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Abstract: A meta-analysis of the results of targeted quantitative screening of human blood plasma
was performed to generate a reference standard kit that can be used for health analytics. The panel
included 53 of the 296 proteins that form a “stable” part of the proteome of a healthy individual;
these proteins were found in at least 70% of samples and were characterized by an interindividual
coefficient of variation <40%. The concentration range of the selected proteins was 10−10–10−3 M
and enrichment analysis revealed their association with rare familial diseases. The concentration of
ceruloplasmin was reduced by approximately three orders of magnitude in patients with neurological
disorders compared to healthy volunteers, and those of gelsolin isoform 1 and complement factor
H were abruptly reduced in patients with lung adenocarcinoma. Absolute quantitative data of the
individual proteome of a healthy and diseased individual can be used as the basis for personalized
medicine and health monitoring. Storage over time allows us to identify individual biomarkers in
the molecular landscape and prevent pathological conditions.

Keywords: proteome; targeted mass spectrometry analysis; human proteome project;
knowledge databases

1. Introduction

Blood biochemistry tests have long been used to assess the human health status. The
complete set of plasma proteins (proteome) plays a special role in diagnosing socially
significant diseases, including cardiovascular diseases, diabetes mellitus, and different
types of cancer. Researchers have long been interested in answering questions of what
proteins are present in blood plasma, what their concentrations are, and how these plasma
proteomes differ between a healthy and sick individual [1]. The use of monoclonal an-
tibodies is currently the gold standard for detecting and quantifying proteins in blood
plasma. This approach has several drawbacks, including its limited specificity owing to
the cross-reactivity of antibodies and low potential for multiplex assays. Qualitative and
quantitative assessments of protein markers in blood plasma will significantly improve
diagnostic efficiency. Currently, SOMAscan and Olink are prevalent affinity-based tech-
niques that have excellent potential for multiplexity and are often preferred over mass
spectrometry [2,3].

Shotgun and targeted mass spectrometry approaches, whose development has been
rapidly advancing, are excellent alternatives to antibody-based techniques for studying the
plasma proteome. High-resolution shotgun mass spectrometry allows the simultaneous
study of several hundreds of proteins with high specificity. Approximately 3000 proteins
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have been detected using this technology under the HUPO Human Plasma Proteome Project
(HPPP) owing to the joint efforts of 35 laboratories; 900 of these proteins have been identified
with high confidence. More than 1500 proteins have been detected in blood plasma at
concentrations ranging from 10−12 to 10−3 M [4]. This observation provides grounds for
considering blood plasma as a complex biological matrix. In 2005, the research team led
by Aebersold demonstrated the important role of meta-analysis, that is, summarizing the
results of several experiments to obtain a complete proteomic map. Different proteomic
techniques, sample preparation options, and algorithms for analyzing the resulting data
lead to the identification of different sets of proteins in the same sample [5]. In 2011, as part
of creating the Peptide Atlas resource, this research team compiled a list of 1929 master
proteins identified in blood plasma with high confidence using LC-MS/MS [6,7]. According
to the Human Protein Atlas, 4072 proteins have been identified over a broad concentration
range in the plasma of healthy people using mass spectrometry without stable isotope
labeling [8].

Targeted methods, including selected/multiple reaction monitoring (SRM/MRM),
enable the detection of proteins in the biomaterial and quantification of their absolute
concentrations, which is critical for medical applications. Using synthetic isotope-labeled
peptide standards as reference samples improves the identification accuracy and measured
protein concentration [9]. Furthermore, SRM analysis can be used to detect proteins present
at low (10−14–10−12 M) and ultralow (10−18–10−15M) concentrations via the irreversible
binding of minor plasma proteins to biogranules [10] or fractionation [11–13].

Fewer studies on blood plasma proteins have utilized the SRM method compared to
shotgun analysis. Hüttenhain et al. [14] used the SRM method to investigate candidate
biomarkers for malignant neoplasms. They identified 182 plasma proteins, presumably
associated with tumor diseases, with spectral counts as their primary characteristic. Doman-
ski et al. [15] employed SRM to design a panel consisting of 67 potential marker proteins for
diagnosing cardiovascular diseases. The normal concentrations of the proteins estimated
using various methods, including mass spectrometry, were obtained from the literature.

As the SRM method enables structural analysis of the amino acid sequence of peptides,
it is increasingly used to detect point amino acid substitutions in proteins. Thus, this
method can be used to quantify proteoforms [16] or validate mRNA editing events by
ADAR enzymes at the protein level [17].

SRM technology has entered the global market as multiplex test kits for research. Such
kits are manufactured by Biognosys AG (Schlieren, Switzerland) and Cambridge Isotope
Laboratories (Tewksbury, MA, USA) (PeptiQuant kit) [18]. The evolution of these test kits
involves increasing the number of detectable analytes and improving analysis sensitivity,
thus making them an efficient tool for protein marker detection. This method can quantify
up to 500 proteins per sample; however, the reference concentrations in these kits are not
provided to users.

The next logical step is to adapt targeted mass spectrometry for clinical applications.
Designing and improving the available SRM test kits can enable the personalized predic-
tion of disease risks, diagnosis, and assessment of treatment efficacy based on rational
drug prescription and individual treatment selection to generate human digital molecular
images [19]. A combination of labeling and targeted MS in the SRM mode is currently
widely used as an alternative to immunoassays for accurate protein quantification and
confirmation of the findings of earlier studies where biomarkers had a controversial clinical
significance [16].

Identifying the reference ranges for analyte proteins is an important challenge for
introducing SRM test kits in clinical practice. For example, such information is not available
for the Biognosys AG kits. In the SRM studies performed by Hüttenhain et al. and
Domanski et al., the normal concentrations of the proteins under study were obtained from
the literature; the reference values were obtained using different methods, including those
unrelated to mass spectrometry [14,15]. Notably, the differences between the methods
employed for collecting serum or plasma from patients (e.g., using test tubes coated with
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different anticoagulants) may lead to statistically significant variations in protein levels,
thereby impeding biomarker research [20].

In the present study, a set of reference concentrations of proteins that could be used
for SRM analysis was generated according to a meta-analysis of the SRM data for plasma
collected from healthy volunteers. Furthermore, the fundamental principles for select-
ing potential biomarker candidates and designing panels for human health monitoring
were formulated.

2. Results and Discussion
2.1. Meta-Analysis of the SRM Data for Plasma from Healthy Volunteers

Publications for the meta-analysis of the quantitative proteomics data were selected
using two strategies. The ScanBious platform [21], which allows classification of research
publications from the PubMed database according to keywords and the selection of seman-
tically similar publications based on the integrated semantic similarity analysis system,
was employed for the first strategy. Figure 1 shows the search results obtained with the
query “Selected (or Multiple) Reaction Monitoring Proteomics Human”.
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Figure 1. Results of the search for publications reporting the selected/multiple reaction monitoring
(SRM/MRM) data for humans over the past ten years (2012–2022) using the ScanBious system. The
size of the nodes reflects the occurrence of the keywords in the abstracts. The identified key clusters
involve search terms related to tumor biomarkers, their sensitivity, specificity, and reproducibility. Of
note, SRM analysis was frequently used to study cancer cell lines, such as Jurkat, MCF-7, and HepG2.

As the internal search algorithm data across the PubMed database included enrich-
ment with synonyms, the retrieved information included data from both SRM and MRM
analyses. The list included 197 entries on a specified topic published over the past ten
years. The literature primarily comprised studies using the SRM method to measure the
concentration of single proteins. Kumar et al. [22] showed that the plasma concentration of
apolipoprotein F in healthy individuals was 445.1 ng/mL, with a coefficient of variation
(CV) <12%. In many studies, this method was used as a supplementary technique for
validating active pharmaceutical substances in human plasma [23–25] and assessing phar-
macokinetics [26]. After 2012, the MRM analysis began to be used as a method that allows
targeted quantification of plasma proteins, including proteoforms encoded by a single gene
(e.g., quantification of the Apoe3 and Apoe4 isoforms differing by one or two amino acid
residues [16]). Therefore, these methods are currently used more frequently for detailed
investigations of individual proteins and their proteoforms than for quantitative proteome



Int. J. Mol. Sci. 2023, 24, 769 4 of 13

screening, which is promising for medical applications. Nonetheless, this screening in the
gene-centric format was proposed as the experimental method of choice for implementing
the International Human Proteome Project, which is of fundamental significance for the
evolution of medicine [27].

The second strategy for selecting research publications involved the biocuration of
PubMed literature sources. Based on these findings, researchers have been selecting the
SRM/MRM method for proteomic analysis less frequently (Figure 2a). One plausible
reason is that other methods, such as tandem mass tag (TMT) labeling, which enables
multiplex investigation of the samples and determination of the relative and absolute
peptide concentrations, are now commonly used [28,29]. Moreover, affine protein enrich-
ment with aptamers on the SOMAscan platform has been implemented, which enables
the simultaneous detection of several hundred to thousand proteins [30]. The quality of
shotgun proteomics data quantification can also be improved using the data-independent
acquisition (DIA) method instead of data-dependent acquisition (DDA) [31].

The comparison of SRM and aptamer-based methods is of particular interest, as
aptamer-based methods have been promoted in recent years as a powerful alternative to
the “gold standard” antibody-based approach. Table 1 presents the important features of
the SOMAscan platform and SRM assays.

Table 1. Comparison of the mass spectrometric SRM (selected reaction monitoring) approach and
aptamer-based SOMAscan platform for protein measurement in human serum/plasma.

Method Feature SOMAscan SRM

Volume of crude serum/plasma, µL 15–50 [2,32] 2.5–5 [33]
Sample preparation Not needed Tryptic digestion

Special reagent DNA-based aptamers SIS peptides
Multiplexity of protein analytes 813–7288 [2,32,34] 111–329 [33,35]

Quantification type Relative [36] Absolute

Direct/indirect protein quantification DNA serves as an intermediary Peptide amino acid sequence serves
as an intermediary

Sensitivity 10−14–10−3 [32] 10−16–10−3 [34,35]
Dynamic range in serum/plasma, orders

of magnitude 8–10 [34] 4–8 [34,35]

High throughput array multiplexing Yes No
Structure analysis, analysis of SAP, isoforms, etc. No Yes [17]

A comprehensive comparison revealed that the SRM method has advantages, such as
high specificity, sensitivity, low reagent development cost, absolute quantitation capability,
and amino acid sequence structural analysis capability. However, rapid analysis of as many
individual proteomes as possible is crucial for clinical applications. In this regard, SO-
MAscan platforms that employ high-throughput microarrays are still more desirable than
the relatively slow MRM method. However, problems have recently been observed with
aptamer-based cross-platform correlation [36]. Further developments in mass spectrometry,
such as ultrafast analysis [37], hold promise for the retention of mass spectrometry on the
“waiting list” as an alternative to antibody-based methods.

Finally, despite its high selectivity and sensitivity, the evaluation of SRM data is
only particularly automated compared to shotgun proteomics methods. Careful visual
assessment of the spectra by qualified personnel is required [38].

As a descending trend (see Figure 2a) exists for the application of the SRM method,
most datasets obtained using this method with the current level of analytical sensitivity
have already been published and are available in databases [13].
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Figure 2. Meta-analysis of the SRM data for plasma from healthy volunteers. (a) Comparison of the
number of published studies employing different proteomic methods in the PubMed database over
the past ten years. A descending trend for selected and multiple reaction monitoring over the past
years is highlighted in blue. (b) Venn diagram based on a comparison of the datasets obtained using
the SRM method by Kopylov et al., Novikova et al., Kuzyk et al., and Gaither et al. [18,33,35,39].
(c) Correlation between protein concentrations (Log 10 (nM)) measured in the plasma of healthy
volunteers using the SRM method in four studies [18,33,35,39] and concentrations of the same proteins
reported in the Human Protein Atlas database. (d) Range of protein concentrations detected in more
than 70% of samples and characterized by the interindividual coefficient of variation <40% obtained
via a meta-analysis of studies [18,33,35,39].

Therefore, in the present study, a meta-analysis of publications was performed to
generate a summary table of the plasma protein concentrations in healthy volunteers
based on the SRM method. The already-known but insufficiently annotated peptide
concentrations that vary in the plasma of healthy volunteers can be helpful in further
research and searches for biomarkers of various diseases.

Following a review of the literature sources and criteria for dataset inclusion in the
meta-analysis, we selected publications reporting the absolute concentrations of at least ten
proteins measured in the plasma of healthy volunteers. The results of the meta-analysis of
the data obtained by quantitative SRM screening of blood plasma from healthy volunteers
are reported in a tabular format (Table S1a), specifying protein identifiers in the UniProt
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database, the names of the protein and its encoding gene, the average concentration, and
the CV characterizing interindividual variability.

Among all the analyzed publications, only four datasets obtained using the SRM
method with synthetic isotope-labeled peptide standards met the specified criteria. Protein
concentrations in these studies were obtained by measuring a single synthetic peptide.
The first dataset reported by Kopylov et al. [35] contained data on the concentrations of
147 peptides (measured in 54 samples), whose genes belong to chromosomes 18 and 13, and
the Y chromosome and mitochondrial DNA. A second publication by Novikova et al. [33]
presented data on the concentrations of 42 peptides (measured in 31 samples) belonging
to FDA-approved proteins. The third dataset was obtained from Kuzyk et al. [39]. The
measured concentrations of 45 proteins in 20 plasma samples were previously reported.
The fourth publication by Gaither et al. [18] reported quantitative data on the maximum
and minimum concentrations of 144 proteins measured in at least five of the 20 analyzed
commercial human plasma samples and one pool. EDTA was used as an anticoagulant to
obtain plasma in all studies. Therefore, the comprehensive list contained concentrations of
296 proteins, 20 of which were shared by three datasets, and 42 by two datasets (Figure 2b).
By comparing the absolute concentrations of the shared proteins, we identified the maxi-
mum and minimum values and calculated their fold changes. For 55 proteins, the range of
concentration variations was within one order of magnitude. However, the concentrations
of proteins, such as antithrombin III, alpha-2-macroglobulin, complement component C3,
transthyretin, transferrin, and apolipoprotein B100, differed by a factor of 10 or more. The
comparison results are presented in Table S1b.

The final list containing 296 proteins was compared with the data for 4072 proteins
from the Human Protein Atlas project obtained via mass spectrometry based on open-
source Peptide Atlas project data. Two datasets shared the 172 values shown in Figure 2c,
and the values shown in Table S1c were shared by the two datasets. As shown in Figure 2c,
the correlation between the values decreased significantly only at low concentrations
(≤10−12 M for the Human Protein Atlas project data). The medium and high concentrations
(from 10−11 to 10−5 M)) measured according to the number of spectral identifications were
comparable to the results obtained using the SRM method. The Human Protein Atlas
project data can be used to design the diagnostic panels.

To create the overall list reported herein (Table S1a), we selected the values with the
highest CV showing interindividual variability when concentrations were available from
at least two sources. Data with high CV values were obtained for numerous samples and
may provide a more realistic assessment of the value when selecting potential biomarkers.
To identify the proteins with the most stable concentrations, CVs were used to show
interindividual differences. We measured the percentage of samples containing a particular
protein whenever possible. Proteins found in at least 70% of the analyzed samples with an
interindividual CV <40% were considered as a stable characteristic of the proteome of a
healthy human.

In the resulting list, only 53 proteins met the formulated criteria and could be con-
sidered a stable characteristic of the proteome of a healthy human (Table S1a). Figure 2d
illustrates the range of the protein concentrations. The highest concentration was in the
range of 10−8 to 10−4 M. The remaining 243 proteins measured using the SRM method in
the four analyzed datasets were examined as a variable group.

Biological data annotation was used to analyze the enrichment of the most stable
proteins (core proteins) and variable proteins according to the categories in the Gene
Ontology (GO) database (Figure 3).



Int. J. Mol. Sci. 2023, 24, 769 7 of 13

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 7 of 14 
 

 

Biological data annotation was used to analyze the enrichment of the most stable 

proteins (core proteins) and variable proteins according to the categories in the Gene On-

tology (GO) database (Figure 3). 

Figure 3. Gene Ontology enrichment analysis of the lists of respective proteins obtained using the SRM method. (a) Core proteins 

(N = 53) belonging to the GO category “Cell Component”, (b) Variable proteins (N = 243) belonging to the GO category “Cell Com-

ponent”, (c) Core proteins (N = 53) belonging to the GO category “Biological Processes”, (d) Variable proteins (N = 243) belonging 

to the GO category “Biological Processes”. Core proteins (the most stable ones) are the proteins found in more than 70% of the sam-

ples with CV <40%. Variable proteins are those found in less than 70% of the samples or have a CV >40%. 

The analysis demonstrated that in terms of their cell localization, the most stable pro-

teins (core proteins) are components of chylomicron with high confidence (FDR q-value = 

3.1 × 10−3) (Figure 3A). According to the GO category “Biological Processes,” stable pro-

teins were involved in lipid metabolism regulation (Figure 3C), and their primary function 

was binding receptors of lipoprotein particles (FDR q-value = 2.57 × 10−2). 

For the group of variable proteins consisting of 243 proteins, along with cellular lo-

calization, proteins were identified to be primarily located in chylomicrons (Figure 3B), 

Figure 3. Gene Ontology enrichment analysis of the lists of respective proteins obtained using the
SRM method. (a) Core proteins (N = 53) belonging to the GO category “Cell Component”, (b) Variable
proteins (N = 243) belonging to the GO category “Cell Component”, (c) Core proteins (N = 53)
belonging to the GO category “Biological Processes”, (d) Variable proteins (N = 243) belonging to the
GO category “Biological Processes”. Core proteins (the most stable ones) are the proteins found in
more than 70% of the samples with CV <40%. Variable proteins are those found in less than 70% of
the samples or have a CV >40%.

The analysis demonstrated that in terms of their cell localization, the most stable pro-
teins (core proteins) are components of chylomicron with high confidence (FDR
q-value = 3.1 × 10−3) (Figure 3A). According to the GO category “Biological Processes,”
stable proteins were involved in lipid metabolism regulation (Figure 3C), and their primary
function was binding receptors of lipoprotein particles (FDR q-value = 2.57 × 10−2).

For the group of variable proteins consisting of 243 proteins, along with cellular
localization, proteins were identified to be primarily located in chylomicrons (Figure 3B),
and to participate in organophosphate ester transport, lipoprotein particle remodeling
(Figure 3D), and in the activity of phosphatidylcholine-sterol O-acyltransferase activator
and anion binding (FDR q-value = 1.18 × 10−2 and 2.07 × 10−2, respectively).
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Data on the enrichment of a stable set of proteins with the lipoprotein fraction can be
used to design panels for monitoring lipid metabolism in healthy humans and individuals
with a high risk of atherosclerosis (e.g., genetic predisposition, obesity, hypertension, and
smoking history).

2.2. Panel for Monitoring Human Health Status and Potential Biomarker Selection

Here, we sought to demonstrate how data on the healthy human plasma proteome
can be evaluated in the context of diseases. The list of the most stable proteins was
annotated using the DisGeNET platform (Figure 4), the largest database of gene–disease
associations [40]. The 30 proteins found to be associated with different diseases are listed
in Table S1a,d.
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Figure 4. Enrichment analysis of stable proteins found to be associated with diseases according to the
DisGeNET database obtained for (a) the list of the most stable proteins and (b) the variable dataset.
The combined score is the decimal logarithm of the p-value determined using the Fisher’s test and
multiplied by the z-score [41]. “Coverage, %” is the percentage of target protein associated with
this disease.

Figure 4 indicates that enrichment was more significant for the set of stable proteins
than for variable proteins. Thus, an association was revealed between some stable proteins,
hereditary systemic amyloidosis, and type IV hyperlipoproteinemia, which are rare familial
disorders. The concentration variation for the set of stable proteins revealed in this study
may be rare and may require further study. Proteins with variable concentrations were
primarily associated with cardiovascular and inflammatory diseases (Table S1e).
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The set of proteins with the most stable concentrations can be used to identify associa-
tions with various familial disorders. The composition of potential protein panels designed
for MRM studies can be easily modified (e.g., by adding or replacing the protein analytes).
Owing to such plasticity, researchers can employ the MRM technology to perform test
repositioning (similar to drug repositioning) using well-studied and diagnostically relevant
protein analytes in new combinations, which enables the assessment of the biological status
for which they have never been used before.

The results of the meta-analysis of protein concentrations in the blood of healthy
individuals were compared to the measured concentrations of the same proteins in human
plasma for two diagnosed diseases. We selected data obtained using the SRM method for
plasma samples collected from patients with cancer and neurological diseases. The first
dataset comprised the protein concentrations in plasma samples collected from patients
with neurological diseases [42]. The second dataset for comparative analysis was obtained
from a study that focused on biomarkers of lung adenocarcinoma [43]. The results are
presented in Table 2.

Table 2. Comparison of protein concentrations in healthy individuals and patients with pathologies
obtained using the multiple reaction monitoring method. The cells where protein concentrations
differed by more than two orders of magnitude are shown in blue. The most stable proteins in the
plasma of healthy volunteers retrieved via meta-analysis are displayed in bold [42,43].

Protein Name Gene Name

Log 10 (Average Concentration, fM, M × 10−15)

Healthy Human
Plasma

Neurological Diseases
(n = 19, Kiseleva et al.,

Clin Trans Med, 2015) *

Lung
Adenocarcinoma
(n = 102, Wu et al.,
Proteomics Clin

Appl, 2020)

Alpha-1-antitrypsin A1AT 10.0 9.5
Alpha-2-macroglobulin A2MG 10.2 8.5

Apolipoprotein A-I APOA1 10.6 9.1
Ceruloplasmin CERU 9.1 6.5

Complement C3 CO3 9.2 8.4
Cystatin-C CST3 7.7 7

Fibrinogen alpha chain FIBA 10.3 8.9
Haptoglobin HPT 9.9 9
Hemopexin HEMO 9.4 8.3

Insulin-like growth
factor-binding protein 3 IGFBP3 7.4 7

Plasma protease C1 inhibitor IC1 8.6 7.5
Platelet basic protein CXCL7 8.0 6.8

Serotransferrin TRFE 10.3 9.3
Serum albumin * ALB 11.8 10

Transthyretin TTR 9.9 8.5
von Willebrand factor VWF 7.8 7

Complement factor H CFH 9.0 5.8
Desmoglein-2 DSG2 7.0 6.4

Gelsolin, isoform 1 GSN 9.2 6.8
Lambda-crystallin homolog CRYL1 6.6 6.2

Lumican LUM 8.5 6.7
Mucin-16 MUC16 7.7 5.8

* The average concentrations calculated using the data of three protocols were used for the dataset in the
publication by Kiseleva et al. Albumin concentration was determined using the values obtained for the protocol
without depletion.

As shown in Table 2, proteins with the most stable concentrations in healthy volunteers
differed from those in patients with a pathology by no more than two orders of magni-
tude. The maximum difference (1.7-fold) was demonstrated for alpha-2-macroglobulin,
a component of the innate immune system; variation in its concentration was detected
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earlier in individuals with neuronal damage [44,45]. A comparison of the remaining values
in Table 2 revealed that the concentration of ceruloplasmin (CERU) was lower by almost
three orders of magnitude in patients with neurological diseases than in healthy volunteers.
This protein is known to regulate iron efflux, whereas ceruloplasmin deficiency may cause
iron overload and can be associated with neurodegenerative disorders [46,47]. Notably,
the concentrations of gelsolin isoform 1 (GSN) and complement factor H (CFH gene) were
significantly reduced in patients with lung adenocarcinoma. Gelsolin is an actin-binding
protein that affects cell mobility and maintains cytoskeletal integrity. The expression of
gelsolin is variable in some cancer cell lines and malignancies, such as non-small-cell lung
and breast cancer [48]. Complement factor H, a component of the complement system,
plays a crucial role in tumor immune surveillance [49]. Recent studies have demonstrated
that CFH can play a pivotal role in the resistance to complement-mediated lysis in differ-
ent cancer cells, including lung cancer cells [50]. Detection of such drastic variations in
concentrations can be an incentive for further research.

For proteins not shown with color in Table 2, concentrations differed by 1–1.5 orders
of magnitude. For most of them (displayed in bold), concentration values were also most
stable in the plasma of healthy volunteers. Therefore, the data listed in Tables 2 and
S1a can be used to select potential single proteins or entire protein arrays for designing
diagnostic panels. If the differences in concentrations between the samples of healthy
individuals and patients with pathology are minimal, another protein should be selected
for further research.

3. Materials and Methods

Publications for the analysis were selected using the ScanBious platform [21], which
allows publications to be retrieved from the PubMed database upon inquiry and visualizes
related keywords as a semantic network. Semantically similar studies can be classified
based on an integrated semantic similarity analysis system.

The data from the Human Protein Atlas project [8] obtained using mass spectrometry,
available as open-source data of the Peptide Atlas project, were used to compare the
absolute protein concentrations. GO enrichment analysis was performed using the GOrilla
tool [51].

An analysis to determine the enrichment of the most stable and variable proteins
with molecular components associated with the diseases was performed using the Enrichr
module of the Gseapy library (v. 0.13.0) across categories of the DisGeNET database (https:
//www.disgenet.org/, accessed on 10 November 2022); the p-value cutoff was <0.05 [51].
The ten most robust categories for each protein group (stable and variable proteins)
were visualized.

4. Conclusions

Absolute quantitative proteomic data are essential for future biomarker discovery and
the creation of personal digital molecular images for healthy and sick people. Information
on the quantitative proteome of the blood plasma of healthy people will generate a stan-
dard for comparison with the proteome of a diseased person, significantly expanding the
possibilities of diagnostics via biological markers.

Currently, proteomic methods have limitations in sensitivity, that is, the MS-detector
is triggered in the presence of at least one million molecules in 1 µL of sample (10–12 M).
Perhaps in the future, analytical proteomics may allow us to detect and measure one
molecule in 1 µL (10–18 M), which will significantly increase the number of analyzed
proteins in the framework of health monitoring.

Estimating the ranges of interindividual and individual variability will enable the
transfer of medical approaches to personalized diagnostics, risk assessment of diseases,
and therapy. In addition to the early diagnosis of diseases and evaluation of treatment
efficacy, such data can serve as a basis for identifying new drug targets. Although the
trend of targeted proteomics methods is declining, the use of such methods has resulted

https://www.disgenet.org/
https://www.disgenet.org/
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in the accumulation of an impressive quantitative data array for various human tissues
and organs and an understanding of the difference between proteomic landscapes of
healthy and diseased persons. These data can be used for cross-validation of the results
obtained with new, more sensitive methods and can become the basis for the formation of
hypotheses for subsequent studies. In the present study, we selected a dataset of human
plasma quantitative measurements to provide researchers with reference values for protein
concentrations. Until enough experiments are accumulated using new methods, SRM data
will serve as the optimal basis for estimating variability and reliability. We believe that
the efforts of the global community will be directed toward the development of cheaper
methods with better analytical sensitivity and reproducibility.
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