in the monkey’s pupil size. These observations 

suggested that changes in population activity along these dimensions could be related to the 

monkey’s arousal, engagement with the task or motivation throughout the experiment. For 

this reason, we termed these dimensions ‘neural engagement’ axes.

To induce learning, we perturbed the mapping between neural activity and cursor 

movements, requiring monkeys to modify the neural activity they produced, so as to restore 

proficient control of the cursor toward each target23. This allowed us to study how changes 

in activity along neural engagement axes interacted with learning. We found that neural 

population activity did not take a direct path from the activity produced before learning 

to the activity produced at the end of learning. In particular, neural activity changed 

abruptly along the neural engagement axes at the start of learning. This change occurred 

regardless of the relationship between neural engagement axes and cursor movements, 

which led to an immediate improvement in behavioral performance for some targets and 

impaired performance for others. Following the abrupt change, neural activity retreated 

along neural engagement axes, which impacted performance differently for different targets. 

These findings enabled us to predict which targets would be learned more quickly than 

others, based on how neural engagement interacted with the demands of the learning task. 

Our results suggest that changes in internal states, even those seemingly unrelated to goal-

seeking behavior, can influence how behavior improves with learning.

Results

To understand how changes in internal state might interact with learning (Fig. 1a), we 

studied three monkeys performing an eight-target center-out task using a BCI (Fig. 1b 

and Methods). On each trial, monkeys controlled a computer cursor by modulating neural 

activity recorded from primary motor cortex (M1). The relationship between the recorded 

neural activity and cursor velocity was specified by the BCI mapping. In each experimental 
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session, monkeys used two different BCI mappings (Fig. 1c). During the first block of trials, 

monkeys used an ‘intuitive’ BCI mapping, calibrated so as to provide the monkey with 

proficient control of the cursor. After monkeys performed the task for a few hundred trials 

using the intuitive mapping, we changed the mapping between neural activity and cursor 

movement to a new BCI mapping that the monkey had not used before. This new BCI 

mapping (a ‘within-manifold’ perturbation (WMP)23) was typically learned within 1–2 h.

Before each experiment, we applied factor analysis to identify the top ten dimensions, or 

factors, capturing the most covariability of the neural population activity. The BCI mappings 

presented during each experiment were chosen such that the cursor velocity was determined 

by only these top ten factors. To ensure that our results captured changes in neural activity 

describing substantial covariance in the population, we analyzed neural activity only in these 

factors.

Internal state fluctuations in primary motor cortex.

We first show that the neural population activity shifted abruptly in response to salient, 

experimenter-controlled events. We observed that, while monkeys used the intuitive 

mapping, the neural activity produced for a given target showed substantial trial-to-trial 

variability (Fig. 2a). We found the direction of greatest variance of the neural activity for 

each target (Fig. 2a). Surprisingly, later in the session when the new BCI mapping was 

introduced, neural activity on the first trial to a given target showed an abrupt change from 

the neural activity produced during block 1, with this change occurring almost directly 

along the axis identified earlier (Fig. 2b). Interestingly, on subsequent trials, neural activity 

gradually retreated down this same axis (Fig. 2b).

To quantify how these trial-to-trial changes in neural activity progressed throughout the 

experiment (Fig. 2c), we identified the axis of greatest variability during block 1 for each 

target separately (for example, the orange axis in Fig. 2a,b), and projected the neural activity 

for each trial along the appropriate target-specific axis. To compare these values across trials 

to different targets, we normalized the projected values for each target separately (Methods). 

This yielded a trial-by-trial measure we call neural engagement, for reasons we discuss 

below.

Neural engagement abruptly increased and gradually decreased following various 

experimental events, beyond just the introduction of the new BCI mapping (Fig. 2d). For 

example, neural engagement was initially elevated on the first trials of the experiment, and 

then gradually decreased on later trials (Fig. 2d). Next, near the middle of block 1, the 

experimenter would pause the experiment for a few minutes to choose the BCI mapping 

that would be introduced in the upcoming block 2. Following these pauses (Fig. 2d), neural 

engagement increased, and then gradually subsided. Finally, a few minutes later when the 

experimenter seamlessly introduced the new BCI mapping (without pausing the experiment), 

neural engagement again abruptly increased and gradually subsided on subsequent trials 

(Fig. 2d). The ensuing time course of neural engagement was similar following all three 

of these experimenter-controlled events, indicating that the changes in neural engagement 

during block 2 were not due simply to the monkey trying to learn the new BCI mapping. 

These changes were not specific to the particular BCI mappings used during a given 
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session, as we observed similar neural changes across multiple sessions from all three 

monkeys (Extended Data Fig. 1). Nor could the abrupt increases in neural engagement be 

explained by hand movements, as monkeys showed little to no hand movements during 

these experiments, and no increase in hand speeds when the new BCI mapping was 

introduced (Extended Data Fig. 2). Rather, these changes in neural activity appeared to 

reflect stereotyped changes in the monkey’s internal state during the experiment, and could 

reflect changes in arousal8, engagement with the task5 or motivation14. While the specific 

source of these changes is as yet unknown (Discussion), these changes have important 

consequences for learning, as we discuss below.

Two additional aspects of neural engagement were consistent with it reflecting variations 

in the monkey’s internal state. First, when averaged across trials from all sessions, neural 

engagement showed a consistent time course following each experimental event (Fig. 2e). 

These changes in neural engagement appeared not only while the monkeys controlled the 

cursor, but also during the beginning of each trial before the monkey had seen the visual 

target (Fig. 2e). Thus, neural engagement remained elevated even when the monkey was 

not actively performing the task, consistent with this signal reflecting a slowly varying 

change in the monkey’s internal state. Second, changes in an organism’s internal state 

are typically correlated with changes in its pupil size2. On trials with elevated levels of 

neural engagement, the pupil was typically more dilated (Extended Data Fig. 3), suggesting 

that neural engagement may be correlated with an arousal-like state. In agreement with 

this, we found that trial-to-trial fluctuations in neural engagement were often strikingly 

positively correlated with the monkey’s pupil size (Fig. 2f). For the majority of sessions 

from all three monkeys, trial-to-trial changes in neural engagement and pupil size were 

positively correlated (Fig. 2g), with a median Pearson’s correlation across sessions of ρ = 

0.27 (bootstrapped 95% confidence interval (CI; 0.15, 0.40), n = 44 sessions), similar to 

levels observed in other work12.

Changes in activity along the neural engagement axes accounted for a substantial amount 

of the covariance of the population activity. When considering population activity during 

block 1 across trials to all eight targets—and thus also including the across-target variance 

in neural activity due to the monkey aiming toward different targets—changes in neural 

engagement explained ~30% of the total trial-to-trial variance of the factor activity (Fig. 2h). 

Within trials to the same target, changes along the neural engagement axis explained ~60% 

of the trial-to-trial variance (Fig. 2h). These results indicate that the trial-to-trial changes in 

population activity along the neural engagement axes were substantial.

To assess whether similar changes in neural engagement were present during arm 

movements (as opposed to BCI control), we analyzed data from a fourth monkey who 

performed an eight-target center-out task using hand control of a computer cursor (Fig. 2i 

and Methods). As with the BCI experiments, we identified a set of neural engagement axes 

in the population activity after applying factor analysis. We found that neural engagement 

was elevated both at the beginning of each experiment, and following the introduction of a 

visuomotor rotation (Fig. 2j), with a time course that was strikingly similar to that of BCI 

control (Fig. 2e). Taken together, we found that neural population activity in M1 during both 

BCI and hand control showed large, trial-to-trial variations with a consistent time course 
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relative to experimental events. Next, we focused on BCI control, where we know the causal 

relationship between neural activity and behavior. This enabled us to directly assess how 

changes in neural engagement relate to behavior (that is, cursor velocities).

Studying the impact of changes in neural engagement on behavior using a BCI paradigm.

Having established the presence of large fluctuations in neural engagement in M1, we next 

sought to understand how these fluctuations might interact with learning. Specifically, we 

asked whether the monkey’s ability to learn to move the cursor in a given direction with 

the new BCI mapping could be understood in terms of the relationship between the neural 

engagement axes and the new mapping.

First, we explain how a BCI paradigm allows us to quantify the interaction between neural 

engagement and behavior (that is, cursor velocities). Consider a schematic of the neural 

activity produced by the monkey during block 1 (Fig. 3a). For a given target, we can 

summarize the monkey’s trial-averaged neural activity as a point in neural space (z), where 

here we depict the neural activity in the three factor dimensions of highest variance. The 

cursor velocity under the intuitive BCI mapping (v) is given by projecting the neural activity 

onto the intuitive BCI mapping (v = M1z). During block 1, the monkey’s trial-averaged 

cursor velocities were near the target direction (Fig. 3b), indicating the monkey’s ability to 

produce cursor movements that moved the cursor toward the target on average. We can also 

characterize the effect of an increase in neural engagement on cursor velocities by projecting 

the neural engagement axis (Fig. 3a) onto the intuitive BCI mapping (Fig. 3b). For this 

target, increasing neural engagement increases cursor speeds toward the target.

Next, consider the first trial of block 2, when the monkey first encounters the new BCI 

mapping. If the monkey were to continue to produce the same average neural activity as 

in block 1 (Fig. 3a), this would no longer result in cursor movements straight to the target 

(Fig. 3c). Thus, the monkey must learn how to modify the neural activity produced in order 

to make faster cursor speeds in the target direction. Importantly, the new BCI mapping also 

changes the manner in which neural engagement relates to cursor velocity. For this target, 

increasing neural engagement would move the cursor velocities even further from the target 

direction (Fig. 3c). In this manner, changes in neural engagement can interact with the 

monkey’s attempts to move the cursor toward the target.

We can gain a more holistic picture of the interaction between neural engagement and cursor 

velocities by visualizing the neural activity produced for all eight targets together (Fig. 

3d). We observed that, when visualized in factor space (Fig. 3d), the neural engagement 

axes identified for different targets often appeared quite similar. In fact, neural engagement 

axes were almost always consistent with the firing rates of all neural units changing in the 

same direction (Extended Data Fig. 4). Increases in neural engagement corresponded to 

increased average firing rates in nearly all units, in a gain-like manner (Extended Data Fig. 

5). However, while the neural engagement axes for different targets were similar in terms 

of how they related to single-unit firing rates, these axes also showed behaviorally relevant 

differences. For example, under the intuitive BCI mapping, increases in neural engagement 

typically led to faster speeds toward each target (Fig. 3e), which could not happen if the 

neural engagement axes were identical for all targets. A similar feature was also present 
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during arm movements: By identifying the linear mapping of neural population activity 

most predictive of ensuing hand velocities, we found that increases in neural engagement 

typically predicted faster hand speeds toward each target (Extended Data Fig. 6). Thus, 

the orientation of the neural engagement axis in population activity space depends on the 

monkey’s intended movement direction.

Finally, focus on the velocities under the new BCI mapping (Fig. 3f), as this indicates 

the initial cursor velocities the monkey would expect to produce during block 2, were 

the monkey to continue producing the same activity as during block 1. As discussed 

above, neural engagement can have different effects on cursor velocities depending on the 

monkey’s intended movement direction. For example, increased neural engagement may 

increase cursor speeds toward some targets (for example, the purple target in Fig. 3f) and 

decrease speeds toward other targets (for example, the pink target in Fig. 3b). Additionally, 

increased neural engagement can affect not just the speed but also the angular error of the 

velocity relative to the target direction (for example, the red and yellow targets in Fig. 3f). 

Overall, we observed that the new BCI mappings induced a variety of different relationships 

between neural engagement and cursor velocity, both across sessions and within targets of 

the same session (Extended Data Fig. 7). Thus, these experiments provided us with the 

means to assess how different relationships between neural engagement and cursor velocity 

related to how each target was learned.

Neural engagement increased initially regardless of its impact on performance.

To study how changes in neural engagement might interact with learning, we first 

characterized the level of neural engagement on the first trial to each target using the new 

BCI mapping. As shown earlier, the monkeys’ initial reaction to the introduction of the 

new mapping was, on average, to increase neural activity along the neural engagement axis 

(Fig. 2e). However, as we have also shown, there are a variety of ways in which the neural 

engagement axes affected velocities under the second mapping (Extended Data Fig. 7). This 

raises the possibility that neural engagement might have increased by different amounts 

depending on whether increasing neural engagement was expected to increase (Fig. 4a) or 

decrease (Fig. 4b) the speed of the cursor toward the target under the new mapping.

We anticipated that neural engagement might increase more for targets where doing so 

would increase cursor speeds toward the target. To assess whether this was the case, for each 

target, we used the trial-averaged activity from block 1 to estimate the expected velocity 

under the new mapping, as well as the expected impact on that velocity if neural engagement 

increased (Fig. 4a,b). We then classified each target as belonging to one of two groups, 

based on whether an increase in neural engagement was expected to increase (T +; Fig. 

4a) or decrease (T −; Fig. 4b) the speed of the cursor toward the target direction. We next 

assessed the levels of neural engagement on the first trial to each target in block 2. Across 

targets from all sessions, the distribution of neural engagement on the first trial using the 

new mapping did not differ as a function of how performance for that target was impacted 

(Fig. 4c; p = 0.954, two-sample Kolmogorov–Smirnov test, n1 = 220 and n2 = 148 targets). 

This indicates that initially, neural activity increased along the neural engagement axes even 

when doing so negatively impacted task performance. As a result, the initial increase in 
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neural engagement made T− targets more difficult than they would have been otherwise 

(relative to the average neural activity produced during block 1), while T+ targets were made 

easier.

Differences in learning across targets can be explained by changes in neural engagement.

We saw that changes in neural engagement on the first trials using the new BCI mapping 

occurred regardless of the impact on performance. We wondered whether, given repeated 

practice with the new mapping over subsequent trials, changes in neural engagement might 

interact with learning-driven changes for each type of target.

We visualized how cursor velocities under the second mapping changed throughout learning, 

as a function of whether the initial increase in neural engagement increased (T+) or 

decreased (T−) the speed of the cursor toward the target (Fig. 5a,b). For both types of 

targets, neural activity on the first trial jumped out abruptly along the neural engagement 

axis (Fig. 5a,b). Then, over tens of trials, velocities gradually aligned with the target 

direction, leading to increased speeds toward the target (Fig. 5a,b). Were these behaviorally 

beneficial changes to velocity driven by target-specific changes in neural engagement? We 

measured the levels of neural engagement for each target during block 2 after accounting 

for any changes due to learning by neural reassociation26 (Methods). In agreement with 

what we observed earlier (Fig. 2e), we found that neural engagement gradually decreased 

throughout block 2 (Fig. 5c). Importantly, this decrease in neural engagement was likely 

beneficial to T− targets, the ones initially impaired by the increase in neural engagement. 

In fact, neural engagement decreased more for T− targets than for T+ targets (Fig. 5c). 

These target-specific differences in neural engagement could not be explained by differences 

in the animal’s arousal, as the average time course of pupil size did not differ between 

T+ and T− targets (Fig. 5d). These results suggest that, as learning proceeded, changes 

along the neural engagement axis were driven by two components: one target-invariant 

(because neural engagement decreased throughout learning for both target types), and one 

target-specific (because neural engagement decreased by different amounts depending on 

the target type). This led us to ask whether these differential changes in neural engagement 

might explain how quickly the two types of targets were learned.

To quantify the amount of learning for each target, we measured cursor speeds toward the 

target relative to the speeds that the monkeys would experience if they continued to use the 

neural activity they produced before the introduction of the new BCI mapping (Fig. 5e and 

Methods). On the first trial of block 2, the cursor speed toward the target increased for T+ 

targets and decreased for T− targets (Fig. 5e; trial 1). This is in agreement with monkeys 

immediately increasing neural engagement at the start of block 2, regardless of its impact 

on performance (Fig. 4c). As block 2 continued, performance for both target types gradually 

improved (Fig. 5e; trials 1–75), indicating learning.

Interestingly, the monkeys reached peak performance more quickly for T+ targets than for 

T− targets (p = 1.259 × 10−4, two-sided Wilcoxon rank-sum test, n1 = 220 and n2 = 148 

targets; Fig. 5f and Extended Data Fig. 8). This was not due to a difference in learning 

rate, as the learning rates for the two target types were not statistically different (p = 0.202, 

two-sided Wilcoxon rank-sum test, n1 = 220 and n2 = 148 targets; Methods). Additionally, 

Hennig et al. Page 8

Nat Neurosci. Author manuscript; available in PMC 2023 January 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



performance levels at the end of block 2 for the two target types were not statistically 

different (p = 0.884, two-sided Wilcoxon rank-sum test, n1 = 220 and n2 = 148 targets). 

Other groupings of targets agnostic to neural engagement did not predict differences in how 

quickly targets reached peak performance (Extended Data Fig. 9). Overall, these results 

suggest that, although performance at the end of learning was similar for T+ and T− targets, 

the initial increase in neural engagement gave performance for T+ targets a head start, 

allowing the monkeys to reach peak performance levels for these targets more quickly. This 

explanation is at apparent odds with the fact that neural engagement decreased throughout 

learning for both target types (Fig. 5c), which should have led to slower cursor speeds for the 

T+ targets. Next, we explore how the initial performance improvements for T+ targets were 

maintained even as neural engagement decreased throughout learning.

Neural engagement changed differently in neural dimensions aligned with the new BCI 
mapping.

Based on the relationship between neural engagement and cursor speed, one might expect 

that the gradual decrease in neural engagement (Fig. 5c) should have resulted in gradually 

slower cursor speeds for T+ targets. But in Fig. 5e, one can see that performance for T+ 

targets actually increased over time. How is this possible? Crucially, our measurement of 

neural engagement did not account for which changes in neural engagement affect cursor 

movements, and which changes do not affect cursor movements. We therefore decomposed 

each neural engagement axis into two components (Fig. 6a and Methods), where the first 

component was output-null to the new BCI mapping (that is, changes in this direction 

would not impact cursor velocities under the new mapping), and the other component 

was output-potent39–41. This resulted in measures of output-null and output-potent neural 

engagement, which allowed us to look specifically at whether neural engagement changed 

differently depending on whether it impacted cursor movements. Changes along the output-

null component of the neural engagement axis had no impact on cursor velocities (Fig. 

6b), and followed the same pattern as the total neural engagement (Fig. 5c). By contrast, 

changes along the output-potent component of the neural engagement axis moved in the 

directions necessary to yield performance improvements for each target type (Fig. 6c). 

In particular, neural population activity for T+ targets remained elevated along the output-

potent component of the neural engagement axis, where performance was initially improved 

by the increase in neural engagement (Fig. 6c). This indicates that the net decrease in total 

neural engagement throughout learning was not entirely agnostic to task performance, as 

neural activity remained elevated specifically in the neural dimensions that were relevant to 

controlling the cursor.

Taken together, these results explain how the monkeys reached peak performance more 

quickly for some targets than for others, based on the relationship between neural 

engagement and cursor movements (Fig. 6d). On the first trial of block 2, neural activity 

increased along the neural engagement axis, regardless of its impact on performance (Fig. 

6d). This led to immediate performance improvements for T+ targets and decrements for 

T− targets (Fig. 5e; trial 1). As the trials continued, neural activity gradually decreased 

along the neural engagement axis for both target types (Fig. 6d). For T− targets, this 

decrease in neural engagement was beneficial to performance, yielding progressively faster 
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cursor speeds toward the target. For these targets, neural activity decreased similarly along 

the components of the neural engagement axis that were output-potent and output-null to 

cursor velocities under the new BCI mapping (Fig. 6d). By contrast, for T+ targets, neural 

activity decreased along the output-null components of the neural engagement axis, but 

maintained the initial increase in the output-potent components (Fig. 6d). This allowed the 

immediate performance improvements from the increase in neural engagement on trial 1 to 

be maintained, even as total neural engagement decreased. As a result, the monkeys reached 

peak performance more quickly for T+ targets than for T− targets.

These results indicate that during learning, neural population activity did not change 

gradually from the activity observed before learning to the activity at the end of learning 

(Fig. 6d). Rather, neural population activity underwent an abrupt change at the start of 

learning, improving performance for some targets and impairing performance for others. 

While the performance levels at the end of learning were similar for both target types (Fig. 

5e), the path along which neural population activity changed to achieve this performance 

was quite different (Fig. 6d). These findings help to explain why some targets were learned 

more quickly than others.

Discussion

We have shown that large, trial-to-trial fluctuations in M1 population activity along neural 

engagement axes exhibit hallmarks of an arousal- or motivation-like process. On the first 

trials that monkeys used a new BCI mapping, neural activity increased abruptly along neural 

engagement axes, regardless of the effect on behavioral performance. On subsequent trials, 

neural activity retreated along neural engagement axes, impacting monkeys’ performance 

using the new BCI mapping. The way that neural engagement axes related to behavior 

allowed us to predict which targets would be learned more quickly than others. Our findings 

indicate that (1) changes in neural activity during learning need not be a gradual transition 

between the activity produced before learning and the activity produced at the end of 

learning, and (2) changes in internal states seemingly unrelated to goal-seeking behavior can 

systematically influence how behavioral performance improves with learning.

In this study, we found that trial-to-trial changes in neural engagement were positively 

correlated with changes in the monkey’s pupil size, a common psychophysical index for 

an animal’s internal state2. The term ‘internal state’ is used broadly, but typically refers 

to any neural signal that does not directly reflect, but may interact with, sensory encoding 

or behavior generation2. This includes internal states related to computation (for example, 

internal models42, reward prediction43 and working memory44), as well as those reflective 

of more autonomic processes (for example, arousal8, motivation14 and task engagement5). 

We have termed the internal state identified in the present work ‘neural engagement’ because 

its stereotyped time course was suggestive of changes in the monkey’s engagement with 

the task throughout the experiment (for example, increases in neural engagement following 

pauses in the experiment and the introduction of a new BCI mapping). This is likely distinct 

from the concept of task engagement5, which refers to the difference between an animal 

actively performing a task versus passive sensory stimulation. Our results add to a growing 

Hennig et al. Page 10

Nat Neurosci. Author manuscript; available in PMC 2023 January 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



line of work finding that there are large, systematic changes in M1 activity that are not 

related on a moment-by-moment basis to movement kinematics45,46.

While our current study design does not allow us to identify the exact source of changes 

in neural engagement, here we briefly consider multiple possibilities and how they might 

explain (or fail to explain) the results in the present work. First, we observed that increased 

neural engagement predicted increased hand speed toward the target (Extended Data Fig. 

6), suggesting that neural engagement may simply reflect the monkey’s intended movement 

speed. However, this seems unlikely given that neural engagement decreased over time even 

for T+ targets, which would decrease reward rate. Thus, neural engagement is likely not 

directly related to the monkey’s intended movement speed. Second, neural engagement may 

reflect a default motor response such as muscle co-contraction. Co-contraction is thought 

to be a default strategy for reducing kinematic errors early in learning47. However, we 

also observed an increase in neural engagement following pauses during block 1 (Fig. 2e), 

when there were no unexpected kinematic errors to correct. Thus, if neural engagement 

does reflect a default motor response such as co-contraction, this response may be the 

manifestation in motor cortex of an uncertainty- or arousal-driven response, rather than a 

response to kinematic errors. Finally, neural engagement may reflect changes in animals’ 

arousal, as indicated by its correlation with pupil diameter. We speculate that neural 

engagement may have a similar origin as the ‘neural drift’ identified in V4 and prefrontal 

cortex12.

How might neural engagement impact learning? We found that neural engagement increased 

abruptly early in learning, and then gradually decreased on subsequent trials, regardless 

of its impact on behavior. We can imagine two mechanisms by which these stereotyped 

changes in neural engagement might impact the learning process. First, modifying one’s 

future behavior to improve performance requires feedback. Thus, whenever changes in 

neural engagement directly impact behavior (that is, BCI cursor movements), this will also 

impact the monkeys’ feedback about their performance, which will necessarily influence 

the learning process. This is likely to be the case during arm movements as well, as we 

found that changes in neural engagement were related to hand speeds during hand control 

experiments (Extended Data Fig. 6). A second, not mutually exclusive possibility is that 

neural engagement may influence which neural activity patterns the monkey returns to on 

later trials via a reinforcement-like process25. For example, early in learning when levels of 

neural engagement were higher, animals produced neural activity patterns with an increased 

likelihood of reward for T+ (as compared to T−) targets. If neural activity patterns are more 

likely to be revisited when they lead to higher rewards, then the animals may revisit these 

same neural activity patterns on later trials for T+ targets. This could explain why T+ targets 

were learned more quickly than T− targets.

Previous work has observed an increase in neural variability early in learning48. It was 

proposed that this increased variability may allow the brain to improve behavior by 

exploring new neural activity patterns. Our results confirm this observation, and may offer a 

new interpretation. We found that increased neural engagement corresponded with increased 

modulation depths and neural variability in most individual neural units (Extended Data 

Fig. 5), consistent with findings of increased neural variability at the beginning of learning 
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in previous studies48. If changes in neural activity at the beginning of learning are indeed 

related to an exploratory drive, our results suggest that this process may not be a general 

exploratory process (that is, an increase in variability without changing the mean), but rather 

a stereotyped exploration process (that is, neural activity moves in a particular direction 

along neural engagement dimensions, which also results in more variability). Importantly, 

we found that neural engagement (and thus, neural variability) also increased even in the 

absence of learning (that is, following pauses in block 1). This raises the possibility that the 

changes in neural variability observed during learning in previous work may be driven by 

different internal states—not only by an exploratory drive, but also by internal states that 

reflect the animal’s arousal or uncertainty about its environment. Future work is needed to 

disentangle the effects of these diverse sources of variability in neural population activity, all 

of which may impact behavior, and thus learning.

Overall, our results add to a growing body of work finding population-level signatures 

of internal state fluctuations3,4,12,33,34,49,50. Changes in internal state can influence on 

a moment-by-moment basis how we perceive a sensory stimulus (for example, through 

attention), or how we execute a movement (for example, through vigor). Building upon these 

previous studies, we found that changes in internal state can influence how behavior evolves 

during learning. Thus, internal state fluctuations can influence not only concurrent behavior, 

but also future behavior through their interaction with the learning process.

Methods

Experimental details.

Experimental methods are described in detail in previous work23,26. Briefly, we recorded 

from the proximal arm region of primary motor cortex (M1) in three male rhesus macaques 

(Maccaca mulatta; ages: monkey J, 7 years; monkey L, 8 years; monkey N, 7 years) using 

implanted 96-electrode arrays (Blackrock Microsystems). Data collection was performed 

using LabVIEW (2012–2014) and MATLAB (2011b–2015a). All animal care and handling 

procedures conformed to the National Institutes of Health (NIH) Guidelines for the Care and 

Use of Laboratory Animals and were approved by the University of Pittsburgh’s Institutional 

Animal Care and Use Committee. We recorded from 85 to 94 neural units in each session. 

The activity of each neural unit is defined as the number of threshold crossings recorded by 

an electrode in nonoverlapping 45-ms bins. The average firing rate of the neural units across 

sessions was 46 ± 7, 38 ± 8 and 56 ± 13 spikes per second (mean ± s.d.) for monkeys J, L 

and N, respectively.

During each experimental session, monkeys performed an eight-target center-out task by 

modulating their recorded neural activity to control the velocity of a computer cursor on a 

screen. Each session involved two different BCI mappings. The first ‘intuitive’ mapping was 

chosen to provide the monkey with proficient control of the cursor. The animal used the 

intuitive mapping for 321 ± 96 trials (mean ± s.d.), after which the mapping was switched 

abruptly to a second, new BCI mapping that the monkey had never controlled before. This 

new mapping was chosen so as to be initially difficult for the monkey to use, and the 

monkey was given 698 ± 227 trials (mean ± s.d.) to learn the new mapping. Both BCI 

mappings were chosen so that they were controlled exclusively by the neural activity within 
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the monkey’s intrinsic manifold (defined below). During the BCI task, each animal’s arms 

were loosely restrained. We monitored hand movements using an LED marker (PhaseSpace) 

on the hand contralateral to the recording array. During BCI control, animals showed little to 

no arm movements23 (Extended Data Fig. 2).

At the beginning of each trial, a cursor appeared in the center of the workspace, followed by 

the appearance of one of eight possible peripheral targets (chosen pseudorandomly among 

θ ∈ {0°, 45°, 90°, 135°, 180°, 225°, 270° and 315°}). For the first 300 ms of the trial, the 

velocity of the cursor was fixed at zero. After this, the velocity of the cursor was controlled 

by the animal through the BCI mapping. If the animals acquired the peripheral target with 

the cursor within 7.5 s, they received a water reward, and the next trial began 200 ms after 

target acquisition. Otherwise, the trial ended, and animals were given a 1.5-s time-out before 

the start of the next trial.

During all experiments, we monitored the monkey’s pupil diameter (a.u.) using an infrared 

eye tracking system (EyeLink 1000; SR Research). The eye tracker was first turned on while 

monkeys used the intuitive mapping, but this time varied from session to session. Pupil 

diameter was always measured while monkeys controlled the new BCI mapping.

Defining the BCI mappings.—Each session began with the monkey performing a block 

of calibration trials, as described in previous work23. Using these calibration trials, we 

z-scored the spike counts separately for each neural unit. We then applied factor analysis 

(FA) to the z-scored spike counts to identify the 10D linear subspace (that is, the ‘intrinsic 

manifold’) that captured dominant patterns of co-modulation across neural units31,48,51–54. 

We used ten factors (that is, dimensions), as this was the average dimensionality identified 

by cross-validation across experiments from monkeys J and L23. In fact, we used exactly the 

same FA model and 10D latent factors that were found during the experiment to drive the 

BCI cursor (see below).

The factor activity, zt ∈ ℝ10 × 1, was estimated as the posterior expectation given the z-scored 

spike counts, yt ∈ ℝq × 1, where q is the number of neural units, as given by equation (1):

zt = L⊤ LL⊤ + Ψ −1 yt − d (1)

Above, L, Ψ and d are FA parameters estimated using the expectation–maximization 

algorithm, where L is termed the loading matrix, and Ψ is constrained to be a diagonal 

matrix. The factor activity, zt, can be interpreted as a weighted combination of the activity 

of different neural units. Before analysis, we orthonormalized zt so that it had units of spike 

counts per time bin39,55. We refer to zt as a ‘population activity pattern.’

As discussed above, each experiment consisted of animals using two different BCI 

mappings. Each BCI mapping translated the resulting moment-by-moment factor activity 

(zt) into a two-dimensional (2D) cursor velocity (vt) using a Kalman filter represented by 

equation (2):
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vt = Avt − 1 + Mzt + c (2)

For the intuitive BCI mapping, A ∈ ℝ2 × 2, M = M1 ∈ ℝ2 × 10 and c ∈ ℝ2 × 1 were computed 

from the Kalman filter parameters, estimated using the calibration trials. For the second, 

new BCI mapping, we changed the relationship between population activity and cursor 

movement by randomly permuting the elements of zt before applying equation (2). This 

permutation procedure can be formulated so that equation (2) still applies to the second BCI 

mapping, but for a new matrix M2 ∈ ℝ2 × 10 used in place of M1 (ref.23).

Hand control experiments.—Data were collected from a fourth monkey (monkey G) for 

three sessions. During these experiments, the monkey performed an eight-target center-out 

task using hand movement to control a computer cursor. An infrared marker was taped to 

the back of the monkey’s hand and tracked optically using an Optotrak 3020 system. The 

marker position was used to update the position of the cursor in real time on a stereoscopic 

computer monitor. During these experiments, we recorded from the proximal arm region of 

M1 using an implanted 96-electrode array (Blackrock Microsystems).

Similarly to the BCI control experiments, the targets shown on each trial were chosen 

pseudorandomly. At the beginning of each trial, a target (sphere; radius of 6 mm) was 

presented in the center of the reaching workspace. The animal was trained to move the 

cursor (sphere; radius of 6 mm) to this start target and hold for 0–100 ms. A peripheral target 

(sphere; radius of 6 mm) was presented at the end of this hold period. Water reward was 

delivered if the target was acquired within 1.5 s and the cursor was held on the target for a 

random hold period drawn uniformly from 150–550 ms. The next trial was initiated 200 ms 

after the trial ended, regardless of success or failure. The data analyzed included 160 trials 

of baseline center-out trials, where the marker position was directly mapped to the cursor 

position, followed by 320 trials where a visuomotor rotation was applied to all reaches (40° 

CW, 40° CCW and 30° CW for the three sessions, respectively).

To match the analysis procedure used in the BCI experiments, we took spike counts in 

nonoverlapping 50-ms bins, and z-scored the spike counts using the mean and standard 

deviation of each neural unit during baseline reaches. We then applied FA to the z-scored 

spike counts recorded during all baseline reaches to identify a 12D linear subspace, where 

12 was the number of dimensions that maximized the cross-validated log likelihood. We 

then orthonormalized the resulting 12D factor activity. All analyses of population activity 

considered only these top 12 factors.

Data analysis.

Session and trial selection.—The data analyzed in this study were part of a larger 

study involving learning two different types of BCI mapping changes: WMPs, described 

above, and outside-manifold perturbations (OMPs)23. We found that animals learned WMPs 

better than OMPs, and so we only considered WMP sessions in this study. We analyzed 

all sessions regardless of whether animals showed learning. For consistency, we excluded 

two sessions where the WMP was not the first perturbation shown during that experiment. 
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In total, we analyzed 46 WMP sessions (monkey J: 25 sessions; monkey L: 10 sessions; 

monkey N: 11 sessions). No statistical method was used to predetermine sample sizes but 

our sample sizes are similar to those reported in previous publications12,26,29,39.

In the BCI experiments, spike counts were taken in nonoverlapping 45-ms bins 

(‘timesteps’), indexed here by j = 1, …, J, where J is the number of timesteps in a given 

trial, and j = 1 is the timestep where the target first appeared. Each trial consisted of three 

intervals of interest: (1) the pre-target interval (j ≤ 2, or 90 ms), during which the monkey 

had not yet perceived the target due to sensory processing delays; (2) the freeze interval (j 
≤ 6), during which the cursor was frozen in place at the center of the workspace; and (3) 

the cursor control interval (j ≥ 7), where the cursor velocity was determined by equation (2). 

Unless otherwise noted, all analyses used data only during the cursor control interval.

We noted that when the cursor was near the target, or at the end of long trials, cursor 

movements were often idiosyncratic (for example, reflecting small corrective movements), 

and so we discarded from our analyses any timesteps where the cursor was more than 

65% of the way to the target, and any timesteps j > 20. To report trial-averaged quantities, 

we aimed to ensure that all neural activity within the same trial came from timesteps 

where the monkey attempted to push the cursor in the same direction. This was especially 

important given that we compared the time course of neural engagement during learning 

on a target-by-target basis (Figs. 4–6). We therefore analyzed only the timesteps where the 

angle between the cursor and target was within 22.5° of the target direction on that trial. 

Performing our analyses without this exclusion criterion did not change our results.

We analyzed both correct and incorrect trials in this study. We reasoned that sufficiently 

large increases in neural engagement (for example, on the first trial using the new BCI 

mapping) may slow down the cursor’s speed to the extent that the monkey is unable to 

obtain the target. Removing incorrect trials would then bias any analyses that compare levels 

of neural engagement between targets whose performance was improved versus impaired by 

neural engagement (Figs. 4–6). We did, however, remove trials where the monkey appeared 

to quit the task, by removing any sequence of more than five consecutive incorrect trials that 

occurred following at least one correct trial during block 2. This occurred in only 11 of 46 

sessions, resulting in the removal of 0.71% of trials. All results were qualitatively similar 

without this exclusion criterion.

For the hand control experiments, we analyzed data from the 15 timesteps of each trial 

immediately following the appearance of the target (which cued the monkey to begin hand 

movement toward the target).

Quantifying behavioral performance.—To quantify the monkey’s moment-by-moment 

performance, we calculated the speed of the cursor in the target direction (that is, cursor 

progress26). To do this, we first calculated the ‘single timestep’ cursor velocity according to 

equation (3):

vj
single−timestep  = M2zj + c (3)
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where zj is the neural activity produced at timestep j, and M2 and c are the new BCI 

mapping parameters (equation (2)). The cursor’s speed toward the target, sj, is then given by 

equation (4):

sj = vj
single−timestep  ⊤pj (4)

where pj is a unit vector pointing from the cursor position at timestep j to the target position. 

Assessing performance in this manner ensured that our measures of neural engagement and 

performance (Fig. 5) were both assessed using precisely the same neural activity, and at the 

same resolution (that is, every timestep).

Changes in performance during block 2 (Fig. 5e) were calculated as follows. Let sθ(t) be 

the average of sj for all timesteps j from the tth trial to target θ. Let sθ(0) be the expected 

speed to the target under the new BCI mapping before learning begins, given by projecting 

the monkey’s trial-averaged neural activity to the same target during block 1 into the new 

BCI mapping (that is, using equations (3) and (4)). For each t, Fig. 5e depicts Δsθ(t) = sθ(t) − 

sθ(0) averaged across all targets in the same group (for example, all T+ targets).

To find the trial at which performance for each target θ reached its peak (Fig. 5f), we first 

found the running mean of Δsθ(t) in a sliding eight-trial window. Let Δsθ(t) be the resulting 

running mean. The trial at which performance for each target θ reached its peak was then arg 

max Δsθ(t).

To test whether performance levels at the end of block 2 differed between T+ and T− targets, 

let Δsθ tθ  be the performance level of target θ at the end of block 2. To assess whether 

learning rates differed between T+ and T− targets, for each θ we fit a saturating exponential 

to sθ(t) with free parameter τ > 0, according to equation (5):

sθ(t) = sθ(1) + sθ tθ − sθ(1) (1 − exp( − (t − 1)/τ)) (5)

where τ is the learning rate, governing how quickly sθ(t) transitions from initial 

performance, sθ(1) (unsmoothed because s changed more quickly early in learning), to 

performance at the end of block 2, sθ tθ . For each target, τ was chosen so as to minimize the 

mean squared error between sθ(t) and sθ(t) for all t.

Identifying neural engagement axes.—For each experimental session (for either BCI 

or hand control), we identified a set of neural engagement axes, capturing the dimension 

along which neural activity varied in the absence of learning pressure (that is, while 

monkeys used the intuitive BCI mapping, or during baseline reaches, respectively) for each 

target θ ∈ {0°, 45°, 90°, 135°, 180°, 225°, 270° and 315°}. Let aθ ∈ ℝ10, with ∥aθ∥ = 1 be 

the neural engagement axis for target θ. We defined aθ as the direction of greatest variance 

in the factor activity recorded during all trials to that target. Identifying this direction in 

the factor activity rather than in the spiking activity ensured that we focused on the shared 

covariance among neural units rather than variance that is independent to each unit.
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We observed that the neural engagement axes involved the activity of nearly all neural units 

changing in the same direction (Extended Data Fig. 4). We therefore chose the sign of aθ 
so that positive values of neural engagement corresponded to increases in the firing rate for 

the majority of units. This allowed us to average across values of neural engagement across 

targets and sessions.

Quantifying neural engagement.—During block 1, we defined the value of neural 

engagement, ej ∈ ℝ, for each timestep j to target θ, as given by equation (6):

ej = zj − zθ
⊤aθ (6)

where zθ is the mean neural activity produced to target θ during block 1. The level of neural 

engagement on trial t was then defined as the average of ej for all timesteps j from trial t.

To compute neural engagement during block 2, we cannot simply use equation (6), because 

some of the changes in neural activity across trials will also be due to learning (for example, 

by neural reassociation26). According to neural reassociation26, to move the cursor in a 

particular direction θ ∈ [0, 2π) during block 2, the monkeys sample the neural population 

activity they used for movements in a potentially different direction θ′ ∈ [0, 2π) during 

block 1. Thus, to estimate neural engagement during block 2 (Figs. 5 and 6), we used the 

following equation (7):

ej = zj − zθj′
⊤aθj′ (7)

where θj′ is no longer necessarily equal to the target direction, θ. We estimated θj′ from 

the neural activity, zj, which is reasonable provided that changes in neural activity due to 

θj and ej are not entirely overlapping. Specifically, θj′ was defined as the direction that the 

cursor would have moved if zj were produced under the intuitive mapping, as changes in 

neural engagement tended to have less effect on the cursor’s movement direction using the 

intuitive mapping. This procedure allowed our estimate of θj′ to vary as the monkey learned 

to control the new BCI mapping, thus accounting for any changes in neural activity due to 

neural reassociation. To compute zθj′ and aθj′ for any continuous value of θt′ ∈ [0, 2π), we used 

a cubic spline to interpolate between the values measured for each θ ∈ {0°, 45°, 90°, 135°, 

180°, 225°, 270° and 315°}.

In the above procedure, the neural engagement axes corresponding to a given θ are assumed 

to be the same during both block 1 and block 2. We confirmed that the neural engagement 

axes estimated before learning (during block 1) and after learning (at the end of block 

2) were similar (Extended Data Fig. 10), indicating that the largest fluctuations in neural 

activity occurred along similar dimensions throughout the experiment.

To compare values of neural engagement across trials to different targets in Fig. 2 and 

Extended Data Fig. 1, we z-scored the neural engagement for each target separately using 

the mean and standard deviation across all trials to each target during block 1. In all other 

figures, neural engagement was z-scored using the mean of the last ten trials to each target 
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during block 1. This was done so that the level of neural engagement on the first trial of 

block 2 was relative to the average level at the end of block 1 (for example, Figs. 4c and 5c).

Comparing neural engagement to pupil size.: For each session, we estimated the trial-by-

trial correlation between neural engagement and the monkey’s pupil size (Fig. 2f,g). To do 

this, we first found the average pupil size and neural engagement during the control interval 

of each trial. Similar to previous work correlating population activity and pupil size12, we 

applied boxcar smoothing to the trial-averaged measurements of each quantity with a sliding 

window of 30 trials, and then computed the Pearson’s correlation between the resulting 

time series. Pupil recordings began partway into block 1 and continued throughout block 2 

(‘Experimental details’). Thus, the analysis shown in Fig. 2g used trials throughout block 2, 

for all sessions where block 2 consisted of at least 200 trials (44 of 46 sessions). During the 

13 sessions where pupil size was measured during block 1for at least 200 trials (all sessions 

were from monkey J), the median correlation between neural engagement and pupil size was 

ρ = 0.67 (bootstrapped 95% CI (0.41, 0.79), n = 13 sessions).

Variance explained by changes in neural engagement.: We sought to estimate the amount 

of variance in the neural population activity due to changes in neural engagement during 

block 1 (Fig. 2h). To estimate the variance for trials to a given target, we first found the 

average neural activity zt during each trial to that target, along with the corresponding neural 

engagement, et. The measure of the variance explained by changes in engagement for that 

target was then 
Vart et

Tr Covt zt
. To calculate the total amount of variance explained by changes 

in engagement, we computed the same metric above, but used the activity from all trials 

combined rather than just the trials to a particular target.

Predicting the impact of neural engagement on performance under the new 
mapping.: We labeled a target as T+ or T− based on whether an initial increasein neural 

engagement would increase (T+) or decrease (T−) the cursor’s speed toward the target under 

the new mapping (for example, Figs. 4–6). Specifically, let zθ be the average neural activity 

recorded during block 1 for target θ, and let aθ be the corresponding neural engagement 

axis. Then we labeled that target as T+ if an increase in neural engagement led to an increase 

in the cursor’s speed to the target (see equations (3) and (4)) according to equation (8):

M2 zθ + ϵaθ + c ⊤p > M2zθ + c ⊤p (8)

where M2 and c are the parameters of the new BCI mapping, p is a unit vector 

corresponding to the target direction and ϵ > 0 is a small constant. Otherwise, the target 

was labeled as T−.

Identifying output-potent and output-null-engagement axes.: Given a neural engagement 

axis, a ∈ ℝ10, not all changes in neural activity along this axis will lead to changes in cursor 

velocity through the new BCI mapping, M2. This is because the mapping between neural 

activity and cursor velocity, given by equation (2), is a linear mapping from 10D to 2D, 

implying that M2 has a nontrivial null space, Nul(M2). To identify which components of a 
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will result in changes in cursor velocity, we can find bases for the null space, Nul(M2), and 

the row (or potent) space, Row(M2)39. To do so, we took a singular value decomposition of 

M2 = USVT, with U ∈ ℝ2 × 2, S ∈ ℝ2 × 10, and V ∈ ℝ10 × 10, where the columns of S were 

ordered so that only the first two columns had nonzero elements. Then, we let R ∈ ℝ10 × 2 be 

the first two columns of V, and N ∈ ℝ10 × 8 be the remaining eight columns. The columns 

of N and R are mutually orthonormal and together form an orthonormal basis for the 10D 

space of factor activity. This allowed us to rewrite the neural engagement axis for each target 

θ as the sum of a null-engagement axis, aθ
null, and a potent-engagement axis, aθ

potent, given by 

equations (9), (10) and (11):

aθ = aθ
null + aθ

potent
(9)

aθ
null = aθNN⊤ (10)

aθ
potent = aθRR⊤ (11)

We then normalized aθ
null and aθ

potent to be unit vectors. Finally, we used these axes in 

equation (7) to compute values of null and potent engagement (Fig. 6).

Statistics and research design.—Data collection and analyses were not performed 

blind to the conditions of the experiments. Experiments were not grouped, and thus no group 

randomization procedures were performed. Statistical analyses were conducted in MATLAB 

(2015a). To test whether the distributions of neural engagement were different for T+ and T− 

targets at the start of block 2, we used a two-sample Kolmogorov–Smirnov test. To compare 

the medians of two distributions we used a two-sided Wilcoxon rank-sum test (unpaired) or 

a two-sided sign test (paired). Statistical tests were non-parametric and so did not assume 

normality.
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Extended Data

Extended Data Fig. 1 |. Neural engagement showed stereotyped changes relative to experimental 
events, in multiple example sessions.
Same conventions as Fig. 2d. Note that in contrast to other figures (for example, Fig. 5c), 

here neural engagement is shown across trials to all eight instructed targets, where trials 

to different targets were interleaved. As a result, each time course shown here includes 

variability due to the target-specific differences in neural engagement during learning (for 

example, see Fig. 5c). Position along the horizontal axis indicates clock time (see legend 

indicating ‘5 minutes’), so that pauses in the experiment are more visible. All sessions are 

plotted with the same time scale, and trial indices are marked for reference.
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Extended Data Fig. 2 |. Changes in neural engagement during BCI control could not be 
explained by hand movements.
a-c. During the BCI experiments, we recorded the hand speed of two animals (monkey 

J, shown in panel a; and monkey L, shown in panel b), for the hand contralateral to the 

recording array (the other hand was restrained). Monkey N’s hand speed was not recorded 

because his hand was restrained in a tube, and the reflection of the light on the tube made 

his hand difficult to track. We also recorded the hand speed of monkey G (shown in panel 

c), who performed a center-out arm reaching task (as shown in Fig. 2i–j). This allowed us to 

compare hand speeds across both types of experiments. We found that the arm movements 

during the BCI task (panels a and b) were substantially smaller than during the center-out 

arm reaching task. Black line indicates median across trials to all sessions, while shading 

indicates median ± 25th percentile (a, n = 25 sessions; b, n = 10 sessions; c, n = 3 sessions). 

d-e. Even if animals showed little to no arm movements (as shown in panels a and b), might 

it be the case that the increase in neural engagement at the start of block 2 (Fig. 4c) can be 

explainedby animals moving their hands more than they did on previous trials? We found 

no substantial increase in hand speed at the start of Block 2 for either monkey. Black line 

indicates median across sessions, while shading indicates median ± 25th percentile (d, n = 

25 sessions; e, n = 10 sessions). Thus, the increase in neural engagement we observe at the 

start of Block 2 cannot be explained by animals suddenly moving their hands more than 

during Block 1.
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Extended Data Fig. 3 |. Trials with elevated levels of neural engagement also showed increased 
pupil size.
a-c. In Fig. 2g, we related neural engagement and pupil size by first averaging the pupil 

size across time points within a trial. To further explore this relationship, here we consider 

the time course of pupil size within a trial. Trial-averaged pupil sizes are shown for three 

example sessions after grouping trials separately based on whether neural engagement 

during the control interval of each trial during Block 2 was above- (dark gray) or below- 

(light gray) the median across trials during Block 2. Vertical dashed line indicates the time 

within each trial when the cursor was released (300 ms; see Methods), that is, the beginning 

of the control interval. Shading indicates mean ± SE across trials (a, n = 456 trials; b, n 
= 296 trials; c, n = 202 trials). Within each example session, the time course of pupil size 

was similar for trials with above- versus below-average levels of neural engagement, but 

with a larger overall pupil size on trials with above-average neural engagement. d. Prior 

to computing the correlations between neural engagement and pupil size shown in Fig. 2g 

(and in the previous panel), we first smoothed the trial-by-trial time courses of pupil size 
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and neural engagement with a 30-trial boxcar filter, similar to previous work correlating 

population activity and pupil size12. Here we show that neural engagement and pupil size 

were typically positively correlated even without smoothing. Without smoothing, the median 

Pearson’s correlation across sessions was ρ = 0.12 (bootstrapped 95% C.I. [0.09, 0.18], 

n = 44 sessions). Same conventions as Fig. 2g. e. Although the recording of pupil size 

began part way into Block 1 due to experimental constraints, we computed the trial-by-trial 

correlation between pupil size and neural engagement during Block 1 for the 13 sessions 

with a sufficient number of trials (all from monkey J). The median Pearson’s correlation 

during these sessions was ρ = 0.67 (bootstrapped 95% C.I. [0.41, 0.79], n = 13 sessions). 

Thus, a positive correlation between neural engagement and pupil size was also present 

before learning. Same conventions as Fig. 2g.

Extended Data Fig. 4 |. Changes in neural engagement corresponded to nearly all neural units 
increasing or decreasing their activity together.
We wanted to understand how changes in neural engagement were represented by the 

activity of individual units. For each target, a neural engagement axis was defined in 

10-dimensional factor space. We used the q × 10 loading matrix from factor analysis (see 

Methods) to define the neural engagement axis in the q-dimensional population activity 

space of the q recorded units. For example, if there were 90 units, the neural engagement 

axis would have 90 coefficients, describing how changes in neural engagement for a given 

target would be represented by the activity of each of the 90 units. For each target, we 
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computed the percentage of units whose coefficients had the same sign (for whichever sign 

was in the majority, so that percentages could never be below 50%). Shown in black is the 

distribution of these percentages across the neural engagement axes for all targets across 

all sessions (bootstrapped 95% C.I. [97.6%, 97.7%], n = 368 axes (one per target)). This 

relationship means that an increase in neural engagement corresponds to an increase in the 

firing rate of most units (by an amount that is unit- and target-dependent). For reference, in 

gray, is the distribution after sampling random dimensions in factor space, and computing 

the corresponding effects on individual neural units (bootstrapped 95% C.I. [59.7%, 62.5%], 

n = 368 random axes). Triangles depict the medians of the ‘data’ and ‘chance’ distributions, 

which were significantly different (p < 10−10, paired, two-sided sign test, n = 368 axes).

Extended Data Fig. 5 |. Increased neural engagement corresponded with increased baseline firing 
rate, modulation depth, and spiking variance in single units.
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To understand the relationship between neural engagement and the firing properties of 

individual units, for each experiment we grouped trials during Block 1 based on whether 

they had above- versus below-average levels of neural engagement (similar to Extended 

Data Fig. 3). a-b. For each individual unit from all sessions, we fit two cosine tuning models 

to each unit’s z-scored spike counts: one model was fit to the average spike counts on trials 

with above-average levels of neural engagement (‘high engagement trials’), while the other 

model fit to the spike counts on trials with below-average levels of neural engagement (‘low 

engagement trials’). The cosine model was of the form y = b + m cos(θ − θpref), where 

y is the unit’s expected firing rate on a trial to target θ, b is the unit’s baseline (average) 

firing rate, m is the unit’s modulation depth, and θpref is the unit’s preferred direction. We 

estimated b, m, and θpref using linear regression. Each dot corresponds to one unit. For most 

units, both the baseline firing rate (b; panel a) and the modulation depth (m; panel b) were 

higher on high engagement trials than on low engagement trials (in both cases: p < 10−10, 

paired, two-sided sign test, n = 4074 units). c-d. For each session, we fit a factor analysis 

(FA) model to the z-scored spike counts of all units during low engagement trials, and then 

fit a separate FA model to the z-scored spike counts during high engagement trials. Each 

model had the same form as equation (1), resulting in parameter estimates of L and Ψ. The 

estimated private variance of unit i is given by Ψii, while the shared variance is given by 

(LL⊤)ii, where the ii subscript indicates the ith diagonal element. Each dot corresponds to 

one unit. We found that both the private variance (panel c) and shared variance (panel d) 

of most units was higher on high engagement trials than on low engagement trials (in both 

cases: p < 10−10, paired, two-sided sign test, n = 4074 units). This result is expected from 

Extended Data Fig. 4 because the sum of a unit’s shared and private variances equals its 

spike count variance. Because a unit’s spike count variance tends to increase with its mean 

spike count, a higher firing rate will typically correspond with a higher shared and/or private 

variance.
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Extended Data Fig. 6 |. Increased neural engagement during arm movements predicted faster 
hand speeds towards most targets.
a. For the experiments involving arm movements (see Methods), we visualized the average 

neural population activity (circles) and neural engagement axes (orange arrows) during 

baseline reaches to each of eight targets. Same conventions as Fig. 3d. ‘Target directions’ 

panel is a legend depicting the color corresponding to each target direction. b. We also 

visualized the monkey’s average hand velocity during reaches to each target (circles), 

similar to Fig. 3e. Unlike during BCI control, we do not know the causal relationship 

between neural population activity and hand velocity. To understand how changes in neural 

engagement related to hand velocity, we used linear regression to predict the monkey’s 

hand velocity during baseline reaches at each 50 ms timestep during the movement epoch 

of every trial, using the neural population activity recorded 100 ms prior. Cross-validated 

r2 for the x- and y- components of hand velocity were 67% and 77%, respectively. The 

linear regression model (M) allowed us to estimate how increases in the neural engagement 

related to the monkey’s average hand velocity towards each target (orange dashed arrows), 

and to intermediate target directions (gray dashed lines). In this session, an increase in neural 

engagement predicted an increase in the monkey’s hand speed towards all but the 135° 

target. This suggests that differences in the neural engagement axes across targets may have 

behavioral relevance. c. We repeated the procedure in panel b during the other two arm 

movement sessions. Across sessions, increased neural engagement during arm movements 

predicted faster hand speeds towards most targets.
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Extended Data Fig. 7 |. New BCI mappings induced a variety of relationships between neural 
engagement and cursor velocity, across targets and sessions.
Same conventions as Fig. 3f, for multiple example sessions (all with the same scale). ‘Target 

directions’ panel is a legend depicting the color corresponding to each target direction.
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Extended Data Fig. 8 |. Changes in neural engagement and performance per monkey.
a-b. Changes in neural engagement (a) and performance (b) during Block 2, averaged across 

T + and T − targets for each monkey separately (J: nT+ = 119, nT− = 81 targets; N: nT+ = 

50, nT− = 38; L: nT+ = 51, nT− = 29). Same conventions as Fig. 5c (a) and Fig. 5e (b). c-d. 

Difference in learning speed between T + and T − targets is robust to amount of smoothing 

(c) and how the peak performance was determined (d). We found the number of trials at 

which performance for a given target reached x% of its maximum, after first smoothing the 

performance for each target with a k-trial boxcar filter (see Methods), where in Fig. 5f, k 
= 8 and x = 100. Here we sweep the amount of smoothing (k; panel c) while holding x = 

100 constant, and sweep the threshold percentage (x; panel d) while holding k = 8 constant. 

Across all monkeys, the blue line was always below the red line, indicating that our result 

that T + targets reached peak performance more quickly than T − targets was robust to 

different parameter settings.
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Extended Data Fig. 9 |. Non-uniform task performance did not predict how quickly different 
targets reached peak performance.
a-b. In BCI tasks, performance across targets is often non-uniform. Can differences in the 

animal’s pre-learning performance across targets predict how quickly different targets were 

learned? We defined pre-learning performance in two ways: using the performance under the 

intuitive BCI mapping during Block 1 (panel a), and using the predicted initial performance 

under the new BCI mapping (panel b). For the latter quantity, we projected the trial-averaged 

neural activity for each target during Block 1 onto the new BCI mapping. For each definition 

of pre-learning performance, we divided all targets from each monkey into two groups based 

on whether pre-learning performance was above (green, ‘easier’) or below (gray, ‘harder’) 

the median performance level across all targets. We then found the number of trials needed 

for each group of targets to reach peak performance during Block 2, similar to Fig. 5f. The 

median number of trials needed to reach peak performance was not different for targets that 

were initially harder (gray triangle) versus easier (green triangle) during Block1 using the 

intuitive BCI mapping (p = 0.91, two-sided Wilcoxon rank-sum test, n1 = 184 and n2 = 184 

targets; panel a). Nor was there a difference in the median number of trials needed to reach 

peak performance for the targets that were predicted to be initially harder (gray triangle) 

versus easier (green triangle) under the new BCI mapping (p = 0.06, two-sided Wilcoxon 

rank-sum test, n1 = 184 and n2 = 184 targets; panel b).
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Extended Data Fig. 10 |. Neural engagement axes were largely unchanged after learning.
Distribution of the angle (‘data’, in black) between the neural engagement axis identified 

for each target during Block 1 (‘before learning’) vs. during the last 50 trials of Block 

2 (‘after learning’). To identify neural engagement axes during the last 50 trials of Block 

2, we used the same procedure as used during Block 1 (that is, the procedure used in 

the main text; see Methods), but applied to the last 50 trials of Block 2. ‘Chance’ (in 

gray) indicates the distribution of the angle between random directions in ten-dimensional 

space. Triangles depict the medians of the ‘data’ and ‘chance’ distributions, which were 

significantly different (p < 10−10, two-sided Wilcoxon rank-sum test, n1 = 368 (data) and n2 

= 50, 000 (chance) axes).
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Fig. 1 |. Studying how changes in neural activity during learning relate to changes in internal 
state.
a, Here we asked whether changes in internal state relate to how neural population activity 

is modified during learning. Before learning, neural activity resides in some region (‘initial 

activity’) of population activity space, depicted here by the spiking activity of three neurons 

(y1, y2 and y3). During learning, the neural activity needs to migrate to a different region 

of population activity space to achieve a particular task goal (‘Goal 1 activity’ and ‘Goal 2 

activity’). Changes in the animal’s internal state can push the neural activity closer to (top 

orange arrow) or further from (bottom orange arrow) the region appropriate for achieving a 

given task goal. b, Monkeys performed an eight-target center-out task using a BCI. Neural 

activity was recorded using a multi-electrode array implanted in M1. Spike counts (y) were 

taken in 45-ms bins (green box). The BCI mapping converted the neural activity into a 

cursor velocity (v) at each 45-ms timestep, updating the position of a visual cursor on 

a screen. Monkeys were rewarded for successfully guiding the cursor to hit the visually 

instructed target. c, Each experiment consisted of two blocks of trials. In block 1, a monkey 

completed 200–400 trials using an intuitive BCI mapping. In block 2, the monkey completed 

500–900 trials with a new BCI mapping that the monkey had not used before.
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Fig. 2 |. Neural activity increased abruptly along a neural engagement axis following 
experimental events.
a, Neural activity in the top three factor dimensions of highest covariance (z1, z2 and z3) 

for trials to the same target from block 1 of session J20120528. Each gray point is the 

average neural activity recorded within a single trial. The orange axis depicts the direction 

of maximum variance of all gray points. The axis was defined in the ten-dimensional (10D) 

factor space, although only the top three dimensions are depicted here. b, Same as a, but 

for the first 20 trials to the same target during block 2 (color indicates trial index). The 

orange axis from a is shown for reference. Neural engagement for each trial is the projection 

of neural activity onto the axis identified during block 1 for trials to the same target. c, 

The value of neural engagement is given by the projection (dashed arrow) of the recorded 

neural activity (black circle) onto the neural engagement axis (orange) corresponding to 

the current target. Projections were normalized relative to the mean and standard deviation 

across trials to the same target during block 1 (Methods). a.u., arbitrary units. d, Neural 
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engagement overtime from session J20120528, with annotations indicating timing of various 

events controlled by the experimenter. Position along horizontal axis indicates clock time, 

with trial indices marked for reference. The horizontal dashed line indicates average neural 

engagement across all trials during block 1. e, Neural engagement averaged across sessions 

from all monkeys (n = 46 sessions) during cursor control relative to the start of the 

experiment, the longest pause during block 1 and the start of block 2. Neural engagement 

during the interval of each trial before the monkey had seen the target (Methods), averaged 

across all three experimental events. Shading indicates mean ± s.e. across sessions. f, 
Neural engagement during block 2 from the example session shown in d, alongside the 

monkey’s average pupil size during the same trials. g, Pearson’s correlation between neural 

engagement and pupil size during block 2 for each session, with sessions from monkeys 

J, L and N indicated by squares, triangles and crosses, respectively. Example session from 

f indicated as a black square. The white circle and black lines depict the bootstrapped 

median and 95% CI of the correlations across sessions, respectively. h, Percentage of shared 

covariance of neural population activity explained by neural engagement axes during block 

1, across trials to all targets (‘total variance’; n = 46 sessions), or across trials to a single 

target (‘variance per target’; n = 368 targets). The white circle depicts the median; error 

bars represent the median ± 25th percentile of correlations across sessions/targets. i, A 

monkey performed a center-out task by moving its hand to control the cursor’s position 

(Methods). j, Neural engagement averaged across sessions from hand control experiments (n 
= 3 sessions), relative to the beginning of the experiment and relative to the introduction of a 

visuomotor rotation (VMR). Same conventions as e. Rel., relative.

Hennig et al. Page 36

Nat Neurosci. Author manuscript; available in PMC 2023 January 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3 |. Understanding the impact of neural engagement on behavior during a BCI learning task.
a, Schematic of the average neural activity (z) recorded across all trials to the same target 

during block 1, along with the direction in which this activity is expected to move following 

an increase in neural engagement (EA, engagement axis). b, Using the intuitive BCI 

mapping (M1), we can inspect the intuitive cursor velocity (v, gray circle) corresponding 

to z, as well as how this velocity will change if neural engagement increases. In this 

case, increased neural engagement will result in faster cursor movements toward the target 

(gray dashed line). Zero velocity is indicated by the black cross. c, We can repeat the 

same procedure using the new BCI mapping (M2) with the same neural activity z and 

neural engagement axis. d–f, In an example session, the trial-averaged neural activity (gray 

circles with colored outlines) and engagement axes for all eight targets is visualized. Target 

directions are indicated with dashed colored lines. Gray lines indicate interpolations between 

the neural engagement axes for each target. Avg., average.
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Fig. 4 |. Neural engagement increased on the first trial of a learning task regardless of its impact 
on task performance.
a,b, Schematics depicting how increased neural engagement can lead to either faster (a) 

or slower (b) cursor speeds toward the target direction under the new BCI mapping. Same 

conventions as Fig. 3c. c, Distribution of the increase in neural engagement on the first trial 

to each target during block 2, as a function of whether performance under the new mapping 

was expected to be improved or impaired by an increase in neural engagement (as in a and 

b). Triangles depict the median of each distribution.
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Fig. 5 |. Relationship between neural engagement axes and task performance predicted which 
targets were learned more quickly.
a, Average cursor velocities under the new mapping across trials during block 2, for an 

example T+ target (180°; session J20120528) where an increase in neural engagement 

initially improved performance relative to the average activity produced during block 1 

(gray circle). Same conventions as Fig. 4a. The blue line depicts how the trial-averaged 

velocity evolved throughout block 2, starting with the first trial to that target (white circle) 

and ending with the average during the last trials (blue circle). Velocities gradually moved 

toward the target direction, both decreasing angular error and increasing the speed in the 

target direction, indicating learning. b, Same as a, but for an example T− target (315°; 

J20120601) where an increase in neural engagement was initially expected to impair 

performance under the new mapping. c, Changes in neural engagement during block 2, 

averaged across T+ (n = 220) and T− (n = 148) targets (mean ± s.e.). Trial index is relative 

to the start of block 2 for each target. d, Changes in pupil size during block 2. Same 
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conventions and sample sizes as in c. e, Changes in cursor speed toward the target under 

the new mapping during block 2, relative to the expected speed under the new mapping 

based on the neural activity produced during block 1. Same conventions and sample sizes 

as in c. f, Distribution of the number of trials at which each target attained its peak level 

of performance (Methods), for all T+ and T− targets. Triangles depict the median of each 

distribution; asterisks indicate that the medians were significantly different (p = 1.259 × 

10−4, two-sided Wilcoxon rank-sum test, n1 = 220 and n2 = 148 targets).
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Fig. 6 |. Neural engagement changed differently in output-potent versus output-null dimensions 
of the new BCI mapping.
a, Schematic of decomposing a neural engagement axis into output-null and output-potent 

components. Given the new BCI mapping, this axis can be decomposed into output-null and 

output-potent axes, such that only changes in neural activity along the output-potent axis 

will affect cursor velocities under the new mapping. b,c, Changes in neural activity along 

the output-null (b) and output-potent (c) neural engagement axes during learning, averaged 

across T+ (n = 220) and T− (n = 148) targets (mean ± s.e.). Same conventions as Fig. 5c. 

Changes in output-null neural engagement did not affect cursor movements, while changes 

in output-potent neural engagement did. d, Schematic summarizing how the evolution of 

neural activity during learning differed based on whether a neural engagement increase was 

predicted to initially improve (T+) or impair (T−) performance to a given target. The average 

neural activity for each target type was similar on the first trial of block 2 (white circle), 

relative to where activity was before the introduction of the new BCI mapping (gray circle), 

but gradually diverged during learning (blue and red arrows).
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