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Abstract

Background

Drug-induced nephrotoxicity is a relatively common preventable cause of acute kidney injury

(AKI), providing early recognition and management. The pharmacokinetics or pharmacody-

namics of drug-drug interactions may lead to additive or synergistic toxicity. The influx of

new medications or off-label use of medications in the critical care setting can lead to addi-

tional nephrotoxicities, often challenging to predict or detect. This study evaluates the pat-

terns of medication utilization, their combinations, and the related associations with AKI.

Methods

We utilized correlation-based network analysis (CNA) to investigate the relationship

between medications or their combinations with AKI in a large cohort of critically ill patients

in a tertiary medical center between 2007 and 2018. Pairwise medication-AKI correlation

analysis was performed to evaluate drug synergistic or additive effects. To investigate the

inherent nephrotoxicity of medications, we further analyzed medications that were not

paired with any other medications within 24 hours before or after their administration time

(isolated medication analysis).

Results

Among 147,289 ICU admissions, we identified 244 associations among 1,555 unique medi-

cation types. In pairwise analysis, 233 significant correlations were found among

13,150,198 medication pair instances. In isolated medication analysis, ten significant AKI

associations were noted. When stratified by eGFR level, substantial differences between

eGFR<90 vs. eGFR�90 patients were observed. This highlights a need to determine eGFR

as a risk factor for nephrotoxicity assessment when drug interactions are considered.
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Conclusions

This large-scale cohort study identified an artificial intelligence model to identify patient-

agnostic relationships between medication or their pairs with AKI incidence among critically

ill patients. It could be used as a continuous quality assurance tool to monitor drug-associ-

ated risk nephrotoxicity.

Introduction

Acute kidney injury (AKI) is a relatively common complication of acute illness. The use of

potentially nephrotoxic drugs is known to induce kidney dysfunction or injury, contributing

to 14–21% of cases of AKI in critically ill patients [1–4]. Indeed, up to 22% of the 100 most

administered drugs in adult intensive care are potentially nephrotoxic [5]. In addition, the

number of new medications, including chemotherapeutics and biological drugs with potential

nephrotoxicities, continues to increase exponentially [6,7]. Hence, healthcare providers need

to be familiar with the drugs that may cause nephrotoxicity to select appropriate medications

for their patient scenario and tailor the drug therapy program accordingly (e.g., discontinua-

tion, dose adjustment). This essential information will facilitate preventive maneuvers, early

identification, and directed disease management [8].

A standardized approach to defining drug-induced kidney disease (DIKD) has been pro-

posed, but no pre-determined standardized nephrotoxin list exists. Moreover, the drug-drug

interactions in DIKD are not well described [9]. For example, several drug combinations have

been identified as potential concerns due to pharmacokinetic or pharmacodynamic drug inter-

actions (e.g., vancomycin and piperacillin/tazobactam, aminoglycosides, and cephalothin,

nonsteroidal anti-inflammatory drugs (NSAIDs) and radiocontrast, and cisplatin and amino-

glycosides [10–13]). However, such associations are rarely detected in clinical trials and post-

marketing analyses, while often, the primary focus of nephrotoxicity studies has been on single

drug associations with AKI rather than combinations.

To understand multifaceted relationships between different drugs in the complex clinical

environment in the intensive care unit (ICU), it is necessary to broadly evaluate drug utili-

zation patterns in all patients and their association with AKI development in this setting

[14,15]. Therefore, we aimed to understand the medication administration patterns, drug-

drug interactions, and their impacts on AKI risk. We applied correlation-based network

analysis (CNA) to investigate the medication administration patterns and their association

with AKI risk by mining electronic medical record (EMR) data and stratifying it according

to underlying factors such as age, sex, and estimated glomerular filtration rate (eGFR). This

approach facilitates 1) identifying the medications most prescribed in ICUs among patients

with AKI and 2) exploring the pattern of medication pairs most prescribed in ICUs among

patients with AKI.

Materials and methods

Data description

The utilized data set consisted of medication administration records from patients admitted to

the adult intensive care unit (ICU) of Mayo Clinic between January 2007 and May 2018. A

total of 147,289 ICU admissions and 1,555 administered medication types were included in

the study, which resulted in 16,603,882 medication administration instances.
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Data preprocessing

The serum creatinine (SCr) and urine output (UO) criteria proposed by the Kidney Disease:

Improving Global Outcomes (KDIGO) were utilized to determine the AKI incidence and stages,

described as 1) Stage 1: increase in SCr� 1.5-2-fold from baseline or by� 0.3 mg per dL, or UO

of� 0.5 mL per kg per hour for more than 6 hours, 2) Stage 2: increase in SCr>2-3-fold from

baseline, or low UO of� 0.5 mL per kg per hour for more than 12 hours, 3) Stage 3: increase in

SCr>3-fold from baseline, or low UO of� 0.5 mL per kg per hour for more than 24 hours.

The ICU admissions without available measured baseline SCr values were excluded from

this study. All patients with evidence of AKI at the time of admission to the ICU were also

excluded. Cases with AKI during the first 24 hours of ICU admission were also excluded to

allow for sufficient time between drug exposure and AKI onset.

Medication administration records and AKI stage-related variables for each ICU stay were

listed and linked with a unique encounter ID in the original data set. Due to the numerous

non-uniform dosage units and co-existence of continuous (e.g., fluid) and discrete (e.g., tablet)

medication types, we only considered the counts of medication administered to the patient

during their hospitalization at the ICU without considering dosages. The time of the first SCr

or UO to meet AKI diagnosis was considered time zero for AKI patients. For patients who

developed AKI, medications administered from ICU admission to 24 hours before the earliest

AKI detection time were tagged as potentially correlated with AKI development (Fig 1).

For the non-AKI group of patients, we considered ICU admission time + average time of

AKI development for the AKI group as time zero for exposure to medications with potential

nephrotoxicity. Therefore, medication administrations from ICU admission time to 24 hours

before the a-priori-defined time zero for AKI and non-AKI groups were extracted from the

medical records (Fig 1).

Several medications were excluded from the analysis based on their administration route,

including per rectum (PR), inhalation (IH), intra-ocular, topical, vaccinations, food products,

and medications prescribed via gastrostomy tubes (GT; these mostly included multivitamins

with minerals, lansoprazole, sodium phosphate, oxycodone, ferrous sulfate, ranitidine, atorva-

statin, lisinopril, warfarin).

Fig 1. Time window for medication administration extraction. For the patient who develops AKI (Patient A), the

time window ranges from ICU admission to 24 hours before that patient’s earliest AKI detection time. In contrast, for

non-AKI patients (Patient B), the time window is from ICU admission to 24 hours before the average AKI

development time for AKI patients.

https://doi.org/10.1371/journal.pone.0279928.g001
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Evaluation of medications associated with AKI

We used Pearson correlation coefficients to investigate the relationship between medications

and AKI development. In addition, the Bonferroni correction was used to minimize Type I

Errors.

We assessed medication-AKI correlation as 1) single medication-AKI correlation to iden-

tify the association between AKI and each administered medication, where we used Pearson

similarity coefficients. The medications were then ranked based on the strength of their associ-

ations with AKI, and 2) pairwise medication-AKI correlation to evaluate the synergistic or

additive effect of co-administered drugs. We defined the "medication pairs" as two medica-

tions administered during one ICU admission, with a time interval of� 24 hours (Fig 2), and

3) isolated medication-AKI correlation. While some medications have inherent nephrotoxi-

city, in others, the nephrotoxic effects are in the presence of another agent or medication.

Therefore, "isolated medications" were those that could not be paired with any other medica-

tions within 24 hours before or after administration (Fig 2).

The correlation analyses were performed on the entire population and subgroups stratified

by an estimated Glomerular filtration rate (eGFR) of below or above 90mL/min/1.73m2, calcu-

lated using the Modification of Diet in Renal Disease (MDRD) equation [16].

Visualization of medication-AKI network

Due to the complexity of medication association with AKI, we utilized correlation-based net-

work analysis (CNA) to investigate the medication administration patterns and their associa-

tion with AKI. In CNA, a network can be represented as a graph of nodes connected in pairs

by a rule through links. The R package "igraph" was utilized to draw a "hairball" network

Fig 2. Medication pair and isolated medications. 1) Medication pairs are combinations of two medications

administered during one ICU admission with a time interval of�24 hours. For example, medications 1 and 2 together

and any combination of Medications 3, 4, and 5 are considered pairs. However, none of medications 1, 2 can form a

pair with medications 3, 4, and 5, as they are not administered within 24 hours. 2) Isolated medications are not

administered with any other medications in pairs, i.e., within 24 hours. For example, medication 3 is an isolated

medication, as there are no other medications (medications 1, 2, 4, and 5) administered 24 hours before or after its

administration.

https://doi.org/10.1371/journal.pone.0279928.g002
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diagram and visualize the medication-AKI network. Each vertex indicates a medication, and

two vertices would be linked together via an edge if two medications were within a "medication

pair."

We used the size of the nodes and the width of the edges to represent the administration

frequency of single or pairs of medications, respectively. In addition, the colors of the nodes

and edges show the strength of correlation coefficients. The resulting weighted networks were

analyzed using the tools of network theory for the entire population and the eGFR stratified

subgroups.

We performed community detection via a fast greedy modularity optimization algorithm

to identify clusters of medications that tend to be connected more densely when given in pairs.

The strength of the correlation was taken into consideration as the attributed weight in finding

the community structure. The communities were visualized in subgraphs within a global net-

work characterized by higher connectivity between their components than in the other

regions. Interpreting the complex medication network as a set of communities was used to

identify clinically meaningful patterns that might have been hidden.

Results

After excluding 47,887 ICU admissions and 16,269,007 medication administration instances,

the final data set contained 99,402 ICU admissions (88,567 (89.10%) without AKI and 10,835

(10.90%) with AKI developed after 24 hours of ICU admission), 1,096 medication types and

334,875 medication administration instances administered before the AKI development or

time zero for non-AKI patients (S1 Fig). The average AKI development time was 61 (±108)

hours. Based on a-priori plans for non-AKI patients, the 61st hour of ICU admission was

selected as time zero.

Correlation analysis

Single medication-AKI correlation analysis. Table 1 lists the twenty most frequently

administered medications associated with AKI. Two hundred forty-four medications were sig-

nificantly correlated with AKI development. Among these drugs, eleven were included in the

20 most commonly administered medications, i.e., furosemide, heparin, vancomycin, potas-

sium chloride, propofol, norepinephrine, insulin, piperacillin/tazobactam, fentanyl, midazo-

lam, metoprolol.

Pairwise medication-AKI correlation analysis. The data set contained 13,150,198 medi-

cation pair instances, consisting of 124,198 unique medication pairs. The medication pairs

were sorted based on their administration frequency (Table 2). The top twenty medication

pairs consisted of 12 unique medications, among which all except magnesium sulfate were

included in the 20 most frequently prescribed single medication lists (Table 1).

Two hundred thirty-three medication pairs were significantly correlated with the AKI

development, consisting of 69 unique medications. Among those, 65 drugs were also included

in the list of significant single medications. Table 3 shows the top 20 drugs included in pairs

and the list of single medications.

Interestingly, there was no overlap between Tables 2 and 3, which indicates that the most

significant AKI-correlated medication pairs were not frequently prescribed in ICUs. Also, the

strength of the correlation coefficients generally were weaker than those from the single medi-

cation analysis.

Isolated medication-AKI correlation analysis. Sixty-four of the 69 medications identi-

fied in the medication pair analysis were administered alone at least once (etomidate, benzona-

tate, cosyntropin, succinylcholine, and senna were only applied in pairs), resulting in 2,752
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Table 1. Top 20 frequently administered and significant AKI-correlated medications.

Frequently prescribed Associated with AKI
Medication Count (Frequency) Medication Pearson Coefficient
Fentanyl 297861 (0.089) Furosemide� 0.154323

Insulin 169056 (0.050) Heparin� 0.148904

Propofol 147706 (0.044) Vancomycin� 0.131278

Acetaminophen 133364 (0.040) Potasium Chloride� 0.130062

Heparin 125716 (0.038) Propofol� 0.125510

Nitroprusside 122993 (0.037) Norepinephrine� 0.124628

Pot Chloride 96114 (0.029) Albumin 0.110963

Phenylephrine 81824 (0.024) Insulin� 0.104128

Oxycodone 81693 (0.024) Piperacillin/Tazobactam Dextrose� 0.101780

Norepinephrine 81439 (0.024) Calcium Chloride 0.100198

Metoprolol 81161 (0.024) Nystatin 0.099618

Hydromorphone 71225 (0.021) Cefepime 0.095724

Furosemide 56988 (0.017) Vasopressin 0.095714

Epinephrine 53283 (0.016) Fentanyl� 0.095669

Cefazolin 50895 (0.015) Quetiapine 0.093315

Aspirin 41843 (0.012) Midazolam� 0.093260

Piperacillin/Tazobactam Dextrose 41609 (0.012) Levofloxacin/Dex 0.093146

Vancomycin 39225 (0.012) Meropenem 0.088812

Pantoprazole 36894 (0.011) Lidocaine 0.087702

Midazolam 35438 (0.011) Metoprolol� 0.086261

https://doi.org/10.1371/journal.pone.0279928.t001

Table 2. Top 20 frequently administered medication pairs.

Medication Pairs Count Frequency
Medication #1 Medication #2
Acetaminophen Fentanyl 50036 0.003805

Fentanyl Propofol 41832 0.003181

Acetaminophen Oxycodone 37846 0.002878

Fentanyl Potassium Chloride 36127 0.002747

Acetaminophen Heparin 35996 0.002737

Fentanyl Heparin 34263 0.002606

Fentanyl Oxycodone 32541 0.002475

Cefazolin Fentanyl 31207 0.002373

Acetaminophen Potassium Chloride 30725 0.002336

Fentanyl Insulin 28800 0.002190

Acetaminophen Aspirin 28257 0.002149

Acetaminophen Metoprolol 28192 0.002144

Aspirin Fentanyl 27426 0.002086

Fentanyl Metoprolol 27086 0.002060

Aspirin Heparin 26652 0.002027

Fentanyl Furosemide 26377 0.002006

Furosemide Pot Chloride 26368 0.002005

Fentanyl Magnesium Sulfate 26341 0.002003

Heparin Metoprolol 25043 0.001904

Aspirin Furosemide 24784 0.001885

https://doi.org/10.1371/journal.pone.0279928.t002
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medication administration instances. Among the 64 medications, ten were significantly corre-

lated with AKI development (Bonferroni corrected α = 0.01/64 = 1.56E – 04; Table 4). All ten

medications were also significantly correlated with AKI during the single medication-AKI cor-

relation analysis. Except for nitroprusside, all drugs were included in the top 20 AKI-correlated

drugs indicated in Table 1. Among those nine drugs, five medications (insulin, fentanyl, van-

comycin, phenylephrine, and piperacillin/tazobactam/dex) were among the 20 most frequently

prescribed medications.

Among the 233 significant medication pairs, in 16 pairs, both medications in the pairs were

significantly correlated with AKI in isolated analysis. In 86 pairs, only one medication in the

pairs was identified as significant isolated medication, and finally, in 131 pairs, none of the

medications were among the significant isolated medications. More than half of the significant

Table 3. Top 20 significant AKI-correlated medication pairs.

Medication Pairs Pearson Coefficient
Medication #1 Medication #2
Insulin Midazolam 0.09678323

Midazolam Vasopressin 0.09413781

Heparin Norepinephrine 0.09215886

Insulin Vasopressin 0.09058875

Fentanyl Norepinephrine 0.08992984

Heparin Vasopressin 0.08618485

Fentanyl Vasopressin 0.08608049

Midazolam Vancomycin 0.0846426

Furosemide Midazolam 0.08395664

Calcium Chloride Vasopressin 0.08361297

Midazolam Norepinephrine 0.08287218

Norepinephrine Piperacillin/Tazobactam Dextrose 0.08193319

Norepinephrine Vancomycin 0.08110514

Amiodarone Vasopressin 0.08060275

Magnesium Sulfate Vasopressin 0.07895175

Propofol Vasopressin 0.07812128

Midazolam Milrinone 0.07636951

Norepinephrine Vasopressin 0.07599747

Calcium Chloride Insulin 0.07587109

Magnesium Sulfate Midazolam 0.07581045

https://doi.org/10.1371/journal.pone.0279928.t003

Table 4. Significant AKI-correlated isolated medications.

Isolated Medication Pearson Coefficient
Insulin

� ,�� 0.142192

Nitroprusside 0.123275

Albumin� 0.118331

Fentanyl
� ,�� 0.110381

Vancomycin
� ,�� 0.092251

Phenylephrine
� ,�� 0.091323

Vecuronium Bromide� 0.077508

Piperacillin/Tazobactam Dextrose
� ,�� 0.077496

Calcium Chloride� 0.077086

Meropenem� 0.077086

https://doi.org/10.1371/journal.pone.0279928.t004
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medication pairs did not contain any significant isolated drugs. Also, 118 among these 131

pairs did not include any of the five medications which have never been administered alone.

Hence, in these 118 medication pairs, individual drugs were not correlated with AKI when

given independently but significantly associated with AKI when given in pairs, suggesting

potential nephrotoxic drug-drug interactions (Table 5; the top 11 could also be found in

Table 3).

Visualization of medication-AKI network. To better visualize the impact of medication

pairs and isolated medications on AKI development, we drew the "hairball" network diagram

to visualize the 233 pairs, as shown in S2 Fig. Fig 3 only shows the colored edges to visualize

the strength of correlated medication pairs.

We identified six medication clusters to explore their relationship with AKI (Fig 4). We

identified several patterns in our analytical approach, including 1) unlike all the AKI-corre-

lated drugs identified in the isolated medication analysis that were among the most frequently

prescribed drugs, e.g., insulin and nitroprusside, not all the medication pairs were among the

frequently prescribed drugs, e.g., sodium phosphate/vasopressin. In addition, frequently pre-

scribed medications or medication pairs were not necessarily correlated with AKI; 2) indeed,

in medication pair analysis, some drugs were not associated with AKI when prescribed alone,

e.g., vasopressin and sodium phosphate. In this case, potential nephrotoxicity due to drug-

drug interactions could be present; 3) cluster 1 (Fig 4A) medications are associated with AKI

both in pair and isolated analyses. Therefore, they could have additive or synergistic effects

on AKI development. Fig 4A shows that most medications strongly correlated with AKI were

also frequently prescribed. This notion provides a path to highlight practice patterns that

could be evaluated to mitigate the nephrotoxicity burden; 4) Fig 4B shows medication pairs

that are commonly prescribed and have less association with AKI; 5) The rest of the clusters

Table 5. Top 20 significant AKI-correlated medication pairs that do not consist of any significant isolated medications.

Medication Pair
Medication #1

Medication Pair
Medication #2

Pearson Coefficient

Midazolam Vasopressin 0.09413781

Heparin Norepinephrine 0.09215886

Heparin Vasopressin 0.08618485

Furosemide Midazolam 0.08395664

Midazolam Norepinephrine 0.08287218

Amiodarone Vasopressin 0.08060275

Magnesium Sulfate Vasopressin 0.07895175

Propofol Vasopressin 0.07812128

Midazolam Milrinone 0.07636951

Norepinephrine Vasopressin 0.07599747

Magnesium Sulfate Midazolam 0.07581045

Epinephrine Milrinone 0.075703

Epinephrine Vasopressin 0.07552481

Potassium Chloride Vasopressin 0.07518455

Heparin Midazolam 0.07503072

Magnesium Sulfate Norepinephrine 0.07487292

Milrinone Vasopressin 0.07457858

Midazolam Potassium Chloride 0.07357606

Furosemide Levofloxacin Dextrose 0.07235405

Milrinone Potassium Chloride 0.0714607

https://doi.org/10.1371/journal.pone.0279928.t005
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(Fig 4C–4F) only contained no or one significant isolated medication without correlation with

AKI. These clusters included single or paired medications that were not commonly prescribed;

6) Table 6 lists the drugs highlighted in Fig 3 with connections with at least ten other medica-

tions, indicating pairs associated with AKI. For example, while vasopressin contributes to

most medication pairs, it is not included in the list of single medications related to AKI devel-

opment. This finding may indicate that its utilization and relationship with AKI should likely

be viewed as synergistic or additive rather than a nephrotoxin itself. Other medications that

followed the same patterns included midazolam, heparin, propofol, milrinone, potassium

chloride, amiodarone, and epinephrine. On the other hand, medications like fentanyl, calcium

chloride, phenylephrine, vancomycin, piperacillin/tazobactam dextrose, albumin, and insulin

were frequently prescribed, contributed to more than ten pairs, and as single medications were

also associated with AKI; 7) Fig 3 shows drugs with strong AKI correlation (ten medications

were included in 43 medication pairs associated with AKI). Some of these medications con-

tributed in limited pairs, e.g., nitroprusside and vecuronium bromide in one pair and merope-

nem in four pairs. These classes of medications likely are nephrotoxic as a single medication

rather than a contributor to AKI in pairs. Within 43 identified medication pairs strongly asso-

ciated with AKI, both medications were associated with AKI in 6 pairs, only one medication

was associated with AKI in 13 pairs, and none of the medications were nephrotoxic in isolation

in 24 pairs. Among the 14 pairs with the strongest AKI correlations, six pairs did not have any

medications associated with AKI in isolation, i.e., midazolam-vasopressin, heparin-norepi-

nephrine, heparin-vasopressin, furosemide-midazolam, midazolam- norepinephrine, amio-

darone-vasopressin.

Fig 3. Hairball network diagram of medications pairs with a significant correlation with AKI. The 233 significant

medication pairs, consisting of 69 unique medications, are visualized as a hairball network diagram where each vertex

indicates a medication (69 unique medications resulting in 69 vertices). Each of the vertices is linked via an edge if two

medications are medication pairs with a high AKI correlation (233 significant medication pairs resulting in 233 edges;

however, the edges associated with Pearson similarity coefficients of<0.07 are eliminated for better visibility; for a full

view of all edges, please see S2 Fig). The width of the edges represents the administration frequency (0 − 50; 50 − 500;

>500). The color of the edges shows the strength of Pearson similarity coefficients for the medication pairs (correlation

coefficients>0.08 is red, and 0.07−0.08 is orange). Stronger Pearson similarity coefficients indicate a more significant

relationship between the prescription of isolated medications and AKI development. The size of the vertices represents

the administration frequency of the single medications (0 − 20; 20 − 100;>100). The color of the vertices shows the

strength of Pearson similarity coefficients for the isolated medications (correlation coefficient of>0.12 is red, 0.07−
0.12 is orange, and when there is no significant correlation, or medication was never administered alone, it is white).

https://doi.org/10.1371/journal.pone.0279928.g003
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Subgroup analysis

Table 7 shows the results of subgroup analysis after stratification based on eGFR of 90 ml/

min/1.73 m2 (Chronic kidney disease [CKD] with eGFR <90 ml/min/1.73 m2 vs. non-CKD

with eGFR�90 ml/min/1.73 m2).

Fig 4. Hairball plots for medication clusters. We identified six communities of medication clusters (from a to f), where each cluster is visualized as a hairball

network diagram. The width of the edges represents the administration frequency (0 − 50; 50 − 500;>500). The color of the edges shows the strength of

Pearson similarity coefficients for the medication pairs (correlation coefficients>0.08 is red, and 0.07−0.08 is orange). Stronger Pearson similarity coefficients

indicate a more significant relationship between the prescription of isolated medications and AKI development. The size of the vertices represents the

administration frequency of the single medications (0 − 20; 20 − 100;>100). The color of the vertices shows the strength of Pearson similarity coefficients for

the isolated medications (correlation coefficient of>0.12 is red, 0.07− 0.12 is orange, and when there is no significant correlation, or medication was never

administered alone, it is white).

https://doi.org/10.1371/journal.pone.0279928.g004

Table 6. Medications with high node degrees.

Node (Medication) Degree Node (Medication) Degree Node (Medication) Degree
Vasopressin� 33 Phenylephrine

��

18 Levofloxacin Dextrose 13

Norepinephrine 28 Potassium Chloride� 17 Insulin
��

12

Fentanyl
��

24 Vancomycin
��

17 Etomidate 12

Midazolam� 23 Amiodarone� 15 Furosemide 11

Heparin� 18 Epinephrine� 15 Haloperidol 11

Calcium Chloride
��

18 Piperacillin/Tazobactam Dextrose
��

14 Lorazepam 10

Propofol� 18 Magnesium Sulfate 13

Milrinone� 18 Albumin 13

� Medications that contribute to the medication pairs associated with AKI but are not included on the list of nephrotoxins when used alone.

�� Medication frequently prescribed, contributed in more than ten pairs of medications associated with AKI, and as single medications were also associated with AKI.

https://doi.org/10.1371/journal.pone.0279928.t006
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Single medication-AKI correlation analysis. Nine hundred eighty-seven unique medica-

tions were prescribed among CKD patients, with 186 (19%) significantly correlated with AKI.

Among 988 unique medications, 191 (19%) were significantly associated with AKI in patients

without CKD. Table 8 lists the top 20 medications of each subgroup associated with AKI. Six-

teen medications were common in both subgroups. While there were a lot of similarities

between the AKI-associated medications in the subgroups, midazolam, meropenem, and met-

oprolol were more prevalent in the subset with CKD vs. lidocaine among non-CKD patients.

Pairwise medication-AKI correlation analysis. In the CKD subgroup, 42,661 unique

medication pairs were used, with 205 pairs, including 71 unique medications, being signifi-

cantly correlated with AKI. The non-CKD subgroup received 26,806 unique medication pairs,

with 36 pairs (30 unique medications) significantly correlated with AKI. Table 9 lists the top

20 AKI-associated medication pairs in each subgroup. The two subgroups did not share any of

Table 7. Number of medication instances in GFR subgroups.

non-AKI
N

AKI
N

eGFR<90 1,225,594 279,969

eGFR� 90 1,525,654 317,536

Abbreviations: eGFR, estimated glomerular filtration rate.

https://doi.org/10.1371/journal.pone.0279928.t007

Table 8. Top 20 significant AKI-correlated medications for two subgroups.

GFR<90 Group GFR� 90 Group
Medication Pearson Coefficient Medication Pearson Coefficient
Furosemide� 0.156417 Furosemide� 0.157797

Heparin� 0.151747 Heparin� 0.14804

Vancomycin� 0.144074 Potassium Chloride� 0.132135

Norepinephrine� 0.136063 Propofol� 0.12224

Potassium Chloride� 0.130368 Vancomycin� 0.122034

Propofol� 0.130135 Norepinephrine� 0.116064

Insulin� 0.122824 Albumin� 0.112499

Calcium Chloride� 0.114971 Nystatin� 0.105866

Albumin� 0.110996 Piperacillin/Tazobactam Dextrose� 0.100413

Vasopressin� 0.110125 Quetiapine� 0.091413

Midazolam
��

0.105243 Fentanyl� 0.091391

Piperacillin/Tazobactam Dextrose� 0.103455 Cefepime� 0.090986

Cefepime� 0.101895 Lidocaine
���

0.089679

Fentanyl� 0.100948 Levofloxacin/Dext� 0.089573

Nystatin� 0.100707 Insulin� 0.088559

Meropenem�� 0.097692 Calcium Chloride� 0.08819

Levofloxacin Dextrose� 0.097596 Sodium Chloride 0.086553

Quetiapine� 0.0957 Milrinone 0.086109

Epinephrine 0.092968 Vasopressin� 0.084579

Metoprolol
��

0.091587 Metronidazole 0.084005

� Meications prescribed in both subgroups.

�� Medications mostly used among those with chronic kidney disease with GFR<90 ml/min/1.73 m2.

��� Medications mostly used among those with chronic kidney disease with GFR�90 ml/min/1.73 m2.

https://doi.org/10.1371/journal.pone.0279928.t008
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the top 20 AKI-associated medication pairs. Ten AKI-associated medication pairs among

CKD patients were also found in the top 20 AKI-associated medication pairs in all patients.

Table 8 lists the top 20 medications of each subgroup that were associated with AKI.

Isolated medication-AKI correlation analysis. In the CKD cohort, 58 of the 71 unique

medications were administered alone at least once, and six were significantly correlated with

AKI. In the non-CKD subgroup, all unique medications were administered alone (N = 30),

and 6 of them were significantly associated with AKI (Table 10). Insulin was the only medica-

tion that was common among both subgroups.

Table 9. Top 20 significant AKI-correlated medication pairs for two subgroups.

CKD, GFR<90 Group Non-CKD GFR� 90 Group
Medication Pairs Pearson Coefficient Medication Pairs Pearson Coefficient

Medication 1 Medication 2 Medication 1 Medication 2
Acetazolamide Fentanyl 0.1106708 Etomidate Vancomycin 0.13013489

Insulin� Vasopressin� 0.1042989 Furosemide Levofloxacin/Dext 0.12517537

Calcium Chloride� Vasopressin� 0.10319643 Heparin Senna 0.12332817

Heparin� Norepinephrine� 0.10296665 Meropenem Potassium Chloride 0.12137292

Milrinone Vasopressin 0.09993951 Furosemide�� Midazolam�� 0.12083589

Midazolam� Vasopressin� 0.09904047 Metronidazole Vasopressin 0.11958312

Fentanyl� Vasopressin� 0.0989875 Sodium Chloride Vasopressin 0.11876071

Fentanyl� Norepinephrine� 0.09895096 Fentanyl Levofloxacin/Dext 0.11670254

Epinephrine Vasopressin 0.0981826 Dopamine Pantoprazole 0.11633499

Propofol� Vasopressin� 0.09743555 Furosemide Vancomycin 0.11594301

Acetazolamide Potassium Chloride 0.09513354 Cefepime Vasopressin 0.1143419

Insulin Milrinone 0.0942025 Etomidate Piperacillin/Tazobactam Dextrose 0.11387659

Amiodarone� Vasopressin� 0.09379757 Etomidate Pot Chloride 0.11345592

Calcium Chloride Milrinone 0.09313112 Midazolam�� Vancomycin�� 0.11332864

Magnesium Sulfate� Vasopressin� 0.09185513 Etomidate Furosemide 0.11209237

Epinephrine Milrinone 0.09170968 Etomidate Phenylephrine 0.11147296

Insulin� Midazolam� 0.09148049 Etomidate Vasopressin 0.11103668

Acetazolamide Lorazepam 0.08859342 Vancomycin Vasopressin 0.11098672

Potassium Chloride Vasopressin 0.08796814 Norepinephrine�� Piperacillin/Tazobactam Dextrose�� 0.11006394

Acetazolamide Furosemide 0.08789809 Norepinephrine Sodium Chloride 0.10801834

� AKI-associated medication pairs that were common between the CKD subgroup and the whole cohort.

�� AKI-associated medication pairs that were common between the non-CKD subgroup and the whole cohort.

https://doi.org/10.1371/journal.pone.0279928.t009

Table 10. Significant AKI-correlated isolated medications for two subgroups.

eGFR<90 Group eGFR� 90 Group
Medication Pearson Coefficient Medication Pearson Coefficient
Vancomycin 0.132819 Insulin 0.113852

Nitroprusside 0.129079 Calcium Chloride 0.110098

Fentanyl 0.122475 Piperacillin/Tazobactam Dextrose 0.08078

Insulin 0.121948 Epinephrine 0.065386

Albumin 0.115707 Meropenem 0.065079

Phenylephrine 0.11045 Norepinephrine 0.065079

Abbreviations: eGFR, estimated glomerular filtration rate.

https://doi.org/10.1371/journal.pone.0279928.t010
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Discussion

This large-scale retrospective analysis presents methods for identifying medications and drug

combinations associated with AKI using correlation-based network analysis. We found 244

out of 1,096 drugs are possibly correlated with the AKI development, among which 10 of them

are found to be significantly correlated when administered alone (i.e., significant isolated

medications).

Our results should not be interpreted as a causal relationship between the identified drugs

with AKI. Obviously, several identified drugs are used among patients with a high risk of AKI,

e.g., sedatives and opioids used for mechanically ventilated patients. Instead, this study aimed

to develop a model that periodically assesses practice patterns and identifies correlations

between medications and medication pairs with AKI in each institution. This is particularly

needed to identify potential nephrotoxins or nephrotoxic pairs amid changing practices and a

deluge of new medication arrivals. If this model can identify potential strong correlations with

AKI and these associations could be validated in separate studies, clinicians would have the

chance to conduct quality improvement projects to change practice patterns and choose

potentially less nephrotoxic drugs.

Among the ten significant isolated medications, vancomycin and piperacillin/tazobactam

are known nephrotoxic drugs derived from the Nephrotoxic Injury Negated by Just-in-Time

Action (NINJA) collaborative [17]. We also conducted a literature search to find relevant

research papers that investigated the relationships between medications and AKI using the fol-

lowing keywords "AKI," "acute kidney injury," and "acute renal failure." Through the literature

search, we found studies that investigated the associations between nitroprusside, phenyleph-

rine, meropenem, and AKI [18–20], which matched our findings. However, as our goal was to

identify potential associations that are not yet understood, future studies should focus on

highlighted drugs, including insulin, albumin, fentanyl, vecuronium bromide, and calcium

chloride, for their potential nephrotoxicities. These medications could be suitable candidates

for clinical drug-safety studies to investigate possible associations or causal relationships with

AKI, either directly or indirectly.

To verify the results of the medication pair analysis, we compared our findings with known

drug interactions from DrugBank, which includes drug interactions with negative effects, by

considering product labels and evidence in the literature [21]. Among the top 20 significant

medication pairs that did not contain any significance in isolated medication analysis

(Table 5), nine pairs (i.e., furosemide-midazolam, milrinone-midazolam, potassium chloride-

midazolam, furosemide-levofloxacin, and milrinone-potassium chloride pairs are known to

induce drug interactions that could affect serum level) were suggested to have drug-drug inter-

actions by Drug Bank. Further studies are needed to investigate the drug-drug interactions on

the medication pairs we identified as correlated with AKI but not reported in the literature

(i.e., midazolam-vasopressin, heparin-norepinephrine, midazolam-norepinephrine, amiodar-

one-vasopressin).

We also incorporated basic patient characteristics, including age, sex, and eGFR, to stratify

AKI risk categories and conduct subgroup analyses. In subgroup analyses, the unique single

medications associated with AKI were similar between patients with and without an

eGFR< 90 mL/min/1.73m2, but there were substantial differences when medication pairs

were compared (4,353,466 for eGFR<90 vs. 3,234,548 for eGFR� 90). This finding could indi-

cate the presence of kidney dysfunction as an effect modifier in drug-drug interactions. This

notion was even more palpable when we assessed the isolated medications. These data high-

light a need to determine eGFR when drug interactions are considered a risk factor for neph-

rotoxicity assessment.
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In a systematic review, the authors reported poor quality of available evidence of drug class

combinations and their association with AKI development due to a lack of well-designed stud-

ies. Meanwhile, they demonstrated the literature regarding the impact of a combination of

nonsteroidal anti-inflammatory drugs and diuretics with or without additional renin-angio-

tensin-aldosterone agents on AKI to have an overall higher quality of evidence [22]. Our

study, however, showed differing results, likely due to multiple factors. These factors could

include the lack of use of a unified AKI definition and focus on the effects of combining neph-

rotoxic drug classes instead of all possible administered drugs.

Nishata et al. used the association rules method to identify drug combinations associated

with AKI in a large cohort of patients in New Zealand [23]. They reported several medication

classes, including antimicrobials, nonsteroidal anti-inflammatory drugs, and opioids linked to

AKI incidence. Unlike our study, the authors evaluated drug classes instead of specific medica-

tions. Ahmed and colleagues conducted a retrospective cross-sectional study in the pediatric

ICU to assess potential associations between nephrotoxic drugs and the risk of developing

AKI. They reported vancomycin as the most common single nephrotoxin, a combination of

vancomycin and colistin as dual nephrotoxic agents, and vancomycin, colistin, and amphoteri-

cin B as a triple nephrotoxic combination [24]. The authors analyzed the drugs with known

nephrotoxic activities rather than all possible administered drugs. The authors used the serum

creatinine criterion to define AKI in a study to assess the association between nephrotoxic

drug combinations and AKI for infants in ICU. They reported a combination of gentamicin

and indomethacin to be more nephrotoxic when compared with furosemide and tobramycin

or vancomycin and piperacillin-tazobactam [25]. However, the authors only evaluated a pre-

determined list of drug combinations with known nephrotoxicity characteristics similar to the

other investigations. In addition, the study time window was limited to the duration of the

exposure to the studied combination therapy.

The main strength of our study is its exhaustive inclusion of all medications administered

to a large cohort of patients regardless of their previously known nephrotoxicity characteris-

tics. This allowed us to screen all medications used in 147,289 ICU admissions to discover any

potential relationship with AKI. In addition, among the medications with a high association

with AKI in single-drug analyses, we investigated their inherent nephrotoxicity by evaluating

the effect of drug interactions through the "isolated medication analysis."

This study, similar to any retrospective study, has several limitations. First, we cannot infer

any causal relationship. Second, as this analysis was conducted in a single center, its generaliz-

ability may be limited. Third, the study could not account for the dose of drug administered,

potentially impacting our findings. ’Type A’ toxicities (dose-dependent) may have a different

pattern than ’type B’ toxicities (idiosyncratic). Lastly, as we tried to limit individual patient

characteristics entering our analyses, we could not assess the underlying reasons for the medi-

cation administrations, which could independently affect the risk of AKI. We need to empha-

size that the primary purpose of this study is not to identify nephrotoxins for individual

patients, but we aimed to develop a tool to assess the practice patterns related to AKI inci-

dence. Such a tool or dashboard could facilitate a data-driven identification of candidate

nephrotoxins suitable for future studies or scrutiny.

Conclusions

This study developed several models to identify prescription patterns of unique or medication

pairs clustered around AKI episodes. Our results may provide a platform to point to practice

patterns that need to be changed or a novel understanding of the nephrotoxicity of medica-

tions or pairs of drugs that need further evaluation. We also found substantial differences in
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the clusters when CKD patients were compared with non-CKD patients. The utility of this tool

in advancing the quality of care among hospitalized patients or research projects should be

assessed in the future.

Supporting information

S1 Fig. Patient recruitment flow chart.

(TIF)

S2 Fig. Hairball network diagram for 233 significant medication pairs. The 233 significant

medication pairs, consisting of 69 unique medications, are visualized as a hairball network dia-

gram where each vertex indicates a medication (69 unique medications resulting in 69 verti-

ces). Each of the vertices is linked via an edge if two medications are medication pairs with a

high AKI correlation (233 significant medication pairs resulting in 233 edges). The width of

the edges represents the administration frequency (0 − 50; 50 − 500;>500). The color of the

edges shows the strength of Pearson similarity coefficients for the medication pairs (correla-

tion coefficient of>0.08 is red, 0.07−0.08 is orange, and<0.07is grey). The size of the vertices

represents the administration frequency of the single medications (0 − 20; 20 − 100;>100).

The color of the vertices shows the strength of Pearson similarity coefficients for the isolated

medications (red: Correlation coefficients >0.12; orange: 0.07− 0.12; white: Not significant or

never administered alone).

(TIF)
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