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Abstract: Blue-Phase Liquid Crystals (BPLCs) are considered to be excellent 3D photonic crystals and
have attracted a great deal of attention due to their great potential for advanced applications in a
wide range of fields including self-assembling tunable photonic crystals and fast-response displays.
BPLCs exhibit promise in patterned applications due to their sub-millisecond response time, three-
dimensional cubic structure, macroscopic optical isotropy and high contrast ratio. The diversity of
patterned applications developed based on BPLCs has attracted much attention. This paper focuses
on the latest advances in blue-phase (BP) materials, including applications in patterned microscopy,
electric field driving, handwriting driving, optical writing and inkjet printing. The paper concludes
with future challenges and opportunities for BP materials, providing important insights into the
subsequent development of BP.
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1. Introduction

Blue-phase liquid crystals (BPLCs) [1–3] are fascinating self-assembling 3D nanomate-
rials. As early as 1888, scientists measuring the liquid crystal phase behaviors of cholesteryl
benzoate found that [4]: “a bright blue-purple phenomenon appeared during the cool-
ing of the melted compound, and this bright blue-purple, which soon disappeared, was
followed by a cloudy phenomenon. The same color effect reappeared again when the
cooling was continued. At the same time, the sample began to crystallize and the color
disappeared”. This color is an optically isotropic result, indicating a thermodynamically
stable state. It is called a blue phase because of its blue Bragg reflection. At present, re-
search on BPLCs is mainly focused on the display field, such as broadening the blue-phase
temperature range [1,2,5–11] and realizing blue-phase liquid-crystal displays [12–15]. Nev-
ertheless, significant progress has been made in its non-display areas, such as large-domain
films [3,16,17], blue-phase lasers [18–20], etc.

Patterned applications have excellent prospects in the field of information transmission
and display [21–29]. The use of liquid crystals in patterned applications has always been
a focus of attention, and the most well-known products of patterned applications based
on liquid crystals are various kinds of liquid-crystal displays, electronic paper, etc., which
are ubiquitous in people’s lives. A variety of responsive patterned applications have been
developed based on liquid crystals [30–36]. However, the current challenges of liquid-
crystal display (LCD) patterned applications include long response times, poor contrast,
poor field of view, single color, complex preparation processes and high dependence on
orientation layers. Polymer cholesteric liquid-crystal (PCLC) sheets have the potential
to be used in many passive and active optoelectronic applications, including military
vehicles, smart windows, color filters, multi-color flexible displays, etc. [37–43]. This
offers the possibility of thin, light, reflective, lightweight and flexible devices with low
power. However, PCLC suffers from long response times, thermal ageing properties
and poor mechanical properties. Significant research has been undertaken to improve
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the performance of liquid-crystal devices, such as doping with nanoparticles [44–48].
Recently, blue-phase liquid crystals with optically isotropic [49], fast Kerr-effect [50] and
three-dimensional cubic structures have been widely used for patterned displays. The
schematic diagram of the fast Kerr effect for blue phase liquid crystals is shown in Figure 1.
Blue-phase-based patterned applications have the advantages of sub-millisecond response
time [51], simple preparation process, high contrast ratio and a wide range of applications.
Therefore, the pattern reproduction properties of blue phase liquid crystal have important
application value in information transmission, display, handwritten paper, high-resolution
graphics and so on. The aim of this review is to present the latest important advances
in the field of patterned BPLC materials. This review introduces applications of micro-
patterns, electric field driving, handwritten paper, photo-mask pattern preparation and
inkjet printing of patterns, discusses the limitations of applications in pattern display and
microelectronics, and finally summarizes the opportunities and challenges of blue-phase
pattern replication in advanced functional material design and device applications.
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the three-dimensional long-range space. In the three-dimensional space, the defects ap-
pear at regular intervals to form a cubic lattice, just like the lattice of a solid crystal. In 
other words, BP is a thermodynamically stable phase that coexists with defects. In terms 
of crystal structure, BP can be divided into three sub-phases, corresponding to BPI, BPII 
and BPIII, whose corresponding lattice structures are the body-centered cubic structure 
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Figure 1. Schematic representation of the Kerr effect for blue-phase liquid crystals [50]. Emerging
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2. Patterned Applications of Blue Phase Liquid Crystals
2.1. Application of Blue-Phase Spontaneous Micropattern

Different phases of liquid crystals show different textures and patterns under the
polarizing microscope. For example, in cholesteric-phase liquid crystals, distorted grain
boundary phases show interesting patterns, whereas BPLC shows regular mosaic pat-
terns under a polarizing microscope. BP is a thermodynamically stable phase with a
three-dimensional lattice structure [52,53]. The phase transition of BPLC has now been
characterized using polarization optics [54–56]. The arrangement of molecules in blue-
phase liquid crystals tends to twist not only in the direction of the spiral axis, but also in
a direction perpendicular to the spiral axis, which is called a biaxial helical structure [57].
Dopants with medium torsional power induce the cholesteric phase when the pointing
vector twists along a single axis, whereas strong torsional dopants induce the pointing
vector to twist in all directions perpendicular to itself, resulting in the so-called double-
twisted cylinder (DTC) [58]. In BPLC, the liquid crystal molecules are first arranged in
a double-twisted arrangement to form DTCs, and then the lattice structure of BPLC is
constructed by supramolecular self-assembly, which inevitably forms defects in the three-
dimensional long-range space. In the three-dimensional space, the defects appear at regular
intervals to form a cubic lattice, just like the lattice of a solid crystal. In other words, BP is a
thermodynamically stable phase that coexists with defects. In terms of crystal structure,
BP can be divided into three sub-phases, corresponding to BPI, BPII and BPIII, whose
corresponding lattice structures are the body-centered cubic structure (the space group of
defects is I4132), the simple cubic structure (the space group of defects is space group P4232)
and the amorphous state, respectively. As the temperature increases, the sequence of Ch
(cholesteric phase)→BPI→BPII→BPIII→I (isotropic phase) appears [59]. The theoretical
model of the blue phase is shown in Figure 2. To date, various optical devices have been
manufactured based on the BPLC phase-change process [60,61]. Jiang et al. used the
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non-diffusive phase transition characteristics of blue-phase liquid crystals to prepare large
color-block multi-domain BPLC films to achieve micro-area laser and temperature tunable
binary/trinary QR codes in 60 µm crystal domains [62]. As shown in Figure 3, a binary
code is obtained by grayscale conversion, binarization, pixelization and encoding of the BP,
and the temperature is switched to achieve a rapidly switchable 2D code. This switchable
QR code can be used as an anti-counterfeit ‘ID’ card for medicines, fine wines, watches
and jewelry, as it offers a higher level of security than a normal static QR code. However,
the validation process for such films is complex and needs to be carried out under specific
conditions. In addition, how to maintain stability over a long period of time is a problem
that needs to be solved.
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2.2. Electrically Responsive Blue-Phase Patterned Mode–BPLCD

Optically isotropic blue-phase liquid crystals exhibit the Kerr effect in the presence of
an electric field and therefore hold good promise for use in liquid-crystal display materials.
Blue-phase liquid-crystal display (BPLCD), which presents patterns through electric field
control, has the advantage of fast response, not only enabling LCDs to achieve field-
sequential color display mode, but also greatly reducing dynamic artefacts, and optimizes
resolution and optical efficiency, and therefore is considered to be the basis of the next
generation of LCDs and is being studied by a wide range of scholars. For example, in 2008,
Samsung demonstrated the world’s first BPLCD at the SID (the Society for Information
Display), as shown in Figure 4 [63]. BPLCDs mainly include in-plane-switching [64–67] and
vertical-field-switching [68,69] electrode structures. BPLCDs are isotropic in the absence of
an electric field, so they can be prepared without an orientation layer and have extremely
high contrast and viewing angles. Because of the fast response of the blue phase itself,
BPLCDs can continue to be driven using RGB color-timing technology, which not only
saves costs but also increases transmittance and resolution. However, the drive voltage of
BPLCDs with in-plane-switching electrode structures is very high (> 20 V). Although it can
be reduced by means of raised electrode structures, double penetration electrode structures
or wall electrode structures, these methods inevitably introduce other problems such as
process complexity and reduced transmittance. BPLCDs with a vertical-field-switching
electrode structure also have problems such as poor contrast and visual angle. Although
this can be improved by changing the polarization angle, they still fail to meet the practical
requirements. Improving the performance of BPLCD is a challenge worthy of further study.
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Recently, reflective BPLCDs have attracted interest due to their good contrast in bright
light and conservation of energy. Unlike transmissive BPLCDs, where the light source is
placed under the lower substrate, reflective BPLCDs have the light source on the upper
substrate and the incident light enters the liquid-crystal cassette from the upper substrate,
where the incident light can accumulate double the optical range difference in the liquid-
crystal layer, thus allowing for a lower operating voltage. In 2013, Yan et al. showed a
full-color reflective blue-phase liquid-crystal display with polymer-stabilized red, green
and blue sub-pixels via electric field induction [70]. Due to the characteristic polarization
of selective reflection, the proposed reflective display showed potential applications in
3D displays, where 3D images can be viewed through circularly polarized displays. In
order to further improve the driving voltage of polymer-stabilized blue-phase reflective
displays, Luo et al. achieved low driving voltages by doping a small amount of ferroelectric
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nanoparticles (BaTiO3) [71]. As shown in Figure 5, compared with polymer-stabilized
blue-phase liquid crystal (PSBPLC) without ferroelectric nanoparticles, the vertical driving
electric field of PSBPLC with 0.4 wt% BaTiO3 ferroelectric nanoparticles is significantly
reduced from 6−7 V/um to 1.8 V/um for red, green and blue cells, a significant reduction
of more than 70%. This greatly enhances the practical prospects for blue-phase reflective
displays.
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Figure 5. (A) Working principle of the proposed reflective display, (B) relationships of reflectance and
driving electric field with and without doping BaTiO3 ferroelectric nanoparticle [71]. Low voltage
polymer-stabilized blue phase liquid crystal reflective display by doping ferroelectric nanoparticles
from Luo, Opt Express; published by OPTICAL SOC AMER.

At the same time, Luo et al. developed a super-reflective, electrically switchable,
fast-responding and color-reflective display based on multilayer BPLC films to solve the
problem of reflective displays with single-layer BPLC films having reflectance below 50% in
the visible range [72]. As shown in Figure 6, by filling a multilayer blue-phase liquid-crystal
film with an independent porous polymer network with an achiral nematic liquid crystal,
high reflectivity of 89%, 82% and 68% is achieved in the red, green and blue reflection
color regions, respectively. This electrically switched super-reflective BPLC film with sub-
millisecond response times significantly improves the performance of high-reflectance color
reflective displays. The technology can also be used for switchable optoelectronic devices,
lasers, mirrors, etc.
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In contrast to the Kerr effect, the shift in Bragg reflection wavelengths caused by
electric fields, namely electrostriction, has received little attention due to the short range
of switching wavelength changes. Polymer networks used to stabilize BPLC may hinder
lattice changes under electric fields [1]. Lu reported the first pioneering work on electrically
switchable color reflections in PSBPLC [73]. As a result of the onset of electrostriction and
phase transition from BPII to BPI, an extensive but discontinuous movement of photonic
bandgap (PBG) is observed, as shown in Figure 7. Compared with polymer-stabilized
cholesteric liquid crystals [74], PSBPLC offers a narrower half bandwidth and less than half
the drive voltage required to electrically switch color. This discovery provides new ideas
for electrogenic BP patterns. Lin reported on the electrodynamic displacement and swelling
of PBG in polymer-stabilized blue-phase systems under DC fields [75]. However, research
in this area is still at a preliminary stage and further studies are needed to elucidate the
underlying mechanisms and improve performance.

BPLCDs are considered to be the next generation of LCDs due to their fast response
time and low cost. However, transmissive BPLCDs still suffer from high operating voltage,
poor contrast, poor viewing angle and the hysteresis effect. Reflective BPLCDs have
improved reflectivity and operating voltage, but the process is complex and the operating
voltage is still not up to the requirements. Future research should pay more attention to
the innovation of the device structure, and propose a new structure that can improve the
electro-optic properties of BPLCDs and is easy to mass-produce. At the same time, BPLCDs
with a larger Kerr coefficient, wider temperature range and smaller pyroelectric effect can
be obtained by doping suitable nanomaterials.
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Figure 7. l Schematic illustration of electrically switched color of a PSBP cell in which the blue
reflected wavelength (a) is switched to reflect a green color (b) and red (c) with an increase in applied
voltage. Corresponding photographs of a one-pixel PSBP cell with 10µm cell gap is operated in the
reflective mode with appearance of color by Bragg reflection under (a’) 0 V (blue), (b’) 33 V (green),
and (c’) 40 V (red), respectively [73]. Electrically switched color with polymer-stabilized blue-phase
liquid crystals from Lu, Optics Letters; published by OPTICAL SOC AMER.

2.3. Blue-Phase Patterned Mode Based on Handwriting

Rewritable display materials, which repeatedly perform a ‘write-erase’ cycle by switch-
ing color, are a potential alternative to traditional paper and could help to alleviate global
deforestation, which is mainly caused by increased paper consumption. As one of the color-
rendering materials, responsive photonic crystals consist of periodic structural materials
with different refractive indices that exhibit tunable structural color [76–78]. At present,
a variety of handwriting films have been developed based on liquid crystals, but these
films have problems such as handwriting divergence and poor contrast [34,79]. BP-based
handwriting display devices have the advantages of high contrast ratio, simple preparation
and good stability.

Among the currently available nanomaterials, magnetic (Fe3O4) nanoparticles have
attracted significant attention in terms of technological applications [80–85], especially in
the form of ferromagnetic fluids. He et al. prepared a novel powerless magnetically driven
LC flexible display using BPLC doped with magnetic Fe3O4 nanoparticles [86]. As shown
in Figure 8, the magnetic pen writes on the outer surface of the BPLC cell and the magnetic
nanoparticles are attracted to the inner surface of the cell, thus allowing clear handwriting
as well as patterns to be obtained, relying on the same principle to enable the erasure of
handwriting. This composite material is inexpensive, simple to prepare, and has clear text.
Moreover, it is easily erasable and is environmentally friendly and therefore can be used to
replace traditional displays in the classroom.
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Figure 8. The “write-erase” process for magnetically driven BPLCDs. (a) Optical microscopy image
of a nylon polymer network used in the LC composites; (b) photograph of LC cell with Fe3O4 doped
BPLC before magnetically addressed; (c) photograph of Fe3O4 doped BPLC sandwiched between two
flexible PET films; (d–f) photographs of the prepared cell containing Fe3O4 doped BPLC in the nylon
polymer network after being magnetically addressed in isotropic phase, BP phase and N* phase,
respectively; (g–i) optical microscopy image of the prepared cell containing Fe3O4 doped BPLC in
the nylon polymer network after magnetically addressing in isotropic phase, BP phase and N* phase,
respectively. [86]. Preparation and optical properties of Fe3O4 nanoparticles-doped blue phase liquid
crystal from He, Phys Chem Chem Phys, published by ROYAL SOCIETY OF CHEMISTRY.

Photonic shape-memory polymers are advanced polymers that have a shape-memory
effect accompanied by a color change; they can block the propagation of light under certain
conditions [87–89]. Yang et al. reported a fabricated freestanding BP film of photonic shape-
memory polymers achieving high optical reversibility for patterned reconfigurable BP
films [90]. Such photonic films have excellent optical properties [91]. As shown in Figure 9,
a blue “BP” pattern was written on the green BP film using a shape-memory programming
process with specific pressure on the film, which could be erased by a shape-memory
recovery process after the polymer film was heated. The pressure-driven handwritten film
is simple to prepare and easy to eliminate, and is expected to be an alternative to traditional
paper.
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Figure 9. (a) Schematic diagram of the shape-memory process; (b) Writing and erasing of the BP
pattern [90]. Photonic Shape Memory Polymer Based on Liquid Crystalline Blue Phase Films from
Yang, Appl Mater Interfaces, published by American Chemical Society.

Recently, Yang et al. achieved reprogrammability, reconfigurability and visualization
by using an elaborate system consisting of specially designed hydrogen-bonded mesocrys-
talline precursors to fabricate freestanding blue-phase liquid-crystal films that display
reversible humidity-responsive behavior by manipulating the lattice parameters of their
nanostructures [92]. As shown in Figure 10, writing through a stylus containing water, the
BPLC film rapidly changes from blue to red, then due to its hydrophilicity, rapidly changes
to green and finally back to red again. The bold “BP” is written in the film with water and
then spontaneously erased when the water evaporates. Subsequently, the fine-type “LC”
is obtained by writing a second time. The response behavior of this humidity-responsive
BPLC film is reprogrammable, reconfigurable and can be easily visualized.
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Handwriting-driven BP-patterned material is a reliable alternative to conventional
paper and can be reused by means of “write-erase”. This easily prepared and low-cost
display material has great potential in the field of handwriting paper. However, the
resolution of BPLC film pattern driven by handwriting is low, and thus it cannot achieve
fine patterns, and the high-resolution patterning display requires an optical mask and inkjet
printing.

2.4. Mask-Based Optical Writing of Blue-Phase Patterned mode

In recent years, mask-based BP patterned optical writing mode has attracted people’s
attention due to its optical rewritability and high contrast ratio. This mode simultaneously
solves the problems of the complex process flow and short retention time of traditional
LC-based optical writing patterned devices [93–99].

Light-driven self-organized BP 3D-cubic nanostructures displaying unique photon
reflections in three orthogonal directions have received increasing attention, but their re-
flection wavelength tuning is usually very narrow [100–102]. In some recent reports, a
uniformly aligned BPII structural domain was obtained by friction treatment of the sub-
strate surface, resulting in narrower reflectance bandwidths, stronger reflection coefficients
and better electro-optical properties [103]. However, the narrow temperature domain range
of BPII and the small effect of friction treatment on the BPI alignment limit its practical
application. Zheng et al. developed a facile method to achieve micropatterning of the
crystal orientation of soft-standing BP superstructures by photo-aligning the substrate with
a delicately designed photomask to display the alternating uniform and random orienta-
tion of the lattice crystal orientation at high resolution [104]. Erasure and rewriting can
be stimulated by sequential UV irradiation and electric fields, as shown in Figure 11. The
micropatterns can be erased by a combination of unpolarized UV irradiation and electric
field stimulation, and then restored to the initial pattern by a combination of polarized UV
irradiation and electric field stimulation of a differently shaped photo-mask. This work
broadens the range of applications for blue-phase liquid crystals and provides an impor-
tant guide to the controllability of crystal orientation in other soft organic and inorganic
materials.

Recently, the study of soft coexistence systems of BPLC has attracted attention [105–107].
The lattice constants of soft cubic BPs (BPI and BPII) are determined by the pitch of the
chiral LC, which is comparable to the wavelength of visible light, thus qualifying them as
soft photonic crystals [20,108,109]. The stable coexistence of optically non-chiral anisotropic
nematic-phase liquid crystals and optically chiral isotropic BPLCs were proposed and
demonstrated by Mo et al. with the development of a local microregion polymer template
to distribution adjusted to micropatterned techniques [110]. As shown in Figure 12, clear-
defined micropatterns were obtained by photomask techniques and this soft-patterned
coexistence system can greatly facilitate the understanding of the formation, arrangement
and dynamics of soft condensed matter, thus promoting the development of various
technological applications.
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Figure 11. Stimulus orientation behavior of crystal orientation patterns formed by alternating uniform
and random BP domains. (a) The BP lattice can be deformed by an applied voltage, leading to a
red-shifting of the central wavelength of reflection band. (b) The pattern can be erased and rewritten
by sequential UV-irradiation and electric-field stimulation. (c) Another different regular periodic
patterns and irregular topological patterns can be rewritten [104]. Light-Patterned Crystallographic
Direction of a Self-Organized 3D Soft Photonic Crystal from Zheng, Adv Mater, published by John
Wiley and Sons.

The simple cubic lattice of BPII is preferred over the body-centered cubic lattice of BPI
because of its excellent stimulus responsiveness, operational compliance and more satisfac-
tory photonic performance in applications [111,112]. Polyhedral oligomeric silsesquioxane
has been shown to be advantageous in stabilizing BP [113,114]. Zhou et al. used the
light-driven reversible transition of the simple cubic-BPII lattice to fabricate biphasic mi-
cropatterns containing both BPII and N* phases in two well-defined regions of a biphasic
micropattern [115]. As shown in Figure 13, the photowritten pattern can be erased by UV
irradiation and the pattern can subsequently be re-written by photolithography. This study
demonstrates the photo-writing, UV erasure and rewriting of a dual-phase (BPII and N*)
pattern and proves that this dual-phase micropattern is of considerable research value.

The optical writing patterned mode through masks can only produce prefabricated
patterns, which is a complex process and does not allow for desirable patterned displays
and does not meet the demand for patterned displays. In contrast, inkjet printing allows
for the versatility and flexibility of BP patterned mode.
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Figure 12. (a) Schematic diagram of the patterned soft coexistence of optically non-chiral anisotropic
N phase and optically chiral isotropic BPII by local micro-regional polymer template technique;
(b) reflected POM image of two phases coexisting at different applied voltages; (c) reflected POM
image of two phases coexisting [110]. Reversible On–Off of Chirality and Anisotropy in Patterned
Coexistence of Achiral-Anisotropic and Chiral-Isotropic Soft Materials from Mo, Advanced Optical
Materials, published by John Wiley and Sons.
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2.5. Maskless Inkjet Printing of Blue-Phase Patterned Mode

BP-based handwritten display devices are expected to replace conventional paper
and protect the environment. However, BP handwriting films do not yet fully meet the
requirements in terms of resolution control and pattern reproduction. Therefore, the
realization of high-resolution BP patterns by inkjet printing has attracted a lot of attention.
Inkjet printing technology is used extensively for printing text and images, and in recent
years it has been used extensively in the biological and catalytic fields. Any high-resolution
pattern can be prepared by inkjet printing, which could lead to major breakthroughs in the
military, sensors, displays, etc.

2.5.1. Humidity Responsive Inkjet Printing Blue-Phase Patterned Mode

The ability of photonic polymer coatings to adapt to their ever-changing surroundings
has far-reaching implications for a variety of applications such as optical sensor devices,
information concealment and environmental camouflage. Wang et al. prepared a humidity-
responsive color-shifting photonic polymer layer based on hydrogen-bonded BPLC [116].
As shown in Figure 14, the BPLC polymer coating can be made to exhibit different color
changes by adjusting RH, which is due to the selective expansion of the BPLC film resulting
in a red shift of the color [6,117–120]. Inkjet printing of patterns can be achieved using
this humidity-responsive film, and erasure of the pattern can be achieved by evaporating
the water, thus enabling rewritability. This kind of photonic film has attracted a great
deal of interest in both military and civilian applications as it enables BPLC patterning
applications such as messaging and sensors, helping to camouflage and hide things from
the environmental background.
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Figure 14. (a) Schematic diagram of BPLC pattern information encryption. (b) Input and erasure of
pattern information. (c) POM images of humidity-driven BPLC film. (d) Printing and erasure of inkjet
printing patterns [116]. Bioinspired Color-Changing Photonic Polymer Coatings Based on Three-
Dimensional Blue Phase Liquid Crystal Networks from Wang, Appl Mater Interfaces, published by
American Chemical Society.
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2.5.2. Solvent-Responsive Inkjet Printing of Blue-Phase Patterned Mode

Currently, pattern reproduction based on BP materials is only possible in non-cross-
linked BPs, and most BP patterning applications are limited to two colors. As most BP
materials are usually preserved in cells, which hinders their potential applications, there
are still some challenges in fabricating BP polymer networks with stable panchromatic
patterns [91,121]. Yang et al. prepared a printable photonic polymer coating using a single-
domain BPLC network [122]. Areas printed with 5CB (liquid crystal) immediately swelled,
resulting in an increase in BP pitch in the vertical direction and a color change from blue to
red, and were reusable by erasing with tetrahydrofuran. The print resolution determines
the ultimate functionality of the printed pattern in potential applications [123,124]. Meng
et al. proposed a novel high-resolution “live” BPLC pattern based on simple control of ink
diffusion on hydrophobically modified BPLC [125]. As shown in Figure 15, inkjet printing
of liquid crystal 5CB on a modified BPLC film achieves high-resolution patterning while
allowing erasure by N,N-dimethylformamide. Over time, the color of the printed pattern
changes from green to cyan, and the pattern can be preserved on the film for a long time.
This mode, which requires no response molecules, is easy to prepare and combines with
inkjet printing, is of great significance for the development of advanced optical instruments.
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Figure 15. Various erasable patterns on BPLC membrane. (A) Scheme for the fabrication process
of the erasable image on BPLC. (B–F) Photographs of the erasable images of the BPLC membranes.
(B) Photo and reflective POM image of Quick code. (C) Reversible writing/erasing process of (C1)
zebra, (C2) a double-color pattern with a portrait was printed using the image and inversed image as
the pattern and (C3) Mona Lisa. The pattern was written and erased on the same substrate. Patterns
of a (D) clover and (E) maple leaf, and (F) red apple with a green leaf and (G) the spectra of the
samples with different regions in (E,F) [125]. High-Resolution Erasable “Live” Patterns Based on
Controllable Ink Diffusion on the 3D Blue-Phase Liquid Crystal Networks from Meng, Advanced
Functional Materials, published by John Wiley and Sons.

3. Conclusions and Outlook

With the widespread use of blue-phase materials in display and non-display appli-
cations, research into blue-phase materials has become more and more popular. The blue
phase has more obvious characteristics suited to pattern reproduction applications and
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therefore provides a wide range of application prospects. This paper reviews the application
of BP micro-spontaneous composition, electric-field-driven BPLCD, handwriting-driven
BPLC, photomask and ink-jet printing technologies over the years. The applications of BP
pattern reproduction in each mode still have many challenges. Blue-phase spontaneous
micropatterning through temperature changes and thus pattern changes can be applied
to high-level anti-counterfeiting and exhibits good application prospects, but the stability
is poor. BPLCD driven by electric fields has the advantages of fast response and easy
adjustment, and is considered to be the basis of the next generation of LCDs, but it needs
to overcome the problem of high driving voltage, etc. BPLC handwriting film has the
advantages of easy writing and energy savings, and is an ideal replacement for traditional
paper, but the low resolution and the complicated preparation process remain the problems
for mass production at present. The patterning applications based on the mask and inkjet
printing mode have the advantages of high resolution and wide application range, which
can be applied to military information transmission, anti-counterfeiting, camouflage, etc.
However, the problems of the complex substrate processing and frequent nozzle blockage
have not been solved yet. More research is needed to bring the pattern reproduction appli-
cations of BPLC into people’s lives. This paper provides insights and relevant references for
the research and development of new BPLC optical devices. Future research into BP pattern
reproduction applications needs to focus on reducing the driving voltage, comprehen-
sive development of multiple response modes through organic/inorganic composites and
nanoparticle doping, etc. to simplify the process and achieve multifunctional applications.
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