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Abstract: The precise adjustment of handedness of helical architectures is important to regulate their
functions. Macroscopic chirality inversion has been achieved in organic supramolecular systems
by pH, metal ions, solvents, chiral and non-chiral additives, temperature, and light, but rarely in
coordination polymers (CPs). In particular, salt-assisted macroscopic chirality inversion has not
been reported. In this work, we carried out a systematic investigation on the role of pH and salt in
regulating the morphology of CPs based on Gd(NO3)3 and R-(1-phenylethylamino)methylphosphonic
acid (R-pempH2). Without extra NO3

−, the chirality inversion from the left-handed superhelix R-M
to the right-handed superhelix R-P can be achieved by pH modulation from 3.2 to 3.8. The addition
of NaNO3 (2.0 eq) at pH 3.8 results in an inversion of chiral sense from R-P to R-M as a pure
phase. To our knowledge, this is the first example of salt-assisted macroscopic helical inversion in
artificial systems.

Keywords: coordination polymers; salt-assisted; chirality inversion

1. Introduction

Helical architectures are ubiquitous in nature and display unique functions and topo-
logical properties [1–4]. Due to the uncertainty of chiral transcription and translation,
the induction and inversion of helical structures is one of the most complex processes in
biological systems [5]. Therefore, achieving multi-level assembly of helical structures from
molecular to macroscopic levels in artificial systems with controllable macroscopic helical
sense and elucidating the underline mechanism have become one of the hot spots in the
research of chiral materials [6]. To date, the study of modulating the helical sense of the
macroscopic helical structures via external stimuli has received increasing attention. Chiral
inversion that can be achieved by pH [7–12], metal ions [13–18], solvents [19–24], chiral and
non-chiral additives [25–32], temperature [33,34], light [35,36] have been reported, which
are often associated with the modulation of non-covalent interactions, such as hydrogen
bonds, van der Waals forces, and electrostatic interactions. However, it is worth noting that
salt-mediated modulation of the chiral sense of helical structures has not been reported.

Salt plays an important role in living systems. Moderate salt intake can alleviate
or prevent some diseases and improve body functions [37–39]. In addition, salt can al-
ter non-covalent interactions, which may affect the self-assembly process. For example,
high concentrations of salt can modulate the strength of electrostatic interactions between
charged groups, destroy hydrogen bonds in protein secondary structure, cause changes of
the α-helix [40,41] and β-sheet [42,43], or disrupt the structure of DNA, leading to struc-
tural changes from Z-DNA to Z’-DNA, or B-DNA to Z-DNA [44]. Various salts can also be
used as additives to control the size, morphology, structure of inorganic crystals [45–49].
However, salt has rarely been used to control the morphology and structure of coordi-
nation polymers (CPs). The only example was associated with the Er/R, S-pempH2 [R,

Molecules 2023, 28, 163. https://doi.org/10.3390/molecules28010163 https://www.mdpi.com/journal/molecules

https://doi.org/10.3390/molecules28010163
https://doi.org/10.3390/molecules28010163
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/molecules
https://www.mdpi.com
https://orcid.org/0000-0001-6770-8802
https://orcid.org/0000-0003-4437-1105
https://doi.org/10.3390/molecules28010163
https://www.mdpi.com/journal/molecules
https://www.mdpi.com/article/10.3390/molecules28010163?type=check_update&version=1


Molecules 2023, 28, 163 2 of 14

S-pempH2 = S-(1-phenylethylamino)methylphosphonic acid)] system, where the addition
of salt led to a change in the crystal structure from a triple-stranded helix to a quadruple-
stranded helix [50]. To our knowledge, salt effect on the morphology and helical sense of
chiral CPs has not been documented.

Our previous work has shown that the synergistic effect of pH and anion is crucial
for the formation and helical sense of the macroscopic superhelices of the Tb(NO3)3/R,
S-pempH2 and GdX3/R, S-pempH2 (X = Cl−, Br−, I−, CH3SO3

−, C6H5SO3
−, CF3SO3

−)
systems [51,52]. The pH can modulate the degree of deprotonation of the phosphonic
acid moiety and, thus, the ratio of coexisting different types of chains, while the anion
can modulate the interactions between chains and, thus, the formation and chiral sense of
the superhelices. Considering the unique structure of the nitrate ion, a triangular-shaped
singly charged oxygen anion, it not only can provide interactions through coordination
bonds [53–56], but also act as a three-directional hydrogen receptor that affects the assembly
of molecular building blocks [57–60]. Therefore, we hypothesize that the addition of extra
nitrate salt with different concentrations into the Ln(NO3)3/R, S-pempH2 system may tune
the interchain non-covalent interactions, disturb the self-assembling environment, and
provide a driving force to control the chiral sense of resulting helical products.

In this work, we chose Gd(NO3)3/R-pempH2 and systematically investigated the role
of pH and salt in regulating the morphology of the products (Scheme 1). We found that pure
phases of blocky crystals of (H3O)[Gd6(R-pempH2)3(R-pempH)15](NO3)4·9H2O (R-Block)
were obtained at pH 2.6–2.9, and rod-like crystals of [Gd(R-pempH)3].1.5H2O (R-Rod) at
pH 4.2–4.6. When the pH was in between, left-handed superhelices (R-M) appeared as a
minor phase at pH 2.9–3.2, while right-handed superhelices (R-P) were isolated as a pure
phase at pH 3.6–4.2. Interestingly, the addition of 2.0 eq NaNO3 salt to the reaction mixture
at pH = 3.8 leads to the chirality inversion of superhelices from right-handed to left-handed.
This is the first example of chirality inversion of helical structures of coordination polymers
by changing the concentration of salt.
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Scheme 1. Hydrothermal reaction products of R-pempH2 and Gd(NO3)3 at different pH and
salt concentrations.

2. Results
2.1. pH Effect on the Reaction Product

The hydrothermal reaction of a mixture of Gd(NO3)3·6H2O and R-pempH2 (molar
ratio 1:5) at 120 ◦C for 24 h resulted in products with differet morphologies depending on
the pH of the reaction mixture (Scheme 2, Figure 1 and Figure S1). We obtained a pure phase
of block-like crystals of (H3O)[Gd6(R-pempH2)3(R-pempH)15](NO3)4·9H2O (R-Block) at
pH 2.6–2.9. When the pH was 3.0–3.2, a mixture of left-handed superhelices (R-M, minor
phase) and block-like crystals (R-Block) was observed. When the pH was raised to 3.7–4.2,
a pure phase of right-handed superhelices (R-P) was collected. At an even higher pH
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(4.3–4.6), rod-like crystals of [Gd(R-pempH)3]·2H2O (R-Rod) were isolated. It is apparent
that pH plays an important role in the self-assembly process and the chirality transcription
and amplification of the system. This phenomenon has been previously observed in the
Tb(NO3)3/R-pempH2 system [51]. However, the observation of left-handed superhelices
of R-M as a minor phase at pH = 3.0–3.2 is unprecedented. To exclude the possible effect
of metal ions, we conducted the same reaction but using Tb(NO3)3 to replace Gd(NO3)3.
Left-handed superhelices were again obtained as a minor phase (Figure S2). Noting that the
experimental condition such as the filling degree of the autoclave (ca. 53%) is not exactly the
same as we used in previous work (>90%), we conducted similar hydrothermal reactions
of Gd(NO3)3·6H2O and R-pempH2 but with different filling degrees (30, 50, 60, 70, 90%) at
pH 3.2. As shown in Figure S3, the left-handed superhelices of R-M appeared together with
R-Block when the filling degree was 30 and 50%, and vanished when the filling degree
was 60%. When the filling degree was 70 and 90%, only right-handed superhelices of R-P
were obtained. As the filling degree is directly related to the auto-generated pressure inside
the autoclave, the above results indicate that pressure also plays an important role in the
formation of the superhelices of Gd/R, S-pempH2 products. When the filling degree is ca.
50%, left-handed superhelices of R-M can form, and the chirality inversion can be achieved
by adjusting the pH from 3.0–3.2 to 3.7–4.2.
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2.2. Structures of R-Block and R-Rod

Structural analyses showed that R-Block and R-Rod are isostructural to their Tb
analogues [51]. R-Block crystallizes in the monoclinic system, with chiral space group
P21. The asymmetric unit contains three Gd3+, three R-pempH2, fifteen R-pempH−, four
NO3

− anions, one H3O+ and eleven lattice water molecules (Table S1 and Figure S6).
There are two kinds of positively charged chains in the structure. Chain I has the com-
position [Gd3(R-pempH2)2(R-pempH)7]2+, where three distinct Gd atoms, two different
R-pempH2 and seven different R-pempH− are found. Each Gd atom is eight-coordinated
by oxygen atoms from the phosphonate groups. The Gd-O bond lengths lie in the range
2.310(5)–2.631(5) Å, and the O-Gd-O bond angles are 58.6(2)–157.4(2)◦ (Table S2). The
amino groups in the ligands are all protonated, while the phosphonate groups in the two
R-pempH2 ligands are singly protonated at O18 and O27, but those in the seven R-pempH−

ligands are fully deprotonated. The Gd atoms are triply bridged by one O-P-O and two
µ3-O(P) units, forming an infinite triple-stranded chain running along the b-axis (Figure 2).
The pitch and diameter are 24.21 and 18.88 Å, respectively, for Chain I (Figure 2). The pro-
tonated phosphonate oxygen atoms O18 and O27 are involved in hydrogen bonding with
the counteranion NO3

− [O27 . . . O63: 2.545(8) Å, O18 . . . O55: 2.462(19) Å] (Figure 3a).
Chain II has the composition [Gd3(R-pempH2)( R-pempH)7]+ which contains one

less R-pempH2 than Chain I. In addition, one of the three Gd atoms (Gd4) in Chain II is
seven-coordinated and the other two (Gd5, Gd6) are eight-coordinated, unlike Chain I
in which all Gd atoms are eight-coordinated. As a result, the Gd atoms in Chain II are
bridged by one O-P-O and two µ3-O(P) units forming a trimer, and then the trimers are
further linked by two O-P-O and one µ3-O(P) units forming a triple-stranded infinite chain
(Figure 2). Again, the phosphonate group in R-pempH2 is singly protonated at O30 and is
involved in hydrogen bonding with the nitrate anion. Compared to Chain I, the pitch of
Chain II (24.21 Å) is the same, but the diameter (17.91 Å) is smaller (Figure 2).
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The positively charged Chains I and II are stacked in the lattice. Between the chains,
there are four crystallographically different NO3

− anions and one H3O+ to balance the
charge, as well as lattice water molecules. Therefore, an extensive hydrogen bonding
network is found among the phosphonate oxygen atoms, the amino groups, the NO3

−

anions, and the water molecules (Figure 3a). The shortest interchain distance is 15.334 Å
(Figure S7).

The structure of compound R-Rod was previously reported [52]. It crystallizes in the
hexagonal systems, chiral group P65, and has a general formula of [Gd(R-pempH)3]·1.5H2O.
Only one distinct Gd atom is observed in the structure, which is eight-coordinated by
oxygen atoms from six R-pempH− (Figure 2). The Gd-O bond lengths lie in the range
2.285(13)–2.606(14) Å, and the O-Gd-O bond angles are 58.7(4)–161.1(4)◦. R-Rod shows
a neutral chain structure, where the Gd atoms are triply bridged by one O-P-O and two
µ3-O(P) units. Compared to R-Block, although the pitch of the resulting triple-stranded
chain (Chain III) in R-Rod is similar (24.11 Å vs. 24.21 Å in Chain I and II), the chain
diameter is much shorter (16.56 Å vs. 18.88 Å in Chain I and 17.91 Å in Chain II) (Figure 2).
The inter-chain distance is 15.756 Å. The lattice water molecules are located close to the
chains and form hydrogen bonds with the phosphonate oxygen and amino nitrogen atoms
[O1W . . . O6: 2.770(4) Å, O1W . . . O7: 2.970(3) Å, N3 . . . O1W: 2.880(3) Å]. The interchain
interactions are dominated by van der Waals contacts (Figure 3b).

2.3. Characterization of Superhelices R-M and R-P

Since superhelix R-M was obtained as a minor phase together with block-like crystals,
we collected the sample by manual separation, while R-P was obtained as a pure phase at
pH 3.8. To determine the composition of R-M and R-P, we performed energy dispersive X-
ray spectroscopy (EDS), thermogravemetic (TG) ananlysis and elemental analysis. The EDS
measurements revealed a molar ratio of Gd:P = 1:3 in both cases (Figure S8). By combining
with the TG and elemental analysis results (Figure S9, Table S3), we propose that the
molecular formulae of R-M and R-P are Gd[(R-pempH)2.70(R-pempH2)0.30](NO3)0.30·2H2O
and Gd[(R-pempH)3]·2H2O, respectively.

Noting that the chemical composition of R-P is similar to that of R-Rod and that both
products are obtained at very similar pH conditions, we envisage that the structure of R-P
is closely related to that of R-Rod. Indeed, the PXRD patterns of both are very similar
except that the peaks on the R-P pattern are all shifted to the left (Figure 4a). The result
suggests that R-P has a similar structure to R-Rod, but with an enlarged unit cell volume.
This is reasonable because the chain stacking in the superhelix R-P may be looser than
that in the crystal R-Rod. To obtain the cell parameters of R-P, we indexed the diffraction
peaks of R-P and R-Rod using TOPAS 5.0 [61], yielding the parameters: space group P65,
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a = 16.34 Å, c = 24.40 Å, V = 5641.98 Å3 for R-P; and P65, 15.86 Å, c = 24.23 Å, V = 5298.37
Å3 for R-Rod (Figure S10). Compared to R-Rod, the cell volume of R-P is expanded by ca.
343 Å3 (5641.98 Å3 vs. 5298.37 Å3 in R-Rod).
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Although the PXRD patterns of R-P and R-Rod are slightly different, their infred (IR)
spectra are identical (Figure 4b). Both show a series of peaks between 900 and 1200 cm−1,
assigned to the ν(P-O) stretching vibrations. The solid-state circular dichroism (CD) spectra
are also identical, and both exhibit a negative Cotton effect at 262 nm (Figure 4c), attributed
to the π-π* transitions of the chiral phosphonate ligand [62]. These results corroborate the
structural similarity and chiral nature of R-P and R-Rod at the molecular level. Strong
evidence to distinguish the difference between R-P and R-Rod is their vibrational circular
dichroism (VCD) spectra. As shown in Figure 4d, R-P exhibits a strong negative VCD
signal at 1014 cm−1 and three weak positive VCD signals near 1048, 1030, and 990 cm−1.
In contrast, the peak at 1014 cm−1 is absent in the VCD spectrum of R-Rod. Clearly, the
helical morphology of R-P is reflected by its VCD spectrum.

Unlike R-P, the left-handed superhelix R-M was obtained at a lower pH and its
formula contains 0.3 NO3

− anions per Gd. The IR spectrum of R-M is similar to that of
R-P except for the enhanced intensity of the peak at 1385 cm−1, attributed to the stretching
vibration of the un-coordinated NO3

− (Figure 4b). The results suggest that the phosphonate
groups in R-M are partially protonated, forming positively charged chains which are
balanced by nitrate anions. The intercalation of nitrate anions may increase the interchain
distance and expand the cell volume. This is confirmed by the PXRD measurements.
Compared to R-P, R-M shows an identical PXRD pattern, but the diffraction peaks are
all left-shifted (Figure 4a). A Pawley fit of the PXRD pattern of R-M using TOPAS 5.0
led to the unit cell parameters: space group P65, a = 16.73 Å, c = 40.30 Å, V = 9767.22 Å3

(Figure S10). The c-axis is significantly enlongated, which can be explained by the possible
symmetry reduction of the chain structure due to the incorporation of nitrate anions. The
CD spectrum of R-M is similar to that of R-P (Figure 4c), in agreement with the existence of
the same chiral ligand in the two materials. Interestingly, the VCD profile of R-M is almost
a mirror of that of R-P, where a positive signal was found near 1014 cm−1 and three weak
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negative signals near 1048, 1030 and 990 cm−1 (Figure 4d). This result is consistent with
their macroscopic helix structure, i.e., the R-P superhelix is right-handed, while the R-M
superhelix is left-handed.

The formation of the R-M and R-P superhelices with similar chemical composition and
structure but opposite handedness demonstrates that helical inversion may be achieved
for the Gd(NO3)3/R-pempH2 system by adjusting the pH of the reaction mixture. When
the pH is low, the phosphonate groups are partially protonated resulting in positively
charged chains. The incorporation of a suitable amount of nitrate anions may affect the
chain packing in the lattice and, thus, the formation of left-handed superhelix R-M. A slight
increase in the pH leads to the deprotonation of the phosphonate groups and the decrease in
the amount of nitrate anions. As a result, right-handed superhelix R-P is obtained in order
to maximize the van der Waals contacts. The same phenomenon was previously observed
for the GdX3/R-pempH2 (X = I, CF3SO3

−) system [52]. Noting that R-M appeared as a
minor phase at pH 3.2, we envisage whether it is possible to isolate a pure phase of R-M
and accomplish chirality inversion through a combined effect of pH and salt.

2.4. Salt Effect on the Chirality Inversion of Superhelices

We first investigated the effect of additional NaNO3 on the product of the Gd(NO3)3/R-
pempH2 reaction mixture. The above-mentioned results have shown that a pure phase
of right-handed superhelix R-P can be obtained at pH 3.8 without the addition of extra
NaNO3. By keeping the initial pH at 3.8, we conducted similar hydrothermal reactions
of Gd(NO3)3/R-pempH2 at 120 ◦C for 24 h, but with the addition of different amounts of
NaNO3. As shown in Figure 5 and Figure S11, right-handed superhelices dominated when
the added NaNO3 was below 0.8 eq (vs. Gd(NO3)3). When the amount of NaNO3 was
1.2 eq, left-handed superhelices emerged together with nanofibers without clear helicity.
When the amount of NaNO3 was further increased to 2.0–3.0 eq, a pure phase of left-handed
superhelix (named as R-M’) was collected. When the amount of NaNO3 was above 4.0 eq,
block-like crystals R-Block were obtained together with R-M’. It is clear that chirality
inversion of the Gd(NO3)3/R-pempH2 system can be achieved by controlling the amount
of extra NaNO3 salt at pH 3.8.
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with different amounts of NaNO3 at 120 ◦C and pH 3.8 for 24 h.

Except for the morphology change, the salt-induced chirality inversion from R-P to
R-M’ was accompanied by other changes. The C:N molar ratio decreased from 8.9:1 to
7.8:1 when adding 0.0–2.0 eq NaNO3 (Table S1), suggesting the incorporation of nitrate
anions. This is confirmed by the IR spectra which show an increase in peak intensity
at 1385 cm−1 (Figure S12). The PXRD patterns showed a slight left-shift of the peaks
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(Figure S13). Although the CD spectra remained similar (Figure S14), a significant change
was observed in the VCD spectra (Figure S15). With 0.0 eq NaNO3, we obtained R-P which
exhibits a strong negative VCD signal at ca. 1014 cm−1. This peak intensity was reduced
for the product with 0.4 eq NaNO3. Interestingly, the sign of this signal became opposite
with 0.8 eq NaNO3, and the intensity increased for the products with increasing amount
of NaNO3.

To examine whether R-M’ is the same as R-M, we characterized the products by
different techniques. Both the IR spectrum and PXRD pattern of R-M’ are identical to those
of R-M (Figures S16 and S17). The Pawley fit of the PXRD pattern of R-M’ led to similar
unit cell parameters: space group P65, a = 16.82 Å, c = 40.37 Å, V = 9890.22 Å3 (Figure S18).
The elemental and thermal analysis confirmed that R-M’ has a chemical composition of
Gd[(R-pempH)2.70(R-pempH2)0.30](NO3)0.30·2H2O (Figure S19 and Table S3), in agreement
with that for R-M. In addition, both CD and VCD profiles of R-M’ coincide with those of
R-M (Figures S20 and S21). Based on these results, we conclude that R-M’ is the same as
R-M, both in composition and chiral structure.

We next questioned whether the cation or the anion in the added NaNO3 salt plays
a key role in the chirality inversion of the Gd(NO3)3/R-pempH2 reaction product. We
conducted the same reactions at pH 3.8, but with adding different salts of Ba(NO3)2,
KNO3 and NaNO3 (2.0 eq NO3

−). In all cases, we obtained the same product R-M
(Figures S22–S25), indicating that the cation of salt does not affect the final product. We
then conducted the same reactions at pH 3.8, but with the addition of 2.0 eq salts of NaCl,
NaBr, NaNO2, and Na2SO4. We obtained a mixture of right-handed superhelix R-P and
non-twisted fibers for NaCl and NaBr. For NaNO2 and Na2SO4, we obtained unrecognized
new phases with of nanoplate and nanoparticle morphologies, respectively (Figures S26–S28).
The results corroborate that it is the nitrate anion of the salt that plays a vital role in directing
the chirality inversion from R-P to R-M.

To further evaluate the influence of pH on the reaction product, we performed the same
reactions containing an additional 2.0 eq NaNO3, except for the pH value. As revealed by the
SEM images, left-handed superhelices R-M can be obtained at pH 3.0–3.8 (Figure S29). At
pH 4.0, non-helical fibers were dominant. When the pH was further increased to 4.4, pure
right-handed superhelices R-M were obtained. Clearly, with additional salt of NaNO3 in the
reaction mixture, the pH value to obtain R-P is much higher. Therefore, the chiral sense of
superhelices can be controlled by both pH and nitrate salt.

To understand the mechanism of salt-induced chirality inversion, we monitored the
hydrothermal reaction products of mixtures containing 2.0 eq NaNO3 at pH 3.8 and 120 ◦C
for different periods of time. When the reaction time was less than 30 min, only nanoparticles
appeared on the surface of R-pempH2 ligand (Figure S30). The nanoparticles grew with
increasing reaction time. At 3 h, nanorods with a diameter of ca. 150 nm and a length of
ca. 500 nm were observed, which have a P/Gd ratio of ca. 2.9/1, very close to that for R-M
(Figure S31). After 4 h of reaction, we obtained a pure phase of left-handed superhelix R-M,
confirmed by the SEM, EDS, IR, and PXRD measurements (Figures S30–S33). The average
width of R-M increased with prolonging the time, from ca. 0.5 µm at 4 h to 2 µm at 12 h. The
results indicate that the left-handed superhelix R-M is formed from the very beginning. This
means that the nitrate salt is involved in the self-assembly process at the nucleation stage. In
general, the role of the nitrate anion can be three-fold. The first is its coordination capability
towards metal ions. The second is its ability to form an extensive hydrogen bonding network
with phosphonate ligands and water molecules. The third is its ability to adjust the ionic
strength of the reaction mixture. Since the nitrate anion is uncoordinated in the present cases,
the latter two factors should be more important. The existence of extra nitrate anions may
facilitate the H-bonding interaction between the nitrate anions and chains, which, in turn,
stabilizes the positively charged chains at relatively high pH in order to keep the overall charge
balanced. The tendency to maintain NO3

− anions in the lattice and meanwhile release protons
from phosphonate groups at pH 3.8 may cause a mismatch between the chains, leading to
the twisted growth of the chains and the formation of R-M [63]. However, we noticed that
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R-M appeared as a minor phase when 1.2 eq NaNO3 was added, and as a pure phase when
2.0–3.0 eq NaNO3 was added. The concentration of salt is related to the ionic strength of the
reaction mixture according to the equation: I = 1/2 ∑ ciz2

i , where I is the ionic strength, ci
is the concentration of various ions, and zi is the number of the charges carried by each ion.
Increasing the ionic strength will increase the Debye−Hückel shielding, reduce the electronic
attraction between Gd3+ and pempH−, and improve contact opportunities between Gd3+ and
nitrate anion. Therefore, it is the combined effect of the hydrogen bonding ability of the nitrate
anion and the ionic strength that is responsible to the salt-induced chirality inversion of the
macroscopic superhelices of the present Gd coordination polymers (Scheme 3).
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3. Conclusions

In summary, we systematically investigated the role of pH and salt in regulating the
morphology of the products in a Gd(NO3)3/R-pempH2 system. The products of R-Block,
R-M, R-P and R-Rod were obtained via pH and salt modulation. This is because pH
determines the deprotonation degree of the ligand, and NO3

− modulates the interchain
interaction. Without extra NO3

−, chirality inversion from the left-handed superhelix R-M
to the right-handed superhelix R-P can be achieved by pH modulation from 3.2 to 3.8.
However, R-M was obtained only as a minor phase. The addition of NaNO3 (2.0 eq) at pH
3.8 results in an inversion of chiral sense from R-P to R-M as a pure phase. The important
role nitrate salt plays in the helicity inversion of the present system may originate from
the strong ability of the nitrate anion as a hydrogen bonding receptor and the increased
ionic strength of the reaction mixture which improved the nitrate-chain interactions. To our
knowledge, this is the first example of salt-assisted macroscopic helical inversion in artificial
systems. This work provides a new strategy for the design and synthesis of functional
coordination polymers with desired macroscopic helicity.

4. Materials and Methods
4.1. Materials and Physical Measurements

R−(1−phenylethylamino)methylphosphonic acid (R-pempH2) was synthesized ac-
cording to procedures given in the previous literature [64]. All reagents were purchased
from commerical sources without further purification. The morphologies of suprehelices
were characterized on a scanning electron microscope (SHIMADZU, SSX-550, Kyoto, Japan)
at an acceleration voltage of 5 kV. The UV–Vis spectra of products were recorded on a
Perkin Elmer Lambda 950 UV/VIS/NIR spectrometer (Perkin Elmer, Waltham, MA, USA)
using powder samples. Elemental analyses were carried out on a PE 240C analyzer (Perkin
Elmer, America). Powder X-ray diffraction (PXRD) data were obatined on a Bruker D8
advance diffractometer with Cu-Kα radiation. Fourier infrared spectra were recorded
on a Bruker Tensor 27 spectrometer (Bruker, Leipzig, Germany) with pressed KBr pel-
lets in the range 4000–400 cm−1. Thermogravimetric (TG) analyses were measured on a
Mettler Toledo TGA/DSC instrument(Mettler 5MP/PF7548/MET/400W, Mettler-Toledo,
Greifensee, Switzerland) in the range of 30–600 ◦C under a nitrogen flow (20 mL/min) at
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a heating rate of 5 ◦C min−1. CD spectra of products were recorded on a circular dichro-
ism spectrophotometer (JASCO, J-810, Tokyo, Japan) at room temperature. VCD spectra
were recorded on a Bruker VERTEX 80v Fourier transform infrared spectrometer (Bruker,
Germany) equipped with a PMA 50 VCD/IRRAS module (Bruker, Germany).

4.2. Synthesis of (H3O)[Gd6(R-pempH2)3(R-pempH)15] (NO3)4·9H2O (R-Block)

A mixture of R-pempH2 (0.1080 g, 0.5 mmol) and Gd(NO3)3·6H2O (0.0451 g, 0.1 mmol)
was stirred for half an hour in 6 mL H2O. Later, the pH was adjusted to 2.9 with 0.5 mol/L
NaOH. The glass bottle was then kept in a 15 mL Teflon-lined autoclave, adding 2.0 mL
deionized water in the outside of the glass bottle, and heated at 120 ◦C for 24 h. After cooling
to the room temperature, block-shaped colorless crystals of R-Block were obtained, which
were washed with deionized water several times and collected. Yield: 17.3% (15.1 mg) based
on Gd(NO3)3. Elemental analysis (%) calculated for C162H238N22O66P18Gd6·10H2O: C, 37.21;
H, 4.94; N, 5.89. Found: C, 37.09; H, 4.98; N, 5.90. IR (KBr, cm−1): 3446 (w), 3066 (m),
3023 (m), 2986 (m), 2790 (m), 2523 (w), 2405 (m), 1622 (m), 1497 (m), 1456 (m), 1431 (m),
1384 (m), 1313 (m), 1292 (m), 1158 (s), 1083 (s), 1010 (s), 986 (s), 819 (w), 766 (m), 751 (m),
702 (m), 565 (m), 536 (m), 506 (m), 473 (m). Thermal analysis confirmed the removal of ten
water molecules below 100 ◦C (obs. 3.6%, calcd. 3.4%). The number of water molecules is
less than that determined by single crystal structural analysis, possibly due to the loss of two
lattice water molecules in air.

4.3. Synthesis of Gd[(R-pempH)2.70(R-pempH2)0.30](NO3)0.30·2H2O (R-M)

R-M was obtained following a similar procedure except that pH was adjusted to 3.2. A
white powder of R-M was obtained, which was washed with deionized water several times
and collected. Yield: 3.0% (2.5 mg) based on Gd(NO3)3. Elemental analysis (%) calculated
for C29H39.3N3O9P3Gd·0.30NO3·2H2O: C, 37.92; H, 5.07; N, 5.42. Found: C, 37.93; H, 5.03;
N, 5.58. IR (KBr, cm−1): 3426 (w), 3065 (m), 3036 (m), 2987 (m), 2794 (m), 2522 (w), 1623 (m),
1493 (m), 1456 (m), 1384 (m), 1314 (w), 1292 (w), 1273 (w), 1151 (s), 1079 (s), 1017 (s), 985 (s),
939 (m), 822 (w), 765 (m), 751 (m), 702 (m), 565 (m), 536 (m), 504 (m), 472 (m). Thermal analysis
confirmed the removal of two water molecules below 120 ◦C (obs. 3.9%, calcd. 4.2%).

4.4. Synthesis of Gd[(R-pempH)3]·2H2O (R-P)

R-P was obtained following a similar procedure except that pH was adjusted to 3.8.
A white powder of R-P was obtained, which was washed with deionized water several
times and collected. Yield: 18.8% (15.7 mg) based on Gd(NO3)3. Elemental analysis (%)
calculated for C27H39N3O9P3Gd·2H2O: C, 38.80; H, 5.15; N, 5.03. Found: C, 38.78; H, 5.03;
N, 5.05. IR (KBr, cm−1): 3430 (w), 3060 (m), 3032 (m), 2984 (m), 2787 (w), 2526 (w), 1627 (m),
1497 (m), 1482 (m), 1456 (m), 1384 (m), 1314 (w), 1290 (w), 1277 (w), 1151 (s), 1082 (s), 1018 (s),
986 (s), 941 (m), 818 (w), 763 (m), 752 (m), 701 (m), 564 (m), 535 (m), 503 (m), 470 (m). Thermal
analysis confirmed the removal of two water molecules below 120 ◦C (obs. 4.6%, calcd. 4.3%).

4.5. Synthesis of Gd[(R-pempH)2.70(R-pempH2)0.30](NO3)0.30·2H2O (R-M’)

R-M’ was obtained following a similar procedure to R-P except that 2.0 eq NaNO3
was added to the reaction mixture. White powder of R-M’ was obtained, washing with
deionized water for several times and collecting. Yield: 16.7% (14.3 mg) based on Gd(NO3)3.
Elemental analysis (%) calculated for C29H39.3N3O9P3Gd·0.30NO3·2H2O: C, 37.94; H, 5.07;
N, 5.41. Found: C, 37.94; H, 4.89; N, 5.66. IR (KBr, cm-1): 3422 (w), 362 (m), 3036 (m),
2983 (m), 2794 (m), 2515 (w), 1623 (m), 1496 (m), 1455 (m), 1384 (m), 1315 (w), 1292 (w),
1274 (w), 1152 (s), 1083 (s), 1019 (s), 985 (s), 923 (w), 822 (w), 765 (m), 751 (m), 699 (m),
566 (m), 536 (m), 505 (m), 473 (m). Thermal analysis confirmed the removal of two water
molecules below 120 ◦C (obs. 4.3%, calcd. 4.2%).
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4.6. Single Cryatal X-ray Crystallography

Single crystal data of R-Block were collected on a Bruker APEX DUO (for R-Block)
diffractometer using graphite-monochromated Mo Kα radiation, λ = 0.71073 Å. The data
were integrated using the Siemens SAINT program [65]. Adsorption corrections were
applied. The structure was solved by direct methods and refined on F2 by full-matrix
least-squares using SHELXTL [66]. All non-hydrogen atoms were refined anisotropically.
All hydrogen atoms bound to carbon were refined isotropically in riding mode. For R-
Block, hydrogen atoms of water molecules were detected via experimental electron density
and then refined isotropically with a reasonable restriction of O-H bond distances and
H-O-H angles. The residual electron densities were of no chemical significance. The
crystallographic data are shown in Supplementary Table S1, and the selected bond lengths
and angles are shown in Supplementary Table S2. Deposition Number 2086976 contains
the supplementary crystallographic data. These data can be obtained free of charge from
the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif
(accessed on 3 June 2021).
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