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Abstract: The development of fast, non-destructive, and green methods with adequate sensitivity for
saffron authentication has important implications in the quality control of the entire production chain
of this precious spice. In this context, the highly suitable sensitivity of a spectroscopic method coupled
with chemometrics was verified. A total number of 334 samples were analyzed using attenuated-
total-reflectance Fourier-transform infrared (ATR-FTIR) spectroscopy; the collected spectra were
processed by partial-least-squares discriminant analysis (PLS-DA) to evaluate the feasibility of this
study for the discrimination between compliant saffron (fresh samples produced in 2020) and saffron
samples adulterated with non-fresh stigmas produced in 2018 and 2016. PLS-DA was able to classify
the saffron samples in accordance with the aging time and to discriminate fresh samples from the
samples adulterated with non-fresh (legally expired) stigmas, achieving 100% of both sensitivity
and specificity in external prediction. Moreover, PLS regression was able to predict the adulteration
level with sufficient accuracy (the root-mean-square error of prediction was approximately 3–5%). In
summary, ATR-FTIR and chemometrics can be employed to highlight the illegal blending of fresh
saffron with unsold stocks of expired saffron, which may be a common fraudulent practice not yet
considered in the scientific literature.

Keywords: saffron; adulteration; infrared spectroscopy; chemometrics; PLS-DA; expired spice; spice

1. Introduction

Saffron is a well-known and valuable spice obtained by drying Crocus Sativus Linnaeus
stigmas. Nowadays, there is a great interest in this product, which is highly appreciated
in the food field for its coloring and flavoring properties. This is demonstrated by the
expansion of production beyond the borders of the traditional producing countries (such as
Greece, India, Iran, Italy, and Spain) and by the considerable scientific literature concerning
it [1–3]. Indeed, the saffron production process, authentication, and quality control remain
topical, due to the growing consumer demand alongside the interesting biological activities
and multiple applications of the spice’s phytochemicals [4]. However, saffron production
still consists of several non-automated and time-consuming harvesting and post-harvesting
phases that, in most cases, are conducted using traditional methods, depending on the
input resources of the producing country [5]. Such condition makes saffron the most
expensive spice in the world (up to 25,000 EUR/kg) and consequently a potential target of
counterfeiting for profit [6].

In international trade, saffron quality is evaluated according to the ISO 3632 norma-
tive [7,8] that guarantees and approves quality control methodologies for grading saffron
from all over the world.

A lower saffron quality can be due to several factors, such as inappropriate harvesting
methods, insufficient dehydration processing, exposure to direct sunlight, improper storage,
and, of course, adulteration [9]. In the present work, both aging and adulteration factors
are addressed.
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There are many studies in the literature aimed at identifying the proper analytical
methodologies for the detection of molecular markers related to fraudulent practices re-
garding saffron; among these, headspace-solid-phase microextraction (HS-SPME) coupled
with gas chromatography with mass spectrometry detection (GC-MS) proved to be an
efficient method, especially when combined with chemometrics, to detect the most com-
mon plant contaminants (turmeric, calendula, and safflower) at very low levels [10,11].
In addition, electronic nose [12], 1H nuclear magnetic resonance [13], high-performance
liquid chromatography coupled with mass spectrometry or photometric detection [14],
and several methods based on polymerase chain reaction (PCR), Refs. [15,16] have been
proposed. In recent years, the advantages of the application of spectroscopic techniques are
driving researchers to implement untargeted but efficient methods for food and saffron
authentication and quality control. Spectroscopic fingerprinting, indeed, offers simple,
cheap, green, and potentially non-destructive strategies for the routine analysis of precious
food matrices [17–19]. Concerning saffron, Chen et al., performed a feasibility study to em-
ploy infrared spectroscopy imaging and 2D correlation spectroscopy to detect plant-based
adulteration [20]. Oduardi et al. presented a multi-technical approach, including spectro-
scopic analysis, to perform an untargeted investigation on commercial saffron samples [21].
In the context of untargeted spectroscopic approaches, specific chemometric methods,
such as multivariate curve resolution—alternating least-squares (MCR-ALS), can usefully
support the identification and quantification of unknown adulterants. For instance, Castro
and co-workers demonstrated that near infrared spectroscopy coupled with MRC-ALS
can identify and quantify several contaminants in saffron samples at very low levels [22].
Fourier-transform mid-infrared (FTIR) spectroscopy and pattern-recognition methods were
also used to discriminate authentic saffron from colorant-added saffron and adulterated
samples with common plant-based contaminants [23–25]. Diffuse reflectance FTIR spec-
troscopy was in particular employed to detect six different common saffron adulterants
of plant origin, i.e., Crocus sativus stamens, calendula, safflower, turmeric, buddleja, and
gardenia, at relatively low contamination levels (from 5 to 20% w/w) [26].

Although the most common adulteration practices consist in the addition of artificial
or natural dyes (tartrazine, gardenia yellow, extract of Buddleja officinalis M.) or parts of
cheaper plants (safflower, calendula, turmeric), it is not unrealistic that dishonest producers
could mix fresh saffron with unsold aged stocks produced in previous years. Unfortu-
nately, the latter is an auto-adulteration practice that is difficult to reveal on both powdered
and intact stigmas, at least through visual inspection or microscopic analysis, which is
the method suggested by the ISO 3632 procedure to detect extraneous materials. On the
other hand, as Sabatino et al. [14] reported, the UV-Vis spectroscopic analysis of aqueous
extracts, proposed by the ISO-3632 normative for grading saffron, also seems inappropriate
for revealing the addition of expired saffron to the fresh spice. In this context, the effect
of aging on the content of specific saffron metabolites has been described in the litera-
ture [27–29]. Consonni and co-workers, in particular, investigated aging effects on the
saffron composition by the application of either 1H nuclear magnetic resonance [28] and
infrared spectroscopy [30]. These authors classify as “fresh” the saffron samples stored for
up to four years and as “non-fresh” the saffron samples stored for more than four years,
based on the evidence that within four years from production the changes in the relative
content of molecular markers of quality deterioration (sugars bound to crocetin, glucose
in picrocrocin, free sugars and fatty acids) are negligible. Nevertheless, a best-before date
of two years is established for saffron marketed in Italy, to preserve the original quality
of the spice. It follows that the class of fresh samples, as conceived by Consonni and
co-workers, actually includes a number of legally expired products unsuitable to be placed
on the market.

In light of the evidence in the literature and the legal expiration time of two years
established for saffron marketing, we evaluated in the present work the sensitivity of
ATR-FTIR spectroscopy in recognizing saffron adulterated with legally expired stigma
and quantifying the contamination level. To achieve these goals, in 2021 we collected the
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infrared spectra of saffron samples produced in 2020, taken as compliant (fresh) products,
and re-analysed saffron samples produced in 2016 and 2018, together with mixtures of fresh
stigmas (2020) and aged (2016 or 2018) stigmas, to simulate adulteration of the genuine
spice with expired products. A sufficiently great number of ATR-FTIR spectra were handled
by partial-least-squares discriminant analysis (PLS-DA) to attempt a classification of the
saffron samples according to the aging time and discrimination between fresh samples and
samples adulterated with expired products. In addition, PLS regression was applied to
estimate the quantitative level of such kind of adulteration. Based on our best knowledge
of the literature, no other studies have been carried out before on this subject.

2. Results and Discussion

Figure 1 shows the ATR-FTIR mean spectra of powdered saffron samples, averaged
according to the production year, and hence according to the aging time. At the moment of
the analysis (2021), saffron produced in 2020 could still be marketed, whereas the spices
produced in 2018 and 2016 are no longer compliant, according to the legal expiration time
of two years from production.

Figure 1. (A) Mean row infrared spectra for the Compliant class (in black) and for the two considered
pure Adulterants, i.e., Adulterant 2016 (in purple) and Adulterant 2018 (in blue). (B) Mean signals
for the SNV-pre-processed spectra, distinguished again according to the three classes.

Since a visible instrumental shift can be confirmed by a simple visual inspection of the
mean spectra, standard normal variate (SNV) pre-treatment was applied to the raw data
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to obtain corrected signals reported in Figure 1B. As a result, a minimal signal-intensities
change is recognizable on all the major peaks of the three spectroscopic profiles. However,
different intensity ratios of the spectral variables can be revealed, especially concerning
the fingerprint range of the saffron samples produced in 2016, namely expired for three
years (see the detail in Figure 1B). A summary interpretation of the major infrared bands
is provided below, in which the attribution of the observed signals to the main saffron
components was achieved by referring to the literature [29,31].

The broad band centered at approximately 3300 cm−1 is related to the bonded and
not-bonded hydroxyl (O-H) stretching, while the peaks at 2924 cm−1 and 2854 cm−1

correspond to C-H asymmetric and symmetric stretching vibrations. By moving into the
fingerprint region, the two shoulders centered at 1745 cm−1 and 1710 cm−1 are attributed to
the -C=O stretching in crocins, free carboxylic groups of crocetin (a conjugated bicarboxylic
acid), and aldehydes (such as picrocrocin and safranal). The band from 1655 cm−1 to
1645 cm−1 is attributed to the conjugated C=C stretching vibrations typical of carotenoids
and apocarotenoids, but the amide I band and the O–H bending vibrations of water also fall
in this spectral region. The second well-recognizable peak in the 1800–1500 cm−1 fingerprint
range comes from skeletal vibrations (C-C at 1613 cm−1); nevertheless, the signal related
to C=C vibration of α,β-unsaturated ketones can also be found in this spectral region.
The peak at 1578 cm−1 and the shoulder at 1545 cm−1 are related to the C–O vibrations
in conjugated esters, as well as to the amide II and aromatic C=C stretching vibrations.
The combined vibrations of CH/CH2, OH, C-C, C-O, and CCO moieties contribute to
the 1454–1221 cm−1 fingerprint zone. In this area, the band at 1221 cm−1 related to the
(C=O)-O group of the crocetin esters is particularly interesting. The range from 1157 cm−1

to 1020 cm−1 is dominated by signals of the sugar units and the glycosidic linkages in
polysaccharides or glycosyl moieties of crocins and flavonoids. The signal at 1157 cm−1

can be attributed to the C-O stretching vibration, whereas the intense bands at 1051 cm−1

and 1020 cm−1 are associated with C-O-C glycosidic linkages of oligosaccharides and to
the bending vibration in sugars. The shoulder from 970 cm−1 to 920 cm−1 results from the
skeletal vibration modes of the glycosidic linkages as well as the trans = C–H out-of-plane
bending, which are typically of trans-crocins. Finally, the region around 740 cm−1 could be
related to the cis = C–H out-of-plane bending, typical of the cis-isomers of crocins.

Overall, the difficulties of interpreting the differences in terms of compositional
changes are evident, due to the complexity of the matrix under analysis and the spu-
rious effects introducing variability unrelated to the chemical characteristics of the samples.
Consequently, appropriate chemometric methods have been applied to exploit the spectro-
scopic signals and obtain helpful information about the problem under investigation.

2.1. Discrimination among Compliant and Differently Adulterated Saffron

To avoid over-fitting, all the models were built on a training set consisting of 70% of
the collected samples, selected employing the duplex algorithm separately for each class.
The models were optimized in terms of number of latent variables (LVs) and pre-treatment
of the spectra with a 5-fold cross-validation (CV) procedure, by considering the Mean
correct classification rate (CCR %) in CV. First of all, a PLS-DA model was built in order to
verify the chemical differences among compliant samples (saffron produced in 2020) and
the two classes of expired saffron (produced both in 2018 and 2016). From now on, this first
model will be referred to as Model I.

2.1.1. Model I

Model I is graphically displayed in Figure 2, which reports the projection of the
training (full symbols) and test (empty symbols) samples onto the four significant LVs.
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Figure 2. Sample scores onto the LV1-LV2 space (A) and LV3-LV4 space (B) for Model I, built on
Compliant samples and Pure Adulterants (100% Adulterant 2018 and 100% Adulterant 2016).

Figure 2A,B, in particular, displays the projection of the samples onto the LV1-LV2
and LV3-LV4 plane, respectively. The classification rates of Model I in cross-validation and
external prediction are summarized in Table 1
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Table 1. Summary of the PLS-DA outcomes for both Model I and Model II. The optimal pre-treatment,
the optimal number of latent variables (LV), the percentage of mean correct classification rate in
cross-validation (CCR(%) CV), as well as the predicted specificity and sensitivity for the Compliant
class (Comp. specificity; Comp sensitivity), are reported.

PLS-DA Outcomes

Pre-Treatment LV Mean CCR
(%) CV

Comp.
Specificity (%)

Comp.
Sensitivity (%)

Model I SNV + MC 4 100% 100% 90.5%

Model II SNV + MC 13 99.2% 100% 100%

Although non-fresh saffron samples are poorly represented in this preliminary model,
the score plots of Figure 2 show an excellent agreement between the training and test
samples, resulting in a good model generalization. Moreover, the bisector of the I-III
quadrant distinguishes between fresh and non-fresh samples; in detail, non-fresh samples
cluster in the third quadrant of the LV1-LV2 space, falling at negative scores for both
LV1 and LV2. It is interesting to note that the direction identified by the LV3 (7% of X-
block explained variance) is able to discriminate the samples produced in 2016, which
fall at negative scores, from samples produced in 2018, falling at positive scores, while
most of the fresh samples (produced in 2020) are located between the above two classes
collecting the expired samples. It follows that LV3 cannot be simply related to the aging
time. In this regard, it must be stressed that the quality control on the saffron samples
here considered, performed according to ISO-3632 procedures, within one year from their
production (unpublished results) revealed an exceptionally higher quality for the samples
produced in 2018. It must be concluded that LV3 not only describes the effect of aging but
also encodes the variability associated with the year-dependent original composition of the
saffron samples, which seems to be interconnected with the aging effects.

Model I is capable of attributing all the test samples except three. In particular, one
non-fresh sample of 2018 was erroneously attributed to the 2016 class, and the class of fresh
samples erroneously refused two genuine samples. The good classification performance of
Model I demonstrates that ATR-FTIR has an acceptable sensitivity for detecting the changes
in the saffron composition determined by aging under domestic storage conditions (away
from heat and light sources, and in airtight containers).

2.1.2. Variable Importance in Projection (VIP) Analysis

Variable-importance-in-projection (VIP) coefficients express the importance of each
variable in defining the LV subspace [32]; a VIP index equal to 1, which is the average of
the squared VIP values, is assumed as a cut-off to define the significant variables.

Figure 3 reports the graphical outcome of the VIP analysis related to Model I. The
red-highlighted portions of the spectrum reveal the most significant spectral variables for
the discrimination of the three classes, namely fresh (2020), non-fresh (2016) and non-fresh
(2018). In other terms, Figure 3 shows the spectral ranges mostly influenced by the aging
process, useful for differentiating the compliant (fresh) products from the legally expired
ones. In this regard, a more detailed attribution of the absorption bands to correlate them
with the degradation mechanisms proposed in the literature is helpful [33–35].

Thus, starting from the highlighted range 3322–3498 cm−1, this can be attributed
to the moisture loss in samples. However, the oxidative degradation of double bonds,
thermal degradation, and hydrolysis could lead to the formation or loss of free hydroxyl
groups, affecting the signal intensity of these spectral variables. The two broad shoulders
centered at 1745 cm−1 and 1710 cm−1 can be attributed to the C=O of α,β-unsaturated
esters, as in the case of crocins, although falling in the same range is the C=O stretching
of conjugated aldehydes, such as the picrocrocin, safranal, and HTCC (4-hydroxy-2,6,6-
trimethyl-3-oxocyclohexa-1,4-diene-1-carboxaldehyde), all compounds that proved to be
affected by aging.
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Figure 3. Mean saffron spectrum in black and significant spectral variables highlighted in red.

The bands at 1650 cm−1 and 1610 cm−1 are due to C=C stretching of conjugated
alkenes and α,β-unsaturated ketones; among the most important compounds in the liter-
ature, the isophorone appears to be the volatile species, together with the HTCC, which
is most involved in the degradation of saffron during aging. According to Maggi and
co-workers [27], HTCC and isophorone significantly decrease when moving from 1 to
3–4 years of storage. The signals at 1580 cm−1 and 1545 cm−1 are associated with the
aromatic rings and cyclic alkenes, whereas the signals around 1227 cm−1, 1157 cm−1,
1051 cm−1, and 1028 cm−1 are associated with glycosidic bonds and free sugars. Finally, the
shoulder at 986 cm−1 and the signals around 880 are related to the C=C bending, the first
being related to the trans configuration of apocarotenoid pigments, which are supposed to
be the main actors of saffron degradation. Furthermore, one of the degradation phenomena
observed, which involves partial or total hydrolysis, due to the breaking of glycosidic
bonds in crocins and picrocrocin, can explain the selection of variables between 1227 cm−1

and 1029 cm−1 [28,30].
The results of the VIP analysis were reported for the purpose of variable ranking,

which is useful in assisting the interpretation of the data in this preliminary stage.
However, noting the different sources of variability in the dataset, the analysis of

the loading plots, related to the four latent variables, could provide some interesting
information which would be useful for commenting on the effects of aging on the IR
spectrum of saffron versus those related to annual microclimatic variability. In this regard,
Figure 4, where loadings on all the four latent variables of Model I are plotted, is shown
and commented on.

Starting from the previous considerations about the assignment of the IR absorption
bands, samples produced in 2018, which fall at positive scores of the LV3, appear to be
potentially rich in the trans-crocins portion.
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Figure 4. Loadings of the spectral variables on the four considered Model I LVs. Highlighted in red
are the loadings on LV2 and LV3, the directions along which a trend related to spice aging and the
annual microclimatic effects, respectively, could be evaluated.

Indeed, all the bands with positive loadings (the one centered at 980 cm−1, those cen-
tered at 3600 cm−1 and 3400 cm−1, and the two peaks around 2920 cm−1 and 2850 cm−1)
showed higher intensity in the samples harvested in 2018. On the contrary, the fingerprint-
ing zone, to which all the aldehydic compounds related to coloring and aromatic power also
contribute, appears less intense for saffron samples produced in 2018. This interpretation
may be in line with the particularly high coloring strength of the 2018 samples, evaluated
during the UV-Vis quality control of the spice.
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As regards the aging effect, the discussion was limited to the variables having con-
cordant loadings for both the first and second latent variables, since the expired saffron
samples appeared to differ along the bisector of the I-III quadrant of the space described by
LV1 and LV2. In this case, it is interesting to note that the variables centered at 1057 cm−1

and 1570 cm−1, related to the glycosidic bonds between sugar residues and to the ester
bonds of crocins, are more intense in the fresh samples, whereas the peak at 1730 cm−1,
related to aldehydes and free carboxylic acids, is more intense in the case of non-fresh
samples; these findings are in agreement with the hydrolytic reaction that occurs in the
storage period of 0–4 years [28].

2.1.3. Model II

After the construction of a preliminary discrimination model, useful for assessing
the feasibility of the present study, a second PLS-DA model was built to distinguish
compliant (fresh) saffron samples from samples adulterated with expired stigmas, produced
in two different years (2016 and 2018) at different adulteration levels. Again, a three-class
discriminant model (Model II) was constructed, although, to make the treatment more
streamlined, the results are reported in terms of specificity and sensitivity for the class of
fresh saffron. From now on, the three classes in the problem will be referred to as Compliant
(fresh saffron produced in 2020), Adulterated 2016 (fresh saffron mixed with expired stigma
produced in 2016) and Adulterated 2018 (fresh saffron mixed with expired stigma produced
in 2018). As described in Section 3.1, the Adulterated 2016 and Adulterated 2018 classes are
made of three adulteration levels (from 40% to 10%) and pure expired stigmas produced in
2016 and 2018. Following the method described in Reference [36], a probabilistic binary
method was employed as a classification criterion. Referring to the responses calculated by
the three-class model, for each column of the predicted response matrix in calibration (Ŷcal)
two Gaussian distributions were identified (for Compliant and Not-Compliant (Adulterated
2016 + Adulterated 2018) samples, for instance). This procedure was performed for each
of the three classes of the problem, allowing for the computing of the class probability-
density-functions and to select a class-specific threshold within which a sample is attributed
to the category. In detail, the threshold will be the response value where the two curves
cross, which corresponds to 50% of the normalized probability. Thus, considering the
Ŷnwe, i.e., the column vector of the responses for a new sample, a posterior probability
value can be calculated for each G-class. The sample will be attributed to the classes for
which the posterior probabilities are greater than 50%; it will be attributed to none of
the classes if their posterior probabilities do not exceed 50%. Moreover, if the i-th new
sample has a ŷi,G> max (ŷcal,G) (where ŷcal,G is the predicted column vector in calibration
for the G-th class) the posterior probability must be extrapolated, so the sample will not
be attributed to the G-th class. Consequently, this method admits non-attributions or
ambiguous classifications. Although this procedure is extended to all the three classes
considered, the discussion is focused on the class of interest, i.e., on the Compliant samples.

Figure 5 reports the graphical results for Model II, built on pre-treated spectroscopic
signals (standard normal variate (SNV) and mean centering (MC)) and considering an
optimized number of 13 LVs. In detail, the normalized class probability for the Compliant
category is reported in black, whereas the line highlighted in red represents that for all
the non-compliant samples (Adulterated 2018 and Adulterated 2016). The intersection
between the two curves corresponds to the 50 % probability and represents the threshold
for assignment of the objects to the Compliant class. As can be seen in Figure 5, all the
samples in the test set are correctly recognized by the Model II (100% sensitivity in external
prediction), whereas all the non-compliant (Adulterated 2018 and Adulterated 2016) sam-
ples are rejected, resulting in a 100% specificity in external prediction. A misclassification
case occurs only in calibration, in which the class of Compliant samples incorrectly accepts
a sample adulterated with saffron produced in 2018.
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Figure 5. Normalized probability of the Compliant class (black curve) and posterior probability of
training (full symbols) and test samples (empty symbols) for Model II.

2.2. Quantification of the Adulterants by Means of PLS Regression

For regression purposes, we built two subsets to be elaborated separately. The first is
made of all the 112 compliant samples and all the contaminated saffron cases obtained by
mixing fresh saffron with saffron produced in 2016; the second subset consists of all the
compliant samples and those adulterated with saffron produced in 2018.

The quantitative response value, related to the actual percentage of adulteration, was
assigned to each sample and calculated by considering the adulterant weight over the
total batch weight. The model was optimized by cross-validation (CV) on 70% of samples
in the training set, identified by applying the duplex algorithm [37] separately for each
adulteration level. Unlike the PLS-DA data treatment, pure saffron samples produced in
2016 and 2018 (corresponding to a 100% contamination level) were not included in the two
datasets, because the extension of the respective PLS models to such a large concentration
range (0–100%) resulted in an unacceptable worsening of the CV predictive performance.

As seen in Figure 6 and Table 2, the model obtained for saffron adulterated with
non-fresh stigmas produced in 2016 shows an excellent agreement of the measured against
predicted percentages of adulteration. This can be confirmed by the determination coef-
ficient in prediction (Q2) value of 0.961 and by the root-mean-square error of prediction
(RMSEP) of 2.92%. In the case of saffron adulterated with non-fresh products of 2018, the
results are slightly worse, since we have a Q2 of 0.916 and an RMSEP of 4.81%. The lower
aging of the Adulterant 2018 objects, compared to those of 2016, can certainly explain the
above results. However, as reported in Section 2.1.1 on the trends highlighted by Model I,
it is possible that the exceptionally high quality of the saffron samples produced in 2018,
probably related to favorable microclimatic conditions, may have partially covered the
effects of the aging phenomena on the chemical composition of these samples. In this
context, moisture content is also a critical variable that should be considered when dealing
with aging processes. It should be remarked that the analyzed samples probably did not
undergo different extents in the deterioration processes induced by different amounts of
moisture, since the original water content was always around 10%, regardless of the pro-
ducer and the production year. In addition, although we did not have enough of the aged
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samples here analyzed (those produced in 2016 and 2018) to evaluate their moisture content
at the moment of the ATR-FTIR analysis, we observed in previous saffron characterizations
that the loss of water is almost negligible in the saffron stigmas stored under the same
conditions as in this work (in the dark, at room temperature and in closed containers), even
after three to four years after production.

Figure 6. Plot of measured against predicted responses (% of adulteration) and related figure
of merits.
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Table 2. Summary of PLS-R outcomes in terms of optimal pre-treatment (first derivative (D1), SNV,
and MC), number of latent variables and root mean square error in cross -validation (RMSECV) and
prediction (RMSEP).

PLS-Regression Outcomes

Pre-Treatment LV RMSECV RMSEP

2016 Adulterant D1+SNV+MC 10 2.96% 2.86%
2018 Adulterant SNV+MC 15 4.6% 4.3%

3. Materials and Methods
3.1. Data Set

A total number of 334 samples, comprised of genuine and adulterated, subdivided as
shown in Table 3, were analyzed using ATR-FTIR spectroscopy. The saffron samples were
kindly donated by producers from the geographical area around Spoleto (20 producers)
and Città della Pieve (15 producers) (Umbria region, Central Italy) some months after
the production cycle was completed, in the harvesting years 2016, 2018 and 2020. In
detail, some aliquots of saffron provided by the different producers in 2020 (referred to
as Compliant saffron) were sampled in order to obtain five batches of “fresh” saffron.
Non-compliant samples were artificially generated by mixing fresh saffron with expired
products (those produced in 2016 or 2018) at three different percentages, from 10% to 45%,
to obtain three batches for each adulteration level and each production year of the aged
products. Therefore, considering the two-year expiration date legally assumed for saffron,
the spice produced in 2016 was a 3-year-expired product, bearing in mind that the analyses
were conducted in 2021. The second kind of contamination was due to the addition of
saffron stigmas produced in 2018, which had expired for just one year.

Table 3. The number of analyzed samples at the different adulteration levels and divided into
Adulterated and Compliant saffron samples.

N. Adulterated Samples N. Compliant
Samples

Adulteration Level 100% 40% 25% 10% 0%

2016 Adulterant 20 30 30 32
1022018 Adulterant 20 30 30 30

3.2. Instrumental Analysis—ATR-FT-MIR Spectroscopy

Just before analysis, each aliquot of whole stigmas was finely ground with a mortar,
homogenized, and analyzed. Approximately 22 analyses were performed on each batch of
the compliant samples, while approximate y10 analyses were performed on each batch of
artificially adulterated samples. The infrared spectra were collected using a PerkinElmer
Spectrum Two™ (PerkinElmer, Waltham, MA, USA) FTIR spectrometer equipped with
a deuterated-triglycine-sulfate detector and a PerkinElmer Universal Attenuated Total
Reflectance module (uATR) with a single-bounce diamond crystal. After the background
was carried out by exposing the crystal in the air, the ground saffron samples were carefully
placed on the ATR module so as to cover the crystal totally, and a constant force was
applied, using the pressure monitoring system integrated with the instrument. All the
spectra were registered from 4000 to 500 cm−1 with an instrumental resolution of 4 cm−1

as the averages of ten scans. All the spectra were converted in the pseudo-absorbance scale
(Log (1/Reflectance)), exported, and processed in MATLAB (The Mathworks, Natick, MA,
USA; version 2015b) using in-house functions.

3.3. Chemometric Tools for Calibration and Validation

The quantification of substances in complex matrices is a problem that can be solved
by means of regression methods which, starting from a set of measures X (predictors) and a



Molecules 2023, 28, 33 13 of 15

response matrix Y (or y, if only one response is modelled), allow for the estimation of the
coefficient matrix B (and the residuals matrix E, containing the unmodelled information),
which regulates the relationship between X and Y, as described by the generic regression
(Equation (1)):

Y = XB + E (1)

Several approaches have been proposed to solve Equation (1); in the case of interferers
that make it difficult to quantify a substance of interest, and/or of correlated predictor
variables (as often happens in spectroscopy), one of the most commonly used methods is
partial least squares (PLS) [38–40].

Very briefly, this is made possible by the decomposition of X and Y into a set of X-
and Y-scores (T and U, respectively), of X- and Y-loadings (P and Q, respectively), and by
the estimation of the matrix C, which adjusts their inner relation. Overall, this allows for
the estimation of B, and thus the creation of a calibration model which can be used for
the quantification of the compound of interest (i.e., the estimation of the response Ŷnew) in
new samples:

Ŷnew = XnewB + E (2)

PLS has a large number of benefits over other regression approaches [41]. Furthermore,
it has also been exploited for the realization of a classification method called partial-least-
squares discriminant analysis (PLS-DA) [42]. This approach is based on the assumption that
a classification problem can be transformed into a regression one and solved by PLS. This is
enabled by a suitable codification of class membership, achieved by the so-called Y-dummy.
This response matrix is a binary array encoding the class-belonging of each sample. For
instance, in a three-class problem, a sample appertaining to class 1 is represented by a y
vector y1 = [1 0 0], an object belonging to class 2 is represented by the vector y2 = [0 1 0] and
a sample from class 3 is codified as y3 = [0 0 1]. Once the Y dummy is created, the calibration
model is achieved by solving Equation (1) using PLS. In the case of the prediction of class-
membership of a new sample being necessary, this can be obtained by solving Equation (2).
Nevertheless, Ŷnew is no longer a categorical matrix but it is constituted of continuous
values, so the assessment of the class-membership of new samples is not straightforward.
Different approaches have been proposed in this regard; here, the solution proposed by
Perez et al. described in [43] has been used.

4. Conclusions

An adulteration practice not yet addressed in the literature was reported and evaluated
in this work. In this context, both aging and adulteration factors were addressed as
the main effects affecting the commercial quality of saffron. The strength of the ATR-
FTIR fingerprinting method combined with chemometrics (PLS-based classification and
regression) was verified. Through the application of a fast, cheap, and non-destructive
method, the freshness of saffron was verified and the samples were classified by means of
PLS-DA, in accordance with the aging time. PLS-DA was also employed to discriminate
between compliant (fresh) and non-compliant (adulterated with expired products) saffron
samples, achieving an excellent prediction ability. Moreover, a PLS-regression approach
was used to predict with sufficient accuracy the adulteration level for two different aging
times of the expired products. In conclusion, ATR-FTIR spectroscopy and chemometrics
can be used to detect the illegal addition of aged saffron to fresh products or to reveal
fraudulent mislabeling with respect to the best-before date.
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