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Abstract: Perovskite materials have a variety of crystal structures, and the properties of crystalline
materials are greatly influenced by geometric information such as the space group, crystal system, and
lattice constant. It used to be mostly obtained using calculations based on density functional theory
(DFT) and experimental data from X-ray diffraction (XRD) curve fitting. These two techniques cannot
be utilized to identify materials on a wide scale in businesses since they require expensive equipment
and take a lot of time. Machine learning (ML), which is based on big data statistics and nonlinear
modeling, has advanced significantly in recent years and is now capable of swiftly and reliably
predicting the structures of materials with known chemical ratios based on a few key material-specific
factors. A dataset encompassing 1647 perovskite compounds in seven crystal systems was obtained
from the Materials Project database for this study, which used the ABX3 perovskite system as its
research object. A descriptor called the bond-valence vector sum (BVVS) is presented to describe the
intricate geometry of perovskites in addition to information on the usual chemical composition of the
elements. Additionally, a model for the automatic identification of perovskite structures was built
through a comparison of various ML techniques. It is possible to identify the space group and crystal
system using just a small dataset of 10 feature descriptors. The highest accuracy is 0.955 and 0.974,
and the highest correlation coefficient (R2) value of the lattice constant can reach 0.887, making this a
quick and efficient method for determining the crystal structure.

Keywords: space group; crystal system; lattice constant; feature descriptor; the bond-valence vector
sum; machine learning

1. Introduction

Perovskite is a naturally occurring mineral that has excellent properties that make it popular
in many engineering fields. These include ferroelectric and dielectric materials [1–3], catalysis [4],
ion conduction [5], thin films [6,7], photovoltaic solar energy conversion cells [8–11], quantum
source devices [12], and nanowire laser gain [13]. The structure of perovskite is frequently
shown as ABX3, where A and B are two cations with significantly dissimilar radii. There are a
lot of compounds with perovskite structures because many elements in the periodic table can
replace the elements in the A and B locations. The B-site cation is typically a transition-metal
element with a small radius (such as Cr, Mn, or Sc) and occupies the center of the octahedron.
It is coordinated with six X anions. The A-site cation (typically an alkali metal, alkaline earth
metal, or rare-earth element) occupies the top corner of the cube and is coordinated with 12 X
anions, primarily serving to stabilize the perovskite structure. A BX6 regular octahedron is
formed by six X anions and body-centered B-site ions, and the BX6 octahedra are regularly
aligned to create a three-dimensional network. The space group and lattice constant of the
BX6 octahedron change with the tilt or twist, which alters the crystal’s physical characteristics,
such as the electronic energy bands and magnetic order. As a result, creating a model that
can precisely and automatically identify the structure of unidentified crystalline compounds is
essential for material design.
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X-ray scanning is used to detect samples’ diffraction curves, which are then fitted using
specialized software to examine the crystal structures. This method demands pricey equip-
ment, and the threshold is high. Additionally, it calls for certain professional knowledge
and skills for processing experimental data. Numerous material databases that are well-
recognized by the academic community, such as the Open Quantum Materials Database
(OQMD) [14], Materials Project (MP), and Inorganic Crystal Structure Database (ICSD) [15],
have emerged with the development of materials informatics [16,17], which also provides
a richer data resource for studying the methods of crystalline materials. In particular, ma-
chine learning (ML) algorithms, which represent artificial intelligence algorithms, continue
to advance. Rather than requiring the construction of explicit physical models, these algo-
rithms automatically model the linear and nonlinear relationships between these physical
variables through probabilistic statistical learning to achieve quick and affordable classifica-
tion predictions, which have significant implications for the identification and screening of
materials on a large scale. Numerous studies on the identification of crystal structures based
on deep learning (DL) techniques of XRD patterns have been published recently [18–21].
These studies have led to significant advances in classifying crystalline materials. However,
the identification of multiple crystal structures, in particular, 230 crystal space groups, calls
for a substantial amount of XRD data and is sensitive to poor X-ray diffraction data, which
do not apply to the data identification of tiny samples. Small sample data can be recog-
nized using machine learning. Traditional ML approaches mainly rely on manually chosen
descriptors, which should have a distinct physical meaning. The most frequently used
descriptor in the study of materials informatics is the elemental information of the material
composition [22–24]. Even though efforts have been made to incorporate the ionic radius
calculation tolerance factor (t) into the feature set [25–27], elemental information based only
on the chemical composition does not apply to all perovskite structures, especially to those
that have the same composition but differ in structure. To get around the problem brought
on by the structural diversity of perovskites, better physical descriptors must be utilized to
explain the complicated geometry of these materials.

This work establishes a new perovskite feature set, provides a thorough analysis of
the variables used to characterize ABX3-type perovskite crystals, introduces the bond-
valence vector sum (BVVS) descriptor with a clear physical meaning to capture the intricate
geometry of perovskite, and creates an intelligent, affordable, and reliable model to identify
unidentified crystalline compounds with a small dataset of only 10 feature descriptors. The
crystal system and space group that the crystals belong to can be determined with accuracy
from a small dataset of only 10 feature descriptors, and the lattice constants can also be
predicted with accuracy.

2. Materials and Methods
2.1. Data Acquisition

The Materials Project, a well-known materials science database, and the related litera-
ture were the sources of all of the data used in this study. From the database, we pulled
1647 records with stable perovskite structures, spanning 40 space groups and 7 crystal
systems. The distribution of the gathered lattice constants a, b, and c ranges from 2 Å to
11 Å. The stability of the perovskite structure must be taken into account when gathering
data, and the Goldschmidt tolerance factor t [28] can be used in calculations to determine
whether the perovskite structure can be created. Its equation is as follows:

t =
rA + rB√
2(rB + rX)

(1)

where rA, rB, and rX are the effective ionic radii of the A-site, B-site, and X-site, respectively,
and the value of t is equal to 1 in an ideal cubic perovskite structure. Generally, perovskite
can be formed in the 0.8 < t < 1.0 range.
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2.2. Feature Engineering

In ML, feature engineering is a crucial stage. The construction, extraction, and se-
lection of features are all parts of feature engineering. Among these, feature selection
primarily serves to prevent the model from overfitting and enhance the model’s capacity
for generalization. Feature descriptors are a crucial component of the ML approach. The de-
scriptor set of the model can theoretically include any feature descriptor that can reflect the
crystal structure, but redundant feature descriptors will hurt the final model’s accuracy and
computational efficiency. Investigating the key feature factors that most influence the goal
features is essential. This work focused on screening the key structural feature descriptors
with physical significance after extracting as many potential nonlinear relationship features
between atomic parameters and crystal structure from the database Materials Project as
we could.

Significant structural variations are caused by the unique atomic characteristics of the
perovskite’s constituent elements. This is because of the abundance of voids, which are
prone to lattice distortion, between the BX6 octahedra. The BX6 octahedron is susceptible
to skew rotation and defects when the ionic radii of the A and B sites are too dissimilar. To
quantify the BX6 octahedral distortion and explain its physical characteristics in terms of
intracrystalline chemical bonding, we present the modulus of the bond-valence vector sum
(BVVS). Bond-valency theory [29] states that each atom wants a bond-valency sum equal to
its atomic valency; however, the actual atomic valency can be determined by adding the
bond valencies of the bonds that connect that atom to its neighbors. Here, the relationship
between the bond valence and bond length can be expressed by the following equation.

Sij = exp
(R0 − Rij

b

)
(2)

where b is a constant of 0.37 Å, R0 is an empirical constant related to the type of atom (ion),
Sij is the bond valence between atom i and atom j, and Rij is the bond length between atom
i and atom j and can be determined from the inorganic crystal structure database. Since
the bond valence Sij is directional, to take this directional feature into account, the bond

valence vector
⇀
S ij can be defined as:

⇀
S ij = Sij

⇀
R ij (3)

where
⇀
R ij is the unit vector from atom i to atom j. I. D. Brown [30] proposed a bond-valence

sum rule based on the electrovalence rule: i.e., the bond-valence sum of the chemical bonds

attached to each atom is equal to the valence state of that atom. By summing the
⇀
S ij

values, the atomic valence is obtained, expressed as the BVVS, and can be calculated by the
following equation.

⇀
V i = ∑

i 6=j

⇀
S ij (4)

where
⇀
V i is the atomic valence state, and

⇀
V i is zero in the stable coordination sphere and is

not zero when distortion occurs. Figure 1 shows a schematic diagram of the BVVS. The
center is a B atom; ideally, the BVVS is zero, and when BX6 octahedral distortion occurs,
the BVVS is non-zero.

By assigning the valence state to the chemical bonds arranged around the atoms, the
BVVS can link the valence state to the crystal structure, making it possible to study the
crystal structure using the valence of the chemical bonds. Therefore, we added the modulus
of the BVVS to the set of constituent element features, so the original set of 24 feature
descriptors based on the constituent element features and structural features is created, as
shown in Table 1.
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Table 1. Perovskite original feature descriptor set and its physical meaning.

Descriptors Physical Meaning Descriptors Physical Meaning

n_atom Number of atoms TCD Thermal conductivity
Z Atomic number Tb Boiling point
G Group in periodic table Tm Melting point
P Period in periodic table Tc Critical temperature
M Atomic mass Ef Enthalpy of fusion

Vmol Molar volume FIE First ionization
Ra Atomic radius es The number of electrons in s orbitals
Ri Average ionic radius ep The number of electrons in p orbitals

Rvdw Van der Waals ed The number of electrons in d orbitals
Rc Covalent radius ef The number of electrons in f orbitals
X Pauling electronegativity ER Electrical resistivity

EA Electron affinity BVVS The bond-valence vector sum

There are many parameters used to describe atomic information, e.g., atom radius,
but these feature descriptors do not play an equal role in the construction of the crystal
structure. In other words, some descriptors have a stronger relationship with the crystal
structure than others, which can accelerate the convergence in the right direction more
easily and reduce the computational effort of model training. Support vector machine
regression (SVR) was employed by Takahashi et al. [31] to predict the lattice constants of
1541 binary body-centered cubic crystals, with an R2 value of 0.836. The characteristic
descriptors used included atomic number, atomic radius, electronegativity, electron affinity,
atomic orbital, and valence electron number. Jarin et al. [32] predicted the type of crystal
structure and its lattice parameters using the basic atomic properties of perovskite materials.
Atomic number, atomic mass, valence, ionic radius, electronegativity, and the polarizability
of A and B atoms are some examples of these atomic attribute signals. They found that
atomic characteristics such as ionic radius, electronegativity, bond-valence vector, atomic
radius, number of atoms, and covalent radius strongly correlate with the crystal structure.
Based on their research, we chose some widely accepted atomic parameters as initial
descriptors and used the recursive feature descriptor method to remove irrelevant and
weakly correlated atomic parameters while keeping the same model accuracy constant.
Finally, we chose the retained features shown in Table 2. In this way, we constructed a
1647-perovskite dataset with a total of 10 features of perovskite constituent element features
and structural features. The mean values and standard deviations of all features’ A, B,
and X positions were calculated as inputs to ensure that each compound can acquire the
same number of features and properly understand the data features. In the meantime,
some empty data were removed, and 90% of the training set and 10% of the test set were
partitioned at random.

2.3. Machine Learning Modeling

ML algorithms come in two flavors: classification and regression. Regression and clas-
sification models were both extensively used in this work. ML algorithms were compared,
and the optimal algorithm model was ultimately chosen. These include the widely used
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Support Vector Machines (SVC), Extreme Gradient Boosting (XGBoost), Gradient Boosting
Trees (GBDT), and Random Forest (RF).

Table 2. Descriptor set after feature selection and their physical meaning.

Descriptors Physical Meaning

n_atom Number of atoms
BVVS The bond-valence vector sum

Z Atomic number
Ri Average ionic radius
Ra Atomic radius
M Atomic mass
X Pauling electronegativity

Vmol Molar volume
Rc Covalent radius

TCD Thermal conductivity

2.4. Model Evaluation

The mean absolute error (MAE), mean square error (MSE), and correlation coefficient
(R2) in the ML regression model are primarily used to assess the prediction accuracy of
the material system model. Better model performance and greater prediction accuracy are
shown by smaller MAE and MSE and larger R2. These are the equivalent equations:

MSE =
1
n

n

∑
j=1

(
ŷj − yj

)2 (5)

R2 = 1−
∑n−1

j=0

(
ŷj − yj

)2

∑n−1
j=0

(
yj − yj

)2 (6)

MAE =
1
n

n

∑
j=1

∣∣ŷj − yj
∣∣ (7)

where n denotes the number of samples, yj is the true value, ŷj is the predicted value,
and yj is the mean value. The accuracy of the classification model is mainly evaluated
by accuracy (ACC), the Matthews correlation coefficient (MCC), and the balanced F-score
(F1-score). The larger the ACC, the higher the accuracy of the prediction; the larger the
MCC, the higher the correlation between the prediction and the actual result; and the larger
the F1-score, which takes into account the calculation of the accuracy and completeness of
the model, the higher the quality of the model.

3. Results
3.1. ML Algorithm Analysis

On the feature set without the BVVS, we first pre-trained several ML algorithm models
(all with default parameters), and we then compared how well each model identified
perovskite crystal systems and space groups to choose the best model. For the 1647-
perovskite dataset, we divided the training set into 90% and the test set into 10% at
random. The models with superior effects when recognizing 7 crystal systems and 40 space
groups are RF, XGBoost, and GBDT, whereas the worst model is SVC. Table 3 displays the
classification results for seven crystal systems on the SVC, RF, GBDT, and XGBoost test sets,
while Table 4 displays the classification results for 40 spatial groups on the four ML test sets.
Among them, RF has the highest accuracy (ACC), Matthews correlation coefficient (MCC),
and balanced F-score (F1-score) in identifying crystal systems and space groups, but SVC
is the worst. Altogether, RF has the best performance, so all of the next experiments were
performed using RF.
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Table 3. Classification results of crystal systems on the four ML test sets.

Algorithm ACC MCC F1-Score

SVC 0.372 0.023 0.207
GBDT 0.898 0.872 0.900

RF 0.915 0.883 0.906
XGBoost 0.853 0.795 0.814

Table 4. Classification results of spatial groups on the four ML test sets.

Algorithm ACC MCC F1-Score

SVC 0.367 0.048 0.197
GBDT 0.777 0.717 0.767

RF 0.806 0.756 0.796
XGBoost 0.690 0.600 0.626

3.2. BVVS Analysis

We conducted two sets of comparative tests before and after adding the BVVS to
investigate the significance of the BVVS feature descriptor. Before and following the
addition of the BVVS, respectively, the crystal system and perovskite space group were
determined using RF, and the lattice constants were predicted. Table 5 contains the final
RF hyperparameter settings. Figure 2a displays the test set identification results for seven
crystal systems using the RF classification technique. The vertical coordinates correspond
to the relevant particular values, while the horizontal coordinates represent the model
performance metrics. ACC rose from 0.915 to 0.974, MCC increased from 0.883 to 0.961,
and the F1-score increased to 0.970 after the addition of the BVVS. The results of the RF test
set identification for 40 space groups of gathered perovskite are shown in Figure 2b. The
40 space groups’ identification accuracy (ACC), Matthews correlation coefficient (MCC),
and equilibrium F-score (F1-score) had values of 0.806, 0.756, and 0.796, respectively, before
the addition of the BVVS. After the addition of the BVVS, the ACC increased to 0.955, the
MCC had a value of 0.943, and the F1-score increased to 0.947. The BVVS is crucial in
determining the crystal shape. With the inclusion of the BVVS, the identification of crystal
systems and space groups is greatly improved. Figure 2c shows the fitting results of the
predicted lattice constant a on the test set of the RF regression model before adding the
BVVS, where the horizontal coordinate is the true value of the lattice constant, the vertical
coordinate is the predicted value, and the highest correlation coefficient R2 of the prediction
is only 0.710. The results of the projected lattice constants fitted on the test set after the
addition of the BVVS are shown in Figure 2d. The greatest R2 after the addition of the
BVVS reaches 0.887, the MAE and MSE have also been greatly reduced, and the overall
fitting impact has been significantly enhanced. The aforementioned comparison trials show
conclusively that the addition of the BVVS can more correctly reflect the crystal’s structural
properties. This is primarily because erections between the atoms that make up the crystal
determine its structure and properties. These interactions are reflected in the chemical
bonds that connect the atoms, and the behavior of these chemical bonds and associated
crystal parameters are crucial characterization variables of such interactions that can be
used to distinguish the structural differences between various crystals.

Table 5. Final RF hyperparameters.

Hyperparameters Value

criterion entropy
n_estimators 100
max_depth 10

n_job −1
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4. Discussion

In contrast to earlier research [33,34], we estimated the lattice constants and automati-
cally identified the space group of several perovskite materials using only a small dataset of
10 characteristics. The technique we employed is a combination of physically meaningful
feature variables (BVVS) that quantifies lattice distortions relative to the constituent atomic
features. This enables ML predictions to be physically interpreted and to be more con-
trollable in the direction of the target feature variable. The accuracy of the crystal system
and space group identification is far superior, especially the space group accuracy of 0.955,
which is more outstanding, and the lattice constants can also be predicted, as shown in
Table 6, when compared with the XRD-based ML method and the feature-descriptor-based
methods of other works [18,33,34]. The confusion matrix of our RF recognition method
for the crystal system and space group on the test set is shown in Figure 3. The horizontal
coordinates are the recognized categories, the vertical coordinates are the true categories,
the values in the squares indicate the percentage of the number of row label categories
predicted as column label categories, and the larger values and darker color of the diagonal
squares represent higher recognition accuracy, whereas the remaining squares with light
colors represent lower recognition accuracy. Although the overall level of accuracy for each
category identification remains high, certain lower values are directly tied to the sample
distribution. Figure 4 depicts the prediction of all lattice constants, including a, b, c, α, β,
and γ. When predicting a, b, and c, good accuracy is attained, and the maximum R2 value
is 0.887; nevertheless, there is substantial dispersion when predicting angles, which is also
probably due to the uneven sample of original data angles and inadequate model learning.

Table 6. Comparison of crystal structure recognition accuracy.

— Ours Park et al. [18] Liang et al. [33] Li et al. [34]

Crystal system 0.974 0.949 0.907 0.816
Space group 0.955 0.811 0.638 0.729
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The significance of the BVVS feature descriptors under RF was further assessed, and
the ML model feature ranking approach was used to rate the significance of these 10
feature descriptors. The feature variable importance histogram is shown in Figure 5. The
ordinate in Figure 5 represents the 10 feature variables, and the abscissa is the feature
importance coefficient. The larger the importance coefficient, the greater the contribution
to the predicted value of the target feature variable. It is clear from the feature importance
histogram that the BVVS makes the largest contribution to the identification of the crystal
structure, further demonstrating its ability to effectively capture crystal structure data
and support crystal structure identification. It is important to note that, as the bar chart
illustrates, the number of atoms also makes a greater contribution to the target characteristic
variables. This is because one fundamental characteristic of a crystal cell is the number
of atoms present. The more atoms present in a crystal, the more permutations between
those atoms, the more resulting distortions, and the more complex the crystal structure.
The complexity of the crystal structure and the atom count are closely correlated. Different
characteristic factors have varying degrees of influence on the crystal structure, including
molar volume, Pauling electronegativity, atomic radius, average ionic radius, covalent
radius, etc.



Materials 2023, 16, 334 9 of 11

Materials 2023, 16, x FOR PEER REVIEW 9 of 11 
 

 

importance coefficient. The larger the importance coefficient, the greater the contribution 

to the predicted value of the target feature variable. It is clear from the feature importance 

histogram that the BVVS makes the largest contribution to the identification of the crystal 

structure, further demonstrating its ability to effectively capture crystal structure data and 

support crystal structure identification. It is important to note that, as the bar chart illus-

trates, the number of atoms also makes a greater contribution to the target characteristic 

variables. This is because one fundamental characteristic of a crystal cell is the number of 

atoms present. The more atoms present in a crystal, the more permutations between those 

atoms, the more resulting distortions, and the more complex the crystal structure. The 

complexity of the crystal structure and the atom count are closely correlated. Different 

characteristic factors have varying degrees of influence on the crystal structure, including 

molar volume, Pauling electronegativity, atomic radius, average ionic radius, covalent ra-

dius, etc. 

 

Figure 5. Importance histogram of characteristic variables. 

5. Conclusions 

In conclusion, we provide a novel approach for predicting the crystal structure of 

perovskite. The atomic characteristic information of the ABX3 perovskite composition is 

examined, and a new characteristic variable, BVVS, is added. This new characteristic var-

iable is a physically significant combinatorial structural characteristic variable that reflects 

the outcome of the integrated interaction between various atoms, which can reflect the 

BX6 octahedral distortion from the perspective of chemical bonding and is a characteristic 

descriptor that cannot be neglected for quantitatively capturing various complex crystal 

structures. With the highest identification accuracy of 0.974 and 0.955 for the crystal sys-

tem and space group and the highest prediction R2 of 0.887 for the lattice constant, we 

have discovered that RF works best when aggregated across many ML models. Our con-

tribution is that the newly introduced BVVS enables ML to have a physical interpretation, 

learn precisely in the direction of the target feature variables, and adapt well to small-

sample-dataset prediction without building a large dataset. Furthermore, only 10 feature 

descriptors are required to identify the structure of a crystal, significantly reducing the 

difficulty of crystal structure prediction. In the meantime, the set of feature descriptors 

developed in this study may be successfully used to predict the structure of a larger vari-

ety of perovskite materials, which also serves as a foundation for predicting a larger num-

ber of perovskite-material-related attributes. Additionally, by avoiding costly DFT calcu-

lations, the amount of calculation is decreased, making our technique reasonably afford-

able to utilize. To determine the correlation between the features employed and the pre-

dicted crystal structure, we also conducted a feature variable importance analysis. This 

analysis offers fresh perspectives on how to identify the desired crystal structure for per-

ovskite materials that will be designed in the future. With the growing database of 

Figure 5. Importance histogram of characteristic variables.

5. Conclusions

In conclusion, we provide a novel approach for predicting the crystal structure of
perovskite. The atomic characteristic information of the ABX3 perovskite composition is ex-
amined, and a new characteristic variable, BVVS, is added. This new characteristic variable
is a physically significant combinatorial structural characteristic variable that reflects the
outcome of the integrated interaction between various atoms, which can reflect the BX6 octa-
hedral distortion from the perspective of chemical bonding and is a characteristic descriptor
that cannot be neglected for quantitatively capturing various complex crystal structures.
With the highest identification accuracy of 0.974 and 0.955 for the crystal system and space
group and the highest prediction R2 of 0.887 for the lattice constant, we have discovered
that RF works best when aggregated across many ML models. Our contribution is that the
newly introduced BVVS enables ML to have a physical interpretation, learn precisely in the
direction of the target feature variables, and adapt well to small-sample-dataset prediction
without building a large dataset. Furthermore, only 10 feature descriptors are required to
identify the structure of a crystal, significantly reducing the difficulty of crystal structure
prediction. In the meantime, the set of feature descriptors developed in this study may be
successfully used to predict the structure of a larger variety of perovskite materials, which
also serves as a foundation for predicting a larger number of perovskite-material-related
attributes. Additionally, by avoiding costly DFT calculations, the amount of calculation
is decreased, making our technique reasonably affordable to utilize. To determine the
correlation between the features employed and the predicted crystal structure, we also
conducted a feature variable importance analysis. This analysis offers fresh perspectives on
how to identify the desired crystal structure for perovskite materials that will be designed
in the future. With the growing database of research materials and the development of
machine learning algorithms, there are discoveries in the optimization and iteration of these
methods, which provide better and faster aid to studies, even though the ML algorithm
model used to identify the space group of perovskite materials and predict the lattice
constants still has some shortcomings.
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