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WHAT IS NEW IN CLASSICAL BONE MARROW FAILURE SYNDROMES? (FOCUS ON MANAGEMENT)

Genetics of severe congenital neutropenia
as a gateway to personalized therapy
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Severe congenital neutropenias (SCNs) are rare diseases, and to date about 30 subtypes have been described according
to their genetic causes. Standard care aims to prevent infections and limit the risk of leukemic transformation; however,
several subtypes may have additional organ dysfunction(s), requiring specialized care. Granulocyte colony-stimulating
factor and hematopoietic stem cell transplantation are now the bedrock of standard care. Better understanding of SCN
mechanisms now offers the possibility of adapted therapy for some entities. An inhibitor of sodium glucose cotransporter,
an antidiabetic drug, may attenuate glycogen storage disease type Ib and glucose-6-phosphatase catalytic subunit 3
neutropenias by clearing 1,5-anhydroglucitol, the precursor of the phosphate ester responsible for these SCNs. Chemo-
kine receptor CXCR4 inhibitors contribute to reversing the leukocyte defect in warts, hypoglobulinemia, infections, and
myelokathexis syndrome. All these new approaches use oral drugs, which notably improve quality of life. Additionally,
improved research into clonal evolution has highlighted some ways to potentially prevent leukemia, such as stimulating
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somatic genetic rescue, a physiological process that might limit the risk of leukemic transformation.

LEARNING OBJECTIVES

« Identify in the clinical presentation of a patient with neutropenia the key features suggesting a possible genetic

cause

« Realize that in G6PC3 neutropenia and in GSDIB, gliflozine may be considered an alternative to standard care with

GCSF and/or HSCT

o Learn that in CXCR4 WHIM syndrome, CXCR4 inhibitors offer a therapeutic approach

Introduction

Interest in severe congenital neutropenias (SCNs) was
heightened by the availability of a new therapeutic agent,
granulocyte colony-stimulating factor (GCSF), at the begin-
ning of the 1990s." It is an understatement to say that GCSF
dramatically transformed hematology medical practice.
Even though GCSF is mainly indicated for chemotherapy-
induced neutropenia, it has also focused light on the
extremely rare group of diseases called SCNs. GCSF mar-
keting was associated with a recommendation by health
authorities to develop patient registries, primarily to assess
its potential leukemic risk. Incidentally, registry studies
have provided valuable evidence not only to demonstrate
the efficacy of GCSF but also to show that high doses
induce clonal hematopoiesis, leading to myelodysplasia or
acute leukemia.?* We now know that this risk can be limited
by hematopoietic stem cell transplantation (HSCT) early
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during SCN evolution.* But even if HSCT can control the
risk of myelodysplastic syndrome and even if GCSF remains
effective throughout a patient’s lifetime, daily GCSF use
engenders quality-of-life limitations, explaining poor com-
pliance and thus, only partial efficacy, with sequelae,
persistent symptoms, and sometimes life-threatening
infections.® Such limitations are strong motivations to find
new therapeutic approaches. And genetic analyses have
opened the gate to potential novel agents.

SCN genetics: accurate and quick diagnoses for
better classification and more therapeutic options
Since 1993, while registries were being progressively cre-
ated, genetictechnologies have advanced dramatically, and
about 30 distinct SCN genetic entities have been described
(Table 1). Above all, genetics provides a reliable para-
meter to classify a patient's disease. Initially, determining
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Normal function of the
gene-encoded protein
Deletion(s) in mitochondrial DNA

Unelucidated
Unelucidated

Inheritance, gene
localization
X-linked,
Dominant,

7p22.2

Complex inheri-
tance

Xq26

ciency, sideroblastic anemia

Exocrine pancreatic insuffi-
and thrombocytopenia
usually later in life, delayed
development with Kearns-
Sayre syndrome; elevated

Autoimmune disease, viral
lactate/pyruvate ratio

Extrahematopoietic
infection(s)

features
Skin disorders

Main hematological features
sors, Perls staining reveals

Vacuolization of BM precur-
ring sideroblasts

hyperlymphocytosis

Maturation arrest
Maturation arrest,

OMIM code
557000

Gene, disease name
Mitochondrial DNA,
Pearson syndrome

SASH3
CARDITI1

Neutropenia subgroup

sterile alpha motif (SAM) and Src homology-3 (SH3) domain containing-3; SEC61A1, SEC61 translocon-subunit alpha-1; SLC3, solute carrier family-3; SMARCD2, SWitch/sucrose nonfermentable
(SWI/SNF)-related, matrix associated, actin dependent regulator of chromatin, subfamily D, member 2; SRP, signal-recognition particle; STK4 (MSTT1), serine/threonine kinase-4 (macrophage

stimulating-1; TAZ, tafazzin; TCIRGT, T-cell immune regulator 1, ATPase H+ transporting VO subunit a3; USBT, U6 SnRNA biogenesis phosphodiesterase-1; VPS13B, vacuolar protein sorting-

GTPase-1; EIF2AK3, eukaryotic translation initiation factor-2 alpha kinase-1; GATA2, transcription factor binding to the DNA sequence "GATA"; GFT, gold furrows of hull 1, GATA1 transcription
associated protein 13B; WAS, Wiskott-Aldrich syndrome.

factor; HAX1, encodes hematopoietic cell-specific Lyn substrate-1 protein; JAGNT, Jagunal homolog-1; LAMTOR2, late endosomal/lysosomal adaptor, MAPK and MTOR activator-2; SASH3,

AP3B1, adaptor-related protein complex-3 subunit-B1; CARD11, caspase recruitment domain family member-11; CLPB, caseinolytic peptidase-B protein homolog; EFLT, elongation factor-like

Data reproduced with permission from Donadieu.®

Table 1. (continued)

a culprit gene derived from the laborious collection of biological
material from phenotypically well-defined patients. Elas-
tase, neutrophil expressed (ELANE) was the first gene identi-
fied,” followed by the Shwachman-Bodian-Diamond syndrome
(SBDS) gene.? But once the medical community had access to
more powerful genetic tools, such as targeted next generation
sequencing and whole-exome sequencing, it became possi-
ble to study simultaneously the same panel of genes involved
in this group of diseases regardless of the patient's phenotype.
This powerful approach broke the lines separating classic phe-
notypes.” Some entities may share symptoms attributable to
different genes, while very different clinical manifestations can
be caused by the same genetic mutation(s). As a consequence,
the term "SCN" is not completely accurate, and perhaps calling
these entities genetic neutropenias would be more appropriate.
Notably, genetic neutropenias (GNs) are not always severe, and
the adjective "severe" is not justified by many patients' clinical
status. Now, obviously, genetic expertise is the key to diagnosis.
Although blood tests have become routine examinations, phy-
sicians must justify genetic testing, as it is widely accepted for
only a restricted number of settings.

Indeed, population study results have shown that neutropenia
is very common. Depending on geographic origin, neutropenia is
detected in 1% (Caucasians) to 10% (those with African origins) of
people, while GN prevalence is less than 1in 10000.°" This situa-
tion explains why a clinical algorithm makes it possible to restrict
genetic testing to suspected cases in an attempt to limit patient
anxiety and avoid waste of medical resources. One algorithm,
very easy to use, was reported for pediatric neutropenia, and its
score can even be computed during a short phone call to specify
the patient's characteristics. A rapid decision of whether or not
to launch genetic research can then be made by calculating the
score of the individual algorithm elements (Figure 1).”2

From genetic diagnosis to therapeutic

approaches: 3 situations

But once a genetic diagnosis is fully determined, how can this
information change the natural history of a patient's disease?
Here we develop 3 situations (4 diseases) in which genetic infor-
mation, based on a large amount of basic scientific research,
deciphers the molecular consequences of a genetic defect and
leads to a specific, personalized therapeutic approach not yet at
the same stage of development.

Inhibitor of sodium glucose cotransporter to treat G6PC3
and GSDIB SCNs

Glucose-6-phosphatase catalytic subunit 3 (G6PC3) and glyco-
gen storage disease type |b (GSDIB) neutropenias are caused by
a defect in the glucose-6-phosphatase (G6Pase) enzyme.™" For
years, the mechanism of neutropenia in those entities remained
unclear. The main enigma was the lack of a direct role of GéPase,
which is composed of several units (ie, the endoplasmic reticu-
lum (ER)/cytosol transporter in GSDIB and the catalytic subunit
3 in G6PC3 GNs) in the neutrophils' metabolic machinery. Even if
a genetic defect was clearly documented, a key was missing to
understand these 2 diseases because GéPase did not appear to
be responsible for a direct defect in the neutrophil-energy path-
way. This mystery was solved when the role of 1,5-anhydroglucitol
phosphate was identified, and the 2 defect proteins involved
in GSDIB and in G6PC3 GN were shown to play an important

Medical management of SCN: news | 661



When genetic testing is important to evaluate chronic neutropenia: a quick algorithm

Chronic neutropenia (>3 blood tests in a 3-month period)

Key information to collect

\

Weight accorded a
response of Yes

Age at diagnosis 3 months to 1 year

2%

Yes or No
Family history or Yes or No 6
consanguinity
Any associated Yes or No 6 Sum of the values
morbidity
Severe infections Yes or No 3 l
Stomatitis or gingivitis Yes or No 3 Final scores indicate the risk of having
severe congenital neutropenia:
—2 to 0: none
Complete blood counts, Monocytes >1.5x109L 3 1to5: 21%
taking into account all 6t09: 62%
parameters _/ .
Hemoglobin <90 g/L or 3 >10: 100%
platelets <150x10°/L

* Frequency of auto Immune
neutropenia diagnosed between
3 months and 1 year explained
the negative value given to age
in this model.

Figure 1. A quick algorithm to identify potential genetic neutropenia.

role in the removal of a toxic metabolite, 1,5-anhydroglucitol-6-
phosphate (1,5AG6P), in neutrophils.” 1,5AG6P is produced by
phosphorylation of 1,5-anhydroglucitol (1,5AG), a glucose ana-
logue derived from food and normally present in the plasma. As
1,5AG6P is an inhibitor of hexokinase, the enzyme that allows glu-
cose metabolism by glycolysis, it has to be destroyed as soon as it
is formed. This is the function of G6PC3, an enzyme related to the
classical GéPase but that has only little GéPase activity. The trans-
port of 1,5AG6P from the cytosol to the lumen of the ER is carried
out by the glucose-6-phosphate transporterencoded by SLC37A4,
the gene mutated in GSDIB. The cytosolic accumulation of 1,5AG6P
due to mutations in G6PC3 or in SLC37A4 leads to the inhibition
of glycolysis. This mechanism explains neutrophil dysfunction
and apoptosis in GSDIB and G6PC3-deficiency GNs.”® That finding
had potential clinical impact, as it opened the way to reverse the
clinical manifestations of neutropenia and neutrophil dysfunction
in GSDIB and G6PC3-deficient patients. Indeed, prescribed off-
label, inhibitors of sodium glucose cotransporter (eg, empagli-
flozin or dapagliflozin) that are routinely used clinically as
antidiabetic drugs to treat type 2 diabetes inhibit renal glu-
cose uptake, cause glycosuria, block renal 1,5AG reabsorption,
and lower plasma glucose (to the renal glucose threshold) and
1,5AG concentrations. Empagliflozin was also shown to decrease
intracellular 1,5AG6P in G6PC3-deficient mice and normalize their
absolute neutrophil counts.”® That finding has now been con-
firmed in humans': the clinical use of inhibitors of sodium-glucose
linked transporter type 2 did not interfere with patients’ glucose
levels (which, in this context, are low or normal) but increased
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1,5AG clearance and allowed myeloid maturation and function.
For the first 4 reported cases, all with GSDIB, empagliflozin, dur-
ing short-term follow-up of less than 1 year, demonstrated both
diminished 1,5AG and that GCSF support could be dramatically
lowered or even withdrawn while infectious events were con-
trolled.” Additional cases with longer follow-up have confirmed
those observations and offer a cheaper approach and much more
efficient management of both GSDIB and G6PC3 GNs."®'?

CXCR4 inhibitors and WHIM syndrome

Warts, hypoglobulinemia, infections, and myelokathexis
(WHIM) syndrome is a very rare GN caused by a mutation
of the CXCR4 chemokine receptor. In 1964, Zuelzer and Krill
described an exceptional congenital neutropenia associated
with bone marrow (BM) hyperplasia of mature neutrophils:
myelokathexis.?® In 1990, Wetzler proposed the acronym
WHIM, reflecting the manifestations of human papillomavirus
(HPV)-induced warts, hypogammaglobulinemia, and bacterial
infections together with myelokathexis. WHIM syndrome is
characterized by heterogeneous disease manifestations that
include severe infectious episodes, HPV-associated warts,
panleukopenia, and hypogammaglobulinemia.??? Its clini-
cal onset and complications are more variable than originally
suspected. Neutropenia is associated with lymphopenia and
monocytopenia, which are almost always observed in patients
suffering from this disorder; HPV infections are extremely com-
mon. WHIM syndrome is a potentially fatal disease mostly
because of immune-system alterations and HPV infections.?'??



Genetic analyses of WHIM syndrome patients identified inher-
ited heterozygous autosomal dominant mutations in the CXCR4
gene encoding the receptor of the CXC a-chemokine (CXCL12),%
which regulates hematopoiesis and the peripheral trafficking of
neutrophil and lymphocyte subsets. CXCR4 was first studied for
its role as a human immunodeficiency virus coreceptor. The func-
tional consequences of the variants are dramatic, as they confer
a CXCR4 gain of function responsible for the WHIM syndrome-
associated panleukopenia. Current WHIM syndrome therapies
are intravenous immunoglobulin and GCSF injections and antibi-
otic prophylaxis.?* Those treatments may limit the severe infec-
tions affecting patients, but they fail to control potentially lethal
HPV or mycobacterial infections. Since the genetic findings
showed CXCR4 gain of function, agents inhibiting CXCR4 func-
tion appear promising. Those treatments, initially developed to
control HIV infection, were obviously abandoned but were later
shown to possibly act as a stem cell mobilizer.

Indeed, the AMD3100 compound was patented under the
name Plerixafor to mobilize autograft stem cells. Successfully
tested on a very limited number of WHIM syndrome patients,
that drug efficiently mobilized granulocytes, lymphocytes,
and monocytes,?? and even controlled HPV infections, in 3
patients.?” Plerixafor development was not pursued, but another
compound, mavorixafor, was developed by another company.
After phase 1 and phase 2 studies,?® that latter molecule is now
being evaluated in a phase 3 double-blind randomized trial; its
results are expected by the end of 2022. The findings of the phase
2 study on mavorixafor showed that neutrophil and, in general,
all leukocyte defects were corrected by this oral drug, with the
added advantage of limiting HPV infections.?® Notably, because
CXCR4/CXCL12 interacts strongly with the GCSF-3 receptor
(CSF3R) axis early during myelopoiesis, inhibiting CXCR4 enables
neutrophil mobilization via a pathway other than GCSF. And now
an oral compound may become available to avoid neutropenia
in other chronic subtypes as well as post chemotherapy.

Somatic genetic rescue: clonal hematopoiesis is not always
bad news
In addition to a high risk of infections, almost all GNs carry an
elevated risk of leukemic transformation, for which the percent-
age depends on the gene involved. The trajectory from the
naive germ line at birth to leukemia is a multistep mutational
process. The high frequency of clonal evolution can be viewed
as premature aging of clonal hematopoiesis, but clonal architec-
ture is strongly dependent on the germline variant on which it
develops: clonal hematopoiesis differs markedly in ELANE neu-
tropenia, Shwachman-Diamond syndrome (SDS), and GATA2
syndrome.?¥

SDS, a recessive multisystem disorder characterized by exo-
crine pancreas deficiency, mild neutropenia, and various other
organ dysfunctions, is caused by compound heterozygous
mutations of the SBDS gene and offers an initial insight into the
possible role of somatic genetic rescue to prevent leukemic
transformation.*> The SBDS protein is an essential cofactor for
elongation factor-1. Biallelic SBDS mutations impair the release
of antiassociation, eukaryotic translation-initiation factor-6 (EIF6)
from the 60S ribosomal unit. The cell tries to escape that block-
age in different ways. One quite deleterious method that directly
involves the leukemic outcome is the overstimulation of the TP53
pathway,® induced by ribosomal stress.> The involvement of

TP53 mutations in SDS has been documented several times dur-
ing SDS patients' lifetimes. During the “chronic phase,” the TP53
clone frequently has a low variant-allele frequency, and at myel-
odysplastic syndrome onset, the TP53 variant-allele frequency
is high, typically with biallelic variants.3* But it is not the sole
mutational event observed during the course of SDS. The second
frequent molecular event concerns the EIF6 variant.*® The occur-
rence of such a molecular event was suggested by a common
cytogenetic finding in SDS patients’ BM: the del20q clone, which
harbors EIF6. But other molecular events (eg, point mutations,
reciprocal chromosomal translocation) limit EIF6 concentration
or EIF6 binding to the 60S subunit and reverse the ribosome-
assembly and protein-synthesis defects.** Such mechanisms
suggest that EIF6 inhibition might constitute a valuable strategy
to compensate for the SBDS defect and represents a promising
therapeutic strategy for SDS.3¢¥

CLINICAL CASE

The patient is an Algerian-born male, issued from a consanguin-
eous family, who has previously been reported in a case series
(as patient 5643).% He was first seen in our unit at the age of
7 years, when he had already experienced about 12 distinct
severe infectious episodes, including bacterial meningitis and
3 types of pneumonitis since birth in addition to recurrent oral
infections. He failed to thrive and had chronic diarrhea. Mor-
phologically, he had a narrow thorax and thin skin with a promi-
nent superficial venous network on the limbs and the abdomen.
Echocardiography detected aortic insufficiency, without hemo-
dynamic consequences. Initial blood tests showed profound
neutropenia (absolute neutrophil count, 240/mm?3), with mild
anemia (hemoglobin, 9.8g/dL) and a normal platelet count.
His first BM cytology did not reveal any significant abnormali-
ties, with a myeloid to nucleated erythroid cell ratio of 5:1 and
no maturation arrest. At that time, the sole diagnostic genetic
test available was for ELANE, and no such variants were identi-
fied. His chronic diarrhea was difficult to analyze because of the
presence of steatorrhea and a fat-soluble-vitamin deficiency but
showed no documented exocrine pancreas deficiency. GCSF (5-
7ug/kg/d) was prescribed, along with pancreatic enzyme and
nutritional support. The patient returned to Algeria and contin-
ved to be treated between there and France. Repeated blood
counts showed recurrent thrombocytopenia. Endoscopy of the
digestive tract at 10 years old found inflammation; inflammatory
bowel disease was diagnosed and treated with steroids. This sit-
vation, with recurrent infections and difficulty obtaining GCSF,
resulted in several infections, including a colonic abscess and
a colonic fistula necessitating a hemicolectomy that incurred
major surgical complications. Although a molecular diagno-
sis of SBDS mutation was sought when he was 10 years old, it
excluded a pathogenic variant; G6CP3-deficient neutropenia
was finally diagnosed when he was 15 years old as the disease
had just been identified by Sanger sequencing.”

After developing a gut fistula at 18 years of age, he returned
to France. A prescription of anti-tumor necrosis factor a (TNF-
a) for about 5 years, combined with long-term GCSF, main-
tained a limited quality of life, as his disease affected his ability
to go to school and later work. At the age of 23 years, he was
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Figure 2. A visual summary of the medical history of a patient with G6PC3 neutropenia treated by gliflozine.

prescribed dapagliflozin at the initial dose of 0.2mg/kg in
addition to his long-term therapy. Figure 2 shows his neutro-
phil, platelet, and blood 1,5AG evolutions over time. He ini-
tially received GCSF (9ug/kg) 3 times per week in conjunction
with anti-TNF-a. Because of a partial neutrophil count and
1.5AG-clearance responses, the dapagliflozin dose was pro-
gressively increased up to 0.9mg/kg/d. Oral dapagliflozin
has been continued since then (he is now 25 years old) for
a total of 16 months. Notably, after 6 months the anti-TNF-a
was withdrawn, and the inflammatory bowel disease did not
recur. An attempt to stop GCSF was complicated by an oral
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infection; however, it has now been tapered down to 3ug/kg
twice weekly.

Conclusion

The standard care of GNs is based on GCSF and HSCT. Driven
by the extensive development of genetic background analy-
ses of such entities, better understanding of the mechanisms at
work now offers some possibilities of adapted therapy. ISGTL2,
an antidiabetic drug, may partially reverse GSDIB and G6PC3
GNs by clearing 1,5AG, which is responsible for the associated



neutropenia. CXCR4 inhibitors contribute to reversing the leu-
kocyte defect in WHIM syndrome. Concerning the leukemic
transformation risk, better understanding of the clonal evolu-
tion raises the possibility of preventing leukemia by stimulating
somatic genetic rescue, a physiological process that might limit
the risk of such progression.
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