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Abstract The nonlinear relationship between the input

process parameters and in-flight particle characteristics of

the atmospheric plasma spray (APS) is of paramount

importance for coating properties design and quality. It is

also known that the ageing of torch electrodes affects this

relationship. In recent years, machine learning algorithms

have proven to be able to take into account such complex

nonlinear interactions. This work illustrates the application

of ensemble methods to predict the in-flight particle tem-

perature and velocity during an APS process considering

torch electrodes ageing. Experiments were performed to

record simultaneously the input process parameters, the in-

flight powder particle characteristics and the electrodes

usage time. Random Forest (RF) and Gradient Boosting

(GB) were used to rank and select the features for the APS

process data recorded as the electrodes aged and the cor-

responding predictive models were compared. The time

series aspect of the multivariate APS in-flight particle

characteristics data is explored. Two strategies of time

series embedding are considered. The first one simply

embeds the attributes and the targets from the previous n

time segments considered without any modification;

whereas the second strategy first performs differencing to

make the time series stationary before embedding. For the

present application, RF is found to be more suitable than

GB since RF can predict both the in-flight particle velocity

and temperature simultaneously, properly considering the

interactions between the two targets. On the other hand,

GB can only predict these two targets one at a time. The

superior performance of both embedded predictive models

and the feature rankings of them suggest that it is better to

consider the APS data as time series for the in-flight par-

ticle characteristic prediction. In particular, it is demon-

strated that it is advantageous to first make the time series

stationary using the traditional differencing technique, even

when modeling using RF.

Keywords atmospheric plasma spray (APS) � particle

temperature � particle velocity � process modeling � time-

dependent modeling

Introduction

The importance of the in-flight powder particle character-

istics, such as the particle velocity and temperature, on the

coating formation in the complex nonlinear atmospheric

plasma spray (APS) process, is long well recognized. Since

these characteristics cannot be measured during produc-

tion, there is a great interest to predict these parameters to

monitor and improve the spray process and coating quality.

The advancement of machine learning permits modeling

such complex nonlinear relationships in a data-driven way.

Guessasma et al. proposed to use artificial neural network

(ANN) to develop an expert system for the prediction of

the average spray particle velocity, temperature and

diameter for better coating quality control (Ref 1). Input

parameters, also referred to as attributes or predictors,

including the arc current intensity, the argon and the
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hydrogen gas flow rate, were considered. The authors

described their ANN development protocol in a follow-up

article (Ref 2); in particular, they proposed a database

enlargement procedure for the conditions when the number

of experiments is insufficient to adequately train the ANN

structure. Kanta et al. employed such protocol and devel-

oped an ANN to predict the in-flight particle temperatures

and velocities to study the particle melting and dwell time

with respect to the particle diameter (Ref 3). Sha expressed

three concerns regarding such ANN development

approach: first about the need and effectiveness of devel-

oping neural network models based on very few experi-

mental data points, secondly about the database

enlargement procedure and thirdly about the wide extrap-

olation based on the neural network models (Ref 4).

Choudhury et al. borrowed the experimental data sets from

(Ref 1) and suggested an alternative protocol to develop an

ANN to predict the in-flight powder particle characteristics

of an APS process (Ref 5); more specifically, the authors

proposed to expand the experimental dataset using kernel

regression instead and reported good model generalization.

Later, Choudhury et al. employed extreme learning

machine (ELM), a specific class of ANN, to construct a

robust single hidden layer feed-forward neural network for

the in-flight particle characteristics of the APS process (Ref

6). This approach reduced the training time and yielded

stable performance with regard to the changes in the

number of hidden layer neurons. Choudhury et al. further

proposed to implement the ANN using a modular

scheme (Ref 7). The scheme simplified the model structure

and improved the generalization of the model overall. Liu

et al. employed a nonlinear autoregressive exogenous

(NLARX) model combined with the wavelet network to

predict the in-flight particle characteristics of a mono-

cathode plasma spray torch using a system identification

approach (Ref 8). Compared with normal neural network,

such approach could be more suitable for dynamical con-

ditions. Recently, Zhu et al. proposed to employ convolu-

tional neural network (CNN) to model the in-flight particle

characteristics in atmospheric plasma spray (Ref 9). Proven

to be successful for image processing, the CNN-based

model can also describe the two-dimensional spray distri-

butions along the plane of the substrate, in additional to the

prediction of the average in-flight particle characteristic

values as with an ANN. The reversed model can predict the

required input control parameter given the two-dimen-

sional sprayed particle distributions. More recently, Bobzin

et al. proposed to use Residual Neural Network (ResNet)

and Support Vector Machine (SVM) to provide fast esti-

mations of the in-flight particle properties in APS.

Numerical simulations are used to provide the training

data. Both ResNet and SVM models are able to reduce the

simulation time from 3 h down to a few seconds with

accurate predictions for the average properties. Some other

machine learning investigations for atmospheric plasma

spray include process modeling, monitoring and control

(Ref 10-12), coating characteristics prediction (Ref 13-16),

and process optimization (Ref 17).

The majority of the predictive models proposed for APS

in-flight particle characteristics are neural network based.

There are however many other nonlinear predictive mod-

eling techniques (Ref 18). In particular, decision tree-based

ensemble methods, like random forest (RF) and gradient

boosting (GB), have demonstrated their strong perfor-

mance, often comparable to and sometimes even better

than ANN (Ref 19, 20).

The essential idea behind ensemble methods is to

combine the outputs from many simple models, referred to

as base learners, to yield the final prediction. RF and GB

are two popular ensemble methods; both use decision tree

as their base learners. The two differs however in how the

individual trees are constructed and added together. RF

generates the trees by training them on subsets of data, both

in terms of the observations and the attributes, randomly

drawn from the full training set with replacement (Ref 21).

The final prediction is an average of the results from all the

generated trees. Since the generation of each tree does not

depend on each other, the procedure is well suited to be

executed in parallel. RF reduces the prediction variance.

On the other hand, GB constructs each tree sequentially

aiming to reduce the prediction error or the residue from

the previous trees (Ref 22, 23). Subsampling in observa-

tions are generally considered, while subsampling in

attributes may also be employed (Ref 24). GB reduces both

the prediction variance and bias. Wolpert argues that

without having substantive information about the modeling

problem, there is no single model that will always do better

than any other model (Ref 25). Could ensemble methods

also predict well the in-flight particle characteristics?

It is well known that the ageing of torch electrodes

greatly affect the relationship between the APS input

parameters and the in-flight particle characteristics, in a

time scale of hours. The same set of process inputs would

expect to yield different in-flight particle characteristics

using a brand new electrode pair as compared to a used

one. Therefore, when modeling the in-flight particle char-

acteristics with torch electrodes ageing considered, it may

be imperative to consider the production data of APS as

time series; where there is an ordered temporal component

in the observations of the data. To the authors’ best

knowledge, the usage time of torch electrodes (i.e. ageing)

has not been previously considered along with other pro-

cess parameters to predict the in-flight particle character-

istics. Can better predictions be made if the production data

of APS is considered as time series?
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This work aims to explore the applicability of RF and

GB, to predict and forecast the multivariate APS in-flight

particle characteristics with the consideration of torch

electrodes ageing as time series. In particular, two different

time series modeling strategies are compared with the

baseline approach. The paper is organized as follows: First,

the electrode-wearing experiment is described, followed by

the data preprocessing. Subsequently, the two time series

modeling strategies are compared and discussed. The paper

concludes that it is advantageous to consider the APS data

as time series for the in-flight particle characteristic pre-

diction. Also, it is beneficial to first make the time series

stationary using the traditional differencing technique

when modeling using RF for the present application.

Experimental Procedures

APS experiments were performed to record simultaneously

the spray process input parameters, the in-flight powder

particle characteristics and the electrodes usage time. The

experiment was carried out using a Metco 3 MB APS torch

with a brand new pair of electrodes (model GE, nozzle

diameter 5.54 mm), the electrodes were started 135 times

and pursued until the torch could no longer sustain the

plasma. The main process parameters (e.g. torch current

intensity, voltage) were monitored and recorded at a sam-

pling rate of 1 Hertz, using in-house built console equip-

ment integrated into LabVIEW (National Instruments).

Various spray time durations were considered for the torch

usage so to emulate industrial coating spray production

settings similar to those employed for thermal barrier

coating (TBC) production. One single set of spray param-

eters, i.e. plasma-forming gases N2 (50 lpm) as primary

gas, H2 (10 lpm) as auxiliary gas and a single TBC top coat

powder (YSZ, Metco 204BN-S) deposited using a powder

feed rate of 20 g/min with a constant carrier gas flow rate

set at 6 lpm, and at 75 mm stand-off distance, was tested

throughout the experiment. During the course of the

experiment, it was aimed to maintain the net power of the

torch constant by adjusting the torch current; where the net

power is the raw power minus the heat transfer from the

torch to the coolant (hereafter, referred to as torch cooling).

An AccuraSpray (Tecnar, St-Bruno, Qc, Canada) diag-

nostic device was used to measure the in-flight particle

temperature and velocity at defined time intervals (preci-

sion of the measurement given by the equipment i.e. plume

relative intensity measurement 0.5% and plume geometry

measurement 0.1 mm).

The electrodes began to show a weakness in sustaining a

constant plasma plume and manifested plasma pulsations

after about 26 h of usage. At that point, it was decided that

the electrodes reached their end of life. The evolution of

the torch current, voltage and power, and the corresponding

in-flight particle velocity and temperature are shown in

Fig. 1. Even though the spray condition is maintained

constant during the experiment, with time the in-flight

particle temperature shows an obvious decrease of about

500 �C from the beginning to the end of the experiment;

whereas the in-flight particle velocity shows less reduction.

The torch voltage is observed to decrease rather quickly

within the first 5 h of usage, remains rather stable up to

about 17 h of usage and shows a higher level of fluctuation

at the end of usage time. The effect of electrode ageing on

the in-flight particle characteristics can be clearly observed.

Figure 2 shows the 3 MB torch electrode pair at the

beginning, at 7 h of usage and at the end of the experiment.

Figure 3 shows the porosity of the YSZ coating prepared at

two different moments corresponding to different torch

electrodes usage states; the coating prepared with the

electrodes closer to the end of their lifetime (right) shows a

higher level of porosity due to the electrode wearing.

Predictive Modeling with Ensemble Methods

Data Preprocessing

The data acquired from the different devices was first

cleaned and then integrated based on the time stamp. For

the data recorded from the APS controller (e.g. torch cur-

rent intensity, voltage), only those observations when the

plasma was on were considered. A total of about 2600

records with 8 attributes (including the torch voltage V (V),

the current I (A), the input raw power Praw (kW), the net

power Pnet (kW), the torch cooling qcool (kW), the flow

rates of nitrogen QN2
(lpm), hydrogen QH2

(lpm) as well as,

and the electrode usage time tusage (s)) and 2 targets (i.e. in-

flight particle temperature Tp (�C) and velocity vp (m=s))

were obtained right after the data fusion. All the attributes

and the targets are normalized by subtracting their

respective mean and then divided by their respective

standard deviation. This common standardization can help

to eliminate the possibility of numerical artifacts caused by

different scaling during comparison.

Figure 4 shows the Pearson correlation coefficient

among some selected parameters. The Pearson correlation

coefficient is a measure of linear correlation between two

parameters. It is determined by dividing the covariance of

the two parameters by the product of their standard devi-

ations. This normalized covariance only gives values from

-1 to 1. When it is 1, the two parameters relate to each

other linearly in a positive manner; increasing one, the

other will increase too. When it is -1, the two parameters

relate to each other linearly negatively; increasing one
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Fig. 1 Torch power (a), current

(b), voltage (c), as well as the

corresponding in-flight particle

temperature (d) and velocity

(e) with respect to the usage

time of the electrodes

throughout the experiment.

Throughout the experiment, it

was aimed to maintain the net

power of the torch constant by

adjusting the torch current;

where the net power is the raw

power minus the torch cooling
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parameter, the other will decrease. As with the covariance,

the Pearson correlation coefficient can only reflect if the

two parameters have any linear relationship. Recall that in

the experiment, only a single spray condition is considered.

Several process parameters (e.g. flow rate of nitrogen) were

not varied throughout the experiment. Therefore, their

effects on the particle velocity and temperature cannot be

observed and appear to have no relation to any other

parameter. Similar observation is found for the net power,

which is purposefully maintained constant. In particular,

the Pearson correlation coefficient indicates that the parti-

cle temperature seems to have stronger correlation with the

voltage as compared to particle velocity.

A time series has a temporal relationship among the

observations (i.e. records): the previous observation affects

the current one, which will affect the next one, etc. How-

ever, most machine learning predictive models, including

RF and GB, consider each observation independently and

thus, expect that all the necessary information to predict the

target can be found in the attributes of that particular

observation. Therefore, to forecast a time series using these

machine learning models, it is necessary to capture the

temporal order information properly as new attributes in

each observation itself. There are two general approaches

(Ref 26). The first approach simply appends all the infor-

mation from the considered previous time segments into

the observation (Ref 27). The time series may also be

normalized (Ref 28), stationarized (Ref 17), or decom-

posed (Ref 30) a priori. The second approach only sup-

plements the observation with specifically engineered and

selected statistical features from the time series for the

learning (Ref 26). The first approach will be adopted here

due to its simplicity. One disadvantage of this approach,

however, is that the number of the attributes increases

rather quickly as longer histories are desired, resulting in a

higher model training cost. Therefore, it is desirable to

Fig. 2 3 MB torch electrode pair used for the experiment. (a) shows the brand new electrode pair, (b) shows the electrode pair after 7 h of usage

and finally (c) shows the electrode pair after 26 h of usage

Fig. 3 APS coating porosity.

Increased porosity is observed

in the coating when spraying

with the electrodes used for

26 h (b) as compared to the ones

used for 7 h (a). Here, TC refers

to the YSZ top coat and BC

refers to the MCrAlY bond coat

Fig. 4 Pearson correlation coefficient among some selected

parameters
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include only the relevant parameters for the attribute

augmentation.

Feature Selection

Both RF and GB provide a ranking of variable importance

as the regression models are developed. They will be used

to guide the useful attribute selection.

The present prediction problem belongs to that of multi-

target regression, having two outputs: the particle temper-

ature and velocity. The development of multi-target

regression for RF is more advanced (Ref 31). There are

already several implementations available from popular

machine learning platforms (Ref 32, 33). Such models also

take into consideration the correlation among the targets.

As for GB, multi-target regression is still under active

development. It is not yet possible to develop native multi-

target regression using GB. A simple workaround is to

build a separate predictive model per target. The correla-

tion among the outputs is, however, ignored. Alternatively

one may build a set of chained dependent models: Suppose

that there are two targets ya and yb. One first builds a model

to predict ya with the attributes x
* ¼ x1; x2; . . .; xn; and then

one builds another model to predict yb with bya (the pre-

dicted ya from the first model) as well as the attributes x
*

.

The performance of such approach depends upon the

model construction order and the correlation among the

targets. The benefit of the added complexity is not always

apparent.

Both ensemble methods will be used here to compare

the features. The dataset is first randomly separated into

two parts: 70% for training and 30% for testing.

The testing set is used to ensure the decent performance

of the predictive model. The hyperparameters of the two

models are set based on previous experience as follows: for

RF, the maximum number of features per tree is set to 2

and the depth of tree is left as maximum; for GB, the depth

of tree is set to 2, with a learning rate of 0.1. Here, the

simpler separate model per target approach is employed.

For both methods, a minimal leaf node size of 5 is

considered.

The top 6 features ranked using RF and GB are shown in

Fig. 5 and 6 respectively. The two sets of ranking are not

identical, and both do not follow exactly the Pearson cor-

relation coefficient (Fig. 4). The ranking of GB seems to

have better agreements with the Pearson correlation coef-

ficient than those of RF.

The ranking from GB for the in-flight particle velocity,

though reasonable according to the Pearson correla-

tion coefficient, is counterintuitive. In the ranking, the net

power is the most important feature for the particle velocity

prediction. From Fig. 4, indeed the net power is the most

correlated feature with respect to the particle velocity after

the particle temperature. However, the net power is pur-

posefully maintained constant throughout the experiment.

This underlines the importance of having the interaction

among the targets considered. Therefore, in the following,

only RF will be studied with the top 5 features ranked in

Fig. 5. In particular, the torch net power is not included,

because first, the ranking between the torch net power and

the torch cooling are very comparable, and secondly the

torch net power can be determined by simply subtracting

the torch cooling from the torch raw power. It is not nec-

essary to include redundant information.

Fig. 5 Top 6 features ranked using RF, which is trained to predict

both the particle temperature and velocity simultaneously

Fig. 6 Top 6 features ranked using GB. One separated model is

trained per target. (a) shows the feature ranking of the GB model

trained to predict the particle temperature, and in (b), from the one to

predict the particle velocity
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Time Series Attribute Augmentation

To incorporate the temporal order of the data in each

observation, it is necessary to add the information of the

previous observations into the present observation as new

attributes. Suppose that there are two attributes: xa and xb

in the original dataset for a target y. Embedding such

dataset with the data from the two previous time steps will

result in the following form:

y3

y4

y5

(
xa3 xb3 y2

xa4 xb4 y3

xa5 xb5 y4

xa2 xb2

xa3 xb3

xa4 xb4

y1 xa1 xb1

y2 xa2 xb2

y3 xa3 xb3

where the numbers represent the ascending temporal order

in the dataset. The original dataset is shown in bold. Note

that the target values for the previous observations are also

embedded here. For example, xa can be the torch current

intensity I and xb can be the torch voltage V with y being

the in-flight particle temperature Tp. The embedded data-

set, again considering the two previous time steps, will

become as follows:

Tp3

Tp4

Tp5

(
I3 V3 Tp2

I4 V4 Tp3

I5 V5 Tp4

I2 V2

I3 V3

I4 V4

Tp1 I1 V1

Tp2 I2 V2

Tp3 I3 V3

For a given dataset, incorporating a longer history can

introduce more temporal information into the present

observation. However, this will also reduce the total

number of embedded observations for modeling. The

tradeoff is far from trivial, and often the necessary lag

order is problem-dependent. For the present exploration,

the information (with also the targets) from the previous

4-time steps are embedded into the dataset. All the top 5

ranked features are included, resulting in 33 attributes in

total in the embedded dataset, referred to as the simple

embedded dataset in the following.

During data exploration, it is observed that both the

targets and the attributes contain trending patterns. Hence,

they are non-stationary. Traditional time series forecasting

techniques will typically first use differencing to station-

arize the time series data before model tuning (Ref 34). The

benefits of such data preparation for RF is however not

well reported. Therefore, a second embedded dataset,

where the time series is first differenced before embedding,

is prepared for comparison. This is referred to as the dif-

ferenced embedded dataset below. Note that the prediction

of any regression model, which is trained upon a differ-

enced embedded dataset, requires reverse differencing to

convert itself back to the original unit scale.

Methodology for Forecasting Experiment

A RF regression model is developed from each embedded

dataset. They are compared with a baseline RF model

developed from the original dataset, without embedding

nor differencing. Since the number of attributes (m) of

these datasets is different, the number of features included

per tree is set based on the rule of thumb recommended

(m=3) (Ref 35), whereas the depth of tree is left as maxi-

mum as before with the minimum leaf node size of 5.

Again, the dataset is separated into two parts, according

to each AccuraSpray measurement record: the beginning

70% for training and the remaining 30% for testing. This

arrangement emphasizes the prediction of future values.

In this exploratory work, only the one-step prediction,

which predicts the immediate next target value, is consid-

ered. The performance is compared using the mean square

error (MSE) in the original unit scale.

Results

General Performance and Ensemble Sizing

For each dataset, a set of RF regression models is first

constructed, with an increasing number of trees from 5 to

500. Since the in-flight particle characteristic data captures

the effect of electrode ageing, the prediction error is a

direct indication of how well each model can cope with the

aspect of electrode usage time. The corresponding out-of-

sample MSE (i.e. computed from the testing data) versus

the number of trees considered for the three RF model sets

are shown in Fig. 7. The MSE of the simple embedded RF

model is much smaller than that of the baseline model;

whereas that of the differenced embedded RF model is

substantially further reduced. For all three cases, the MSE

reduces as the number of trees increases from the begin-

ning. After a certain point, a further increase in the number

of trees does not reduce the MSE anymore. This transition

to the error plateau provides a guideline of the required

number of trees for the ensemble as per the selected

hyperparameters. From Fig. 7, it is indicated that the

baseline RF model needs about 300 trees. Both the simple

embedded and differenced embedded RF models (upon

zoomed in) need about 200 trees.

Table 1 lists the in-sample MSE (i.e. computed from the

training data) together with the out-of-sample MSE (i.e.

computed from the testing data) for the three RF models.

When the out-of-sample error is much higher than those of

the in-sample, it is an indication of model over-fitting (i.e.

when the model starts to capture also the noisy patterns in

the training dataset, in addition to the overall trends as

originally intended). The results from Table 1 suggest that
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the embedding procedure reduces model over-fitting. In

particular, the differencing preprocessing essentially

‘‘eliminates’’ model over-fitting with respect to the present

choice of hyperparameters.

Important Features

As mentioned above, RF provides a ranking of variable

importance as the models are developed. The feature

ranking order of the baseline RF model is the same as

Fig. 5. Whereas the top 12 features for the simple

embedded and the differenced embedded RF models are

shown in Fig. 8. The differenced embedded RF model

ranks the previous targets (i.e. the previous particle tem-

peratures and velocities) to be the most important attribute

group, with a mixed order. After the previous targets, the

model neatly ranks the torch currents, followed by the

torch cooling, then the voltages, the raw powers and finally

the electrode usage times. Whereas, the simple embedded

RF model neatly ranks the previous particle temperature

first, followed by particle velocity and the rest of the

attributes in a mixed manner. The rankings from both

embedded RF models underline the importance of the

consideration of the previous target as attributes. Such

consideration is not possible using the baseline RF model.

Performance Comparison

The performance of a baseline RF model with 300 trees is

then compared with two embedded RF models with 200

trees. Here, the tree depth is limited to 3 for all three RF

models to better contrast their performance.

The comparison of the in-flight particle temperature

prediction is shown in Fig. 9. The predictions are plotted

against the actual values. The better the predictions are, the

closer will they be with respect to the diagonal line. The

scattering of the prediction reduces progressively from the

baseline model (R2 ¼ 0:928), then with the simple

embedded RF model (R2 ¼ 0:950), and finally becomes the

smallest with the differenced embedded RF model

(R2 ¼ 0:999).

Figure 10 shows the comparison of the in-flight particle

velocity prediction. Similar improvement trend can be

observed, starting from the prediction of the baseline model

(R2 ¼ 0:822), then better with the simple embedded RF

model (R2 ¼ 0:965), and the best with the differenced

embedded RF model (R2 ¼ 0:999).

Selected predictions of the in-flight particle tempera-

tures and velocities are shown in Fig. 11. Interestingly, a

few predictions of the baseline model are better than those

Fig. 7 The out-of-sample mean

squared error versus the number

of trees in the ensemble of the

three RF models

Table 1 In-sample and out-of-sample mean square error (MSE) for

the three RF models. The closer the out-of-sample error (computed

from the testing data) to those of the in-sample (computed from the

training data), the less model over-fitting exists

MSE In-sample Out-of-sample

Baseline 0.00056 0.01324

Simple Embed 0.00150 0.00543

Diff. Embed 0.00048 0.00042

Bold values indicate the superior performance of the Diff. Embed RF

model
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of the simple embedded RF model here, e.g. the first

velocity prediction on the left.

Discussions

In literature, the majority of the predictive models pro-

posed for APS in-flight particle characteristics are neural

network based. The present investigation demonstrates that

ensemble methods like RF are also suitable to model the

APS in-flight particle characteristics. Compared with the

neural network-based models, training a RF model is a lot

easier. There are only a few hyperparameters (e.g. the

number of feature included per tree, the depth of the tree,

the minimum leaf node size, etc.) involved to specify the

layout of an individual decision tree (Ref 36). The ‘forest’

can then be grown in a straight forward manner by building

a new tree repeatedly from randomly sampled data with

replacement. In contrast, to develop a neural network, one

first needs to design the network structure by selecting the

number of hidden layers, the number of neurons in each

layer, their connection topology, and the activation func-

tion, etc. (Ref 37, 38) There is no specific rule of thumb for

a successful neural network topology. Secondly, one needs

to find the weighting parameters for the network compo-

nents by solving a non-convex optimization problem; for

example, using backpropagation (Ref 37, 38). It is not

possible to compute an optimal set of the weights, nor there

is any global convergence guarantees to find them. The

process is generally computationally expensive. Besides,

the complexity of the neural network dictates the minimum

amount of data needed for its training. The present work

now provides a straightforward alternative machine learn-

ing modeling approach for APS in-flight particle charac-

teristics prediction.

The present work also underlines the benefits to consider

the APS data as time series when modeling the in-flight

particle characteristics since electrode ageing is of concern.

The importance of such time evolving (i.e. time series)

aspect of the in-flight particle characteristics as the elec-

trode ages was not yet commonly acknowledged and was

under appreciated in the corresponding predictive models.

The majority of the predictive models proposed for APS in-

flight particle characteristics do not consider the time

evolution aspects of the process inputs parameters. Only a

few articles consider such aspect. For instance, Liu et al.

examined a time-series-sensitive nonlinear autoregressive

exogenous (NLARX) model combined with the wavelet

network to predict the in-flight particle characteristics of a

mono-cathode plasma spray torch using a system identifi-

cation approach (Ref 8). It was mentioned that such

approach can better capture the dynamic characteristics,

comparing with the normal neural network. Kim examined

a linear autoregressive with exogenous (ARX) model and

ARX-type neural network models to develop a control-

oriented dynamic model of an inductively coupled plasma

torch, similar to the work of Liu et al. (Ref 39). The present

work uses RF to prepare three models: the baseline, the

simple embedded and the differenced embedded. The latter

two consider the in-flight particle characteristics as time

series via the embedding procedures, which incorporates

the data from the previous time steps into the present

Fig. 8 Rankings of features for differenced embedded (a) and simple embedded (b) RF models

J Therm Spray Tech (2023) 32:175–187 183

123



record, and they both have much improved performance

over the baseline model for one-step prediction. In partic-

ular, it is highly beneficial to first make the time series

stationary using the differencing technique. Since all three

models are constructed using RF, the prediction improve-

ment seen in those using the embedding procedures is

offered by the datasets of these two models which contain

information from the previous time steps. This provides

clear supporting results to illustrate the benefits of con-

sidering the in-flight particle characteristics as time series

over the lifespan of the electrodes.

Investigations are currently under way to evaluate other

multivariate predictive models applicable for time series,

as well as to compare the performance of the alternative

Fig. 9 Comparison of the in-flight particle temperature predictions of

the baseline (a), the simple embedded (b) and the differenced

embedded (c) RF models. Note that all the attributes and the targets,

including the in-flight particle temperature, are normalized by first

subtracting the respective mean and then divided by their respective

standard deviation

Fig. 10 Comparison of the in-flight particle velocity predictions of

the baseline (a), the simple embedded (b) and the differenced

embedded (c) RF models. Note that all the attributes and the targets,

including the in-flight particle velocity, are normalized by first

subtracting the respective mean and then divided by their respective

standard deviation
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time series enrichment strategy, which performs feature

engineering and selection from the statistics of the time

series (e.g. mean, standard deviation) for the learning. The

corresponding findings will be communicated in future

work. Although there are still knowledge and technological

gaps before deploying a production-ready predictive model

for the in-flight particle characteristics, the present study

lays down a solid foundation to advance towards such goal.

Conclusions

This work explored the applicability of two ensemble

methods, namely RF and GB, to predict and forecast the

multivariate APS in-flight particle characteristics with the

consideration of torch electrodes ageing as time series.

Experiments were performed to record simultaneously the

input process parameters, the in-flight powder particle

characteristics and the electrodes usage time, using a brand

new pair of electrodes until they were no longer usable.

Only a single spray condition was considered. The in-flight

powder particle characteristics clearly reflect the effect of

electrode ageing. Two strategies of time series embedding

manipulation are considered. The first one simply stacks up

the attributes and the targets from the previous n time

segments considered without any modification, while the

second strategy first performs differencing to make the

time series stationary before the embedding procedure. To

select the more influencing attributes for the embedding

procedure, an initial feature ranking is performed using

both RF and GB. Such ranking underlines the advantages

for those models that can consider the inter-target corre-

lation for multivariate regression modeling. Hence, for the

present application, RF is more suitable than GB. The

superior prediction performances and the feature rankings

of both embedded RF models show that it is better to

consider the APS data as time series for the in-flight par-

ticle characteristic prediction. In particular, it is also

advantageous to first make the time series stationary using

the traditional differencing technique, even when modeling

using RF. Comparison with other multivariate regression

modeling techniques for time series is currently under way

and the findings will be communicated in future work.

Ultimately, it is desired to develop a predictive model for

coating characteristics and performance, which can serve

as a guiding tool for effective torch usage and coating

quality control.
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