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Abstract: The rapid advances of 3D techniques for the structural determination of proteins and the
development of numerous computational methods and strategies have led to identifying highly
active compounds in computer drug design. Molecular docking is a method widely used in high-
throughput virtual screening campaigns to filter potential ligands targeted to proteins. A great variety
of docking programs are currently available, which differ in the algorithms and approaches used to
predict the binding mode and the affinity of the ligand. All programs heavily rely on scoring functions
to accurately predict ligand binding affinity, and despite differences in performance, none of these
docking programs is preferable to the others. To overcome this problem, consensus scoring methods
improve the outcome of virtual screening by averaging the rank or score of individual molecules
obtained from different docking programs. The successful application of consensus docking in
high-throughput virtual screening highlights the need to optimize the predictive power of molecular
docking methods.

Keywords: molecular docking; virtual screening; consensus docking; binding site; scoring function;
drug discovery

1. Introduction

The process of discovering new drugs for the treatment of diseases includes the selec-
tion of appropriate targets, the identification of hits, and their optimization to increase the
affinity, specificity, efficacy, metabolic stability, and oral bioavailability. When a compound
that fulfills all these requirements is identified, drug development continues, and clinical
trials are carried out to validate their therapeutic value. Despite advancements in resources
and technologies, drug discovery still remains as a long, arduous, and expensive process.
Dhasmana et al. refer to an average of 10 years and a considerable investment to develop
a new drug [1]. This is mainly due to the high attrition rate in the clinical success of
therapeutic agents [2]. To improve the success rates of drug discovery, new technologies
with higher precision are demanded. In fact, the reduction of attrition in early stages of drug
discovery is of capital importance to avoid costly failures of poor performance in late stages [3]
due to the inaccurate selection of drug targets or inaccurate identification of leads, or both.

Experimental high-throughput screening (HTS) is commonly used to screen huge
libraries of compounds to discover hits targeting the desired biological activity, which is the
basis of the drug development. For example, automated patch-clamp or microfluorography
are HTS techniques commonly used to speed up the screening of compound libraries on
ion channels. The automated patch-clamp has recently evolved to improve the efficiency of
the seals on the cell surface as well as the perfusion system, although its performance is still
low. Microfluorography uses fluorescent dyes to monitor variations of ion concentrations
in the cytosol or the changes in membrane voltage as a consequence of ion channel activity
but has a low resolution and a high false positive rate. Quantitative HTS complements both
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approaches, obtaining dose–response curves by testing compounds at different concentra-
tions. However, HTS does not generate lead compounds as quickly as desired [4] due to
known limitations in the screening process, such as problems with aggregation, solubility,
target expression systems, etc. [5]. The failure of HTS methods has greatly boosted the
development of rational-based approaches to screen millions of molecules, which avoid
the limitations of experimental HTS.

It has been previously recognized that the use of computer-assisted drug discovery
methods greatly reduces costs if the binding affinities can be accurately predicted prior to
performing the experiments. Thus, the employment of computational methods strongly
increases the efficiency in the development of new compounds [6]. In this sense, the
computational strategy has revolutionized rational drug design. The advantages of in silico
approaches include high speed, low cost, automatization, and nearly unlimited scalability.
Nonetheless, computational approaches require high-resolution 3D structures and methods
to measure the theoretical binding energy of dozens of potential molecule conformations
within the binding pocket. By far, the measurements of the binding affinity of thousands of
compounds on a given target are the most laborious and costly task in drug discovery.

Computer-assisted methods are traditionally categorized in ligand-based and structure-
based drug discovery [7] (Figure 1). Ligand-based methods require active ligands and use
quantitative structure–activity relationship (QSAR) models, pharmacophore, and chem-
ical similarity to predict new compounds [8,9]. Structure-based methods require the 3D
structure of the receptor and ligands, and the discovery of new active compounds is based
on the determination of physical interactions between the receptor and small molecules
to form a biologically active complex [10]. The comprehension of the binding mechanism
between receptor and ligands is crucial for drug discovery and optimization. In fact, the
identification of the binding sites and the description of ligand–receptor interactions at
the atomic scale are the main goals of structure-based methods, and much effort has been
made to improve all these protocols [11] with molecular docking and virtual screening
(VS) procedures being the most used procedures by far. Due to the rapid development of
crystallography, NMR, cryo-electron microscopy (cryo-EM), and homology modeling, the
structure-based VS technique has emerged as a useful technique for identifying potential
hits during the early stage of drug discovery.
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Figure 1. Schematic representation of the drug development cycle. Protocols are mainly classified
into structure- and ligand-based methods. Identified hits are optimized to obtain potential candidates
for experimental testing. ADMET (absorption, distribution, metabolism, excretion, and toxicity)
criteria can be used as additional filters to reduce pre-clinical and clinical attrition rates of potential
drugs. The orange arrows indicate the protocols revised.
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In this review, we will briefly revise computational approaches commonly used for
the high-throughput VS approach, with special attention paid to molecular docking and
consensus scoring. The performance of isolated docking programs is discussed, as well
as the advantage of using multiple docking programs and different consensus strategies
to globally optimize docking results, which has been proven to be particularly efficient
in VS campaigns. A case study of the vanilloid receptor (TRPV1) and a library of known
inhibitors and decoys docked to the vanilloid binding site is also included and discussed.

2. Structural Data Determination

Knowledge of the atomic structure of a protein or a closely related protein is pivotal
when using computer-based strategies for the rational design of ligands acting as effectors.
Computational techniques are more accurate if the protein target is known at the atomic
level, including the binding pocket, where it is preferably occupied by an inhibitor or
activator. The traditional technique to solve protein structures is X-ray crystallography,
and there are currently nearly 150,000 entries shared in the Protein Data Bank (PDB),
which represents around 76% of the total number of structures deposited in the database
(as of October 2022). In this technique, diffracting crystals are needed to build accurate
structural models where the 3D spatial position of atoms is determined. The X-ray technique
displays major limitations for proteins that have difficulties in expression, purification,
and/or crystallization, with membrane proteins being the most affected. This is a serious
drawback for drug discovery as membrane proteins, and more precisely ion channels, are
usually recognized as main therapeutic targets for human disorders such as metabolic,
gastrointestinal, respiratory, cardiovascular, immunological, cancer, pain, and infectious
diseases [12,13].

To overcome these limitations, the cryo-EM technique has represented a true revolution
to the field of membrane protein structures. The technique takes images of grids containing,
e.g., the ion channel frozen, and obtains the projection of the protein molecules by slowly
rotating the grids in all spatial directions during imaging. The 2D images are sorted,
aligned, and computed to reconstruct the 3D structure of the protein [14]. In addition, the
development and use of nanodiscs has allowed rendering the membrane protein stable,
inserted in a native bilayer with controlled composition [15], which is amenable to be
studied by cryo-EM. The determination of protein structures with the cryo-EM approach
benefits from the following facts: protein crystals are no longer needed [16]; it can be used
for large protein complexes, including effectors; it maintains the functional states of the
protein; and it is able to determine multiple conformational states of proteins in a single
experiment [13]. On the contrary, limitations of the technique imply low spatial resolution
structures (currently around 3 Å), and potential protein damage due to the low temperature
and high radiation used during imaging. Currently, there are more than 12,500 structures
determined by the cryo-EM technique in the PDB (by October 2022), and it represents a
promising tool to cover the needs of targets for drug discovery.

Despite all of these advancements, the current entries in the PDB represent a very
small fraction of the huge amounts of known proteins whose structures have not yet been
resolved. To obtain access to these structures, several computational prediction methods
are available. Homology modeling is the most used method to construct a reliable model
for a protein whose structure is not deposited in the PDB; it is based on the selection of a
homologous structure (the template) with a high identity and similarity with the chosen
protein (the target), assuming that the protein structure is more conserved than the sequence.
Then, the backbone conformation is transferred from the template and the side chains are
assigned according to the sequence target, where they are selected from a library of rotamers.
Accurate homology models are usually built up in web portals or in standalone programs,
which are then refined to produce optimal homology models [17]. In this process, eventual
effectors (ligands, inhibitors, cofactors, prosthetic groups, etc.) are kept in their pockets for
further use [18], improving the geometry of the model. There are many web servers and
programs for homology modeling, such as MODELLER, SWISS-MODEL, Rosetta, HHpred,
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and I-TASSER (see Fernandez-Ballester et al. [13]). In addition, because integral membrane
proteins are embedded in lipid bilayers, sometimes it is necessary to model lipids around
the protein and water to simulate an external and cytosolic environment [19,20]. Examples
of programs used to prepare the initial configuration of these receptors are the CHARMM-
GUI membrane builder web application (https://www.charmm-gui.org/; accessed on
7 November 2022) or the standalone program VMD [21].

Recent advances in ab initio computational structure prediction have catapulted
AlphaFold as the most accurate tool for protein folding prediction [22,23]. AlphaFold is
an artificial intelligence (AI) system developed by DeepMind that directly predicts the 3D
structure of a protein from its amino acid sequence and aligned sequences of homologs.
It incorporates a novel neural network and training procedures based on geometrical
and physical constraints to improve the accuracy of the structure prediction [22]. The
AlphaFold Protein Structure Database (https://alphafold.ebi.ac.uk/; accessed on 7 October
2022) provides access to nearly 200 million protein structure predictions and 48 complete
proteomes (by October 2022), including sequences from the “one sequence per gene”
reference proteome provided in UniProt 2021_04 (https://www.uniprot.org/release-notes/
2021-11-17-release; accessed on 11 October 2022). Furthermore, Meta AI has predicted the
structure of 600 million proteins from bacteria, viruses, and other microorganisms that have
not been previously characterized. Meta’s network is not as accurate as AlphaFold, but it is
over 60 times faster (https://www.nature.com/articles/d41586-022-03539-1; accessed on
15 November 2022). Similarly, RoseTTAFold is a “three-track” neural network to predict
protein structures based on limited information. It considers patterns in protein sequences,
amino acids interactions between proteins, and a possible three-dimensional structure to
allow the network to decide the relationship between sequence and folding [24].

It has been shown that either homology or ab initio models allow for effective virtual
screening. Several studies have been carried out comparing the performance of homology
models and X-ray crystal structures of, e.g., G-protein coupled receptors. Carlsson et al.
compared the virtual screening results obtained using these scaffolds and showed that
the homology model was as effective as the crystal structure at detecting active ligands in
terms of hit rate detection, potency, and novelty [25]. Similarly, Lim et al. found that 10
out of 19 G-protein coupled receptor homology models presented better or comparable
performance than the corresponding crystallographic structures, making homology models
suitable for virtual screening. They also explored consensus enrichment across multiple
homology models, obtaining results comparable to the best performing model, highlighting
the usefulness of the consensus scores [26]. Regarding AlphaFold, several studies have
confirmed the suitability of these models to perform reliable VS campaigns. Wong et al.
used 12 essential proteins, 218 active compounds, and 100 inactive compounds to predict
antibacterial inhibitors and found that, although models had low performance, the use
of rescoring strategies may have acceptable predictive power for certain proteins. They
concluded that the limitations in benchmarking are not due to the AlphaFold structures
itself, but to the methods to accurately model the protein–ligand interactions [27]. Other
studies have identified potential inhibitors of WD40 repeat and SOCS box containing
1 protein (WSB1), a clinically relevant drug target, by means of AlphaFold and virtual
screening approaches [28].

3. Computational Approaches Based on Structural Data: Protein Docking

Molecular docking predicts the interactions between a small molecule (ligand) and
a protein binding site (receptor). The approach helps to identify the binding conforma-
tion and orientation of ligands in the binding pocket of receptors, thus determining the
mechanisms of drug binding to targets. The process mimics the lock-and-key model of
drug action to infer shape complementarity and affinity of a ligand within the binding site.
Ligands can be organic molecules, peptides, and proteins [29,30]. Docking has evolved
to study the principles of ligand–receptor molecular recognition. Nevertheless, due to
the potential of docking in drug discovery programs, a great effort has been made to
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enhance the performance and accuracy of algorithms [31]. A successful docking accounts
for ligand flexibility at different degrees (Figure 2), often distinguishing several levels of
simplification [30].
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Figure 2. Different levels of docking simplification. (A) Rigid docking: neither the receptor (blue)
nor ligand (yellow) are allowed to change conformation during the docking process. (B) Rigid
receptor, flexible ligand: only the small organic molecule (ligand) is allowed to change conformation.
Different shapes represent different conformations of the same ligand molecule. The algorithm
explores different poses and determines the best score. (C) Semi-flexible docking: in addition to the
ligand flexibility, the receptor is allowed to change the conformation of a few residues in the binding
pocket (cyan) to facilitate ligand interaction. (D) Flexible docking: both receptor and ligand are free
to change conformation, to improve receptor–ligand matching. Different shapes represent different
conformations of the receptor (blue) or ligand (yellow).

Rigid docking refers to the fact that the conformation of the ligand and receptor do
not change during the coupling process (Figure 2A), which is used in large systems such
as protein–protein or peptide–protein docking. The algorithm evaluates different poses,
and the best score is selected [32]. On the contrary, in flexible docking, both the receptor
and ligand are free to change their conformations, which demands huge computational
resources (Figure 2D). In the case of small peptides or organic molecules, the most common
docking protocols involve ligands to be free to move, and the receptor is either rigid
(Figure 2B) or only moves a few side chains in the binding pocket (Figure 2C) to improve
the ligand–receptor coupling. This last interaction is called semi-flexible docking, which
allows limited conformational changes either in the receptor and/or the ligand. A nice
example is MedusaDock [33], which contemplates the possibility of changing the ligand
and receptor at the same time with sets of discrete rotamers.

Molecular docking software is based on two basic pillars: a conformational search
algorithm and a scoring function.

3.1. Search Algorithms

Search algorithms explore the optimal conformation of ligands within the pocket.
The methods for sampling ligand conformations are usually defined as (i) systematic,
(ii) simulation search, and (iii) stochastic search methods. The systematic algorithms
explore all degrees of freedom in the molecule, including exhaustive search, fragment
growth methods [34], or multiple conformer generation [35], which are individually docked
against the target. The simulation search uses the solutions to Newton’s equations of motion
for molecular dynamics or energy minimization [30]. The most widely used stochastic
search algorithms perform random changes in the molecule to explore the conformational
space, the most popular being the Monte Carlo, tabu search, swarm optimization, and
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genetic algorithm [36]. The Monte Carlo algorithm randomly generates small changes in
the orientation, position, or ligand conformation to generate poses that must be accepted or
rejected according to the Metropolis criterion [37]. At the beginning, the conformational
freedom is high so that the probability of acceptance of ascending steps of energy is
high, which facilitates the escape of energy traps. Then, the conformational freedom
progressively decreases to find a low energy state of the ligand–receptor complex. The tabu
search employs local search methods for conformational optimization; this method accepts
worsening movements at the beginning if no improving moves are available. Additionally,
it introduces prohibitions to avoid previously visited solutions, so that the conformations
are no longer visited. The genetic algorithm is inspired by the Darwin’s theory of evolution.
In this algorithm, the starting ligand conformation and orientation (parents) are changed to
produce the second generation of conformations (descendants). The best-ranked energy
conformations are used to produce the next generation [38].

In the case of highly flexible ligands such as peptides, there are considerable differences
between the bound and unbound ligand structures [29]. In this case, an adaptation of the
sampling strategy is needed to screen a large conformational space. It is common to use
constraints derived from experimental data (biological, NOE, etc.) to limit the number of
degrees of freedom [39].

3.2. Scoring Functions

The scoring function that evaluates protein–ligand binding is the most critical com-
ponent of the docking method, and therefore must be robust, accurate, and fast. [40]. The
scoring functions are usually classified in several categories [41]: (i) force field methods,
(ii) empirical scoring functions, (iii) knowledge-based potentials, and (iv) machine learn-
ing scoring functions. Force field-based scoring functions use force fields, a collection of
fundamental molecular terms that evaluate van der Waals, coulombic, and desolvation
interactions between and within interacting molecules [42]. The equations and associated
constants are derived from experimental data or quantum mechanics calculations. En-
tropy and desolvation terms are usually ignored or oversimplified. Poisson–Boltzmann
or generalized Born equations are used to compute the desolvation energy of ligands [43].
Empirical scoring functions calculate the binding affinity of ligands and receptors based
on weighted terms similar to force field scoring functions, including interaction types
such as hydrophobic, hydrogen bonds, electrostatic, van der Waals, desolvation, entropy,
etc. The coefficients of each term (the weight) are fitted using multiple linear regression
from the training data [44]. The knowledge-based scoring functions, also known as the
potential of mean force scoring functions, are statistical potentials derived from the study
of protein–ligand structures deposited in the databases, and they are used as a training set.
The method computes the frequency of occurrence of interacting atom pairs in receptors
and ligands and generates the potentials using an inverse Boltzmann distribution [45].
Machine learning scoring functions use descriptors of known ligand–receptor interactions
to build a machine learning model to derive a non-linear energy functional form of the
binding affinity. Several machine learning algorithms are commonly used, such as the sup-
port vector machine [46], deep convolutional neural network, graph neural network [47]
or random forest [48] algorithms to derive the machine learning scoring functions. These
functions for the prediction of binding affinity have experienced large improvements in
recent years, as recently reviewed by Yang et al. [40].

Most docking software uses generic scoring functions which usually report extensive
validation test upon publication, demonstrating their superior performance. It should
be pointed out that these functions handle targets unevenly due to certain chemical and
structural features, including the size or exposure of the binding site, the presence of
charged groups, or the presence of the cofactors/ion metals near the binding site, as
well as the protonation state, partial charges, and number of rotatable bonds. Thus, it
is almost impossible to anticipate the best scoring function for a given target, and the
choice commonly relies upon the availability of the docking software implementing this or
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another function. The selection of a specific scoring function for a given target involves
the design and optimization of a dataset of actives/decoys for the specific target. This
strategy is subject to the availability of experimental information but allows for a clear and
quantitative definition of the limit of validity of the different scoring functions by testing
the selected library compounds on the binding site of the selected target [49].

Although machine learning scoring functions have shown superior performance
compared with classical methods, a cloud of doubts hangs on these scoring functions due
to its poor generalization capability and the unfair evaluation of the environment [50]. In
this sense, the imbalanced datasets, dataset partitioning, or hidden data biases need to be
handled for specific targets. Wallach et al. proposed the asymmetric validation embedding
(AVE) strategy to decrease the effects of hidden biases and to avoid similarities between
validation and training datasets, which represents an important tool to evaluate the general
applicability of the scoring function based on machine learning [51].

4. Computational Approaches Based on Structural Data: Virtual Screening (VS)

High-throughput virtual screening (HTVS) identifies long lists of chemical structures
predicted for putative binding to a protein target with high affinity. The structure-based
VS method employs search algorithms to find optimal interactions between ligands and
receptors and evaluates the affinity of the ligand–receptor complex [52]. In this way, the VS
method obtains a long list of molecules ranked according to their binding scores, where the
highest scoring molecules are likely to be experimentally tested [53]. Recent advancements
have led to VS being widely adopted by the industry and academy as a technology of
choice in drug discovery [5], including: (i) advancements in 3D structure determination;
(ii) improvements in sampling and scoring functions [54]; (iii) implementation of machine
learning protocols to computer-assisted drug design; (iv) improvements in computational
power, including multiple core design, parallel programming, cloud computing, and GPU
processing [55]; and (v) the availability of commercial compounds ready to be checked
has strongly increased in recent years. All of these advances have led to the VS approach
being proposed as an alternative to experimental HTS, particularly for libraries composed
of millions of molecules.

The major goal of the VS technique is the screening speed of large libraries and detec-
tion of potential hits during the early stages of drug discovery. The typical approach used
in VS is the flexible superposition of a large collection of compounds on a binding pocket
of a bioactive molecule (target), evaluating whether or not the ligand contacts will produce
any desired effect [56] and providing an accurate picture of the ligand–receptor interaction
at the atomic level [57]. The small molecule flexibility can be readily explored in situ or
using conformer families. The receptor flexibility is technically more challenging, and it is
mandatory to (i) use a small set of protein conformations or (ii) introduce flexibility posteri-
orly to refine the docking. The receptor ensemble docking uses the merging and shrinking
procedure to combine docking results from different 3D receptor structures [58,59]. This
method merges the docking results of individual receptor conformations and preserves the
best ranked molecule in the ensemble of structures [60–62]. The conformations are usually
obtained from the structural databases or from molecular dynamic (MD) simulations for
sampling. Docking refinements can be accomplished by iteratively changing the inter-
actions between the receptor sidechains and a given molecule ligand, a method usually
referred to as soft docking [36,63]. In this procedure, side chain flexibility is simulated by
sampling a large number of conformers, allowing for partial clashes with ligand atoms and
selecting the most energetically favorable poses. Nevertheless, in both approximations,
either the selection of an excessive number or receptor conformers or the use of a large
number of side chain conformations has been associated with an increased number of false
positive hits and increased computational costs [63–65].

To address a VS campaign, a series of steps must be taken, which are schematically
described in the Figure 3.
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Figure 3. Schematic representation of the VS workflow. The selection and optimization of the target
(receptor) is followed by the binding pocket detection and the preparation of the docking input files.
Library selection requires optimization and preparation to filter undesired ligands. An ADMET
filtering or similarity search can also be used to reduce the ligand space. Docking algorithms are then
used to generate poses and scores. The use of a post-docking analysis, such as consensus docking,
improves the VS method’s performance.

The main steps are:
(i) Structural target selection—Targets of interest are directly taken from the PDB

database or modeled to obtain reliable structures for VS. The adequate selection of the
structure is crucial for VS results, and failure in this step can condition the docking results.
In this respect, it is important to select high-resolution structures, having the conformational
state under study, with the adequate apo/holo-protein status. In general, the holo-proteins
ensure the correct localization of the binding pocket in an optimal conformation to hold
putative binders, and for this reason, these structures are preferred over apo-proteins. Other
factors should be considered for target selection and optimization to achieve a successful
docking [66]. For example, mutations or incomplete sidechains should be reverted to the
wild-type or be rebuilt, especially if located within the ligand site. Missing side chains and
loops in the experimental structures should be rebuilt as well if they are close to the binding
site, although a more critical rebuilt is needed if these residues present low occupancy,
high atomic displacement, or poor electron density maps. Water molecules, cofactors, or
metal ions can also be included when the structural resolution allows for it, which are
typically those located in the binding pocket or directly interacting with ligands. The
protonation state of the protein is critical for the correct determination of the interaction
forces. Hydrogen atoms, which are usually unresolved, can be automatically added with
reasonable precision, although special care should be taken for residues directly involved
in ligand binding [66].

Recently, Stafford et al. developed a method to score a collection of structures based
on the docking performance using a set of known active effectors, and the top ranked
structures are amenable for use in VS campaigns [67]. The method is limited to targets that
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have known effector datasets, of which these data are not available for many targets. In the
case that the binding pocket is not known, binding site detection is mandatory.

(ii) Binding site prediction—This step is central for structure-based screening, and
there are several methods to infer potential binding sites in targets where no ligands have
been reported. The methods rely on (a) sequence identity, (b) the reference template used,
and (c) geometric and energetic considerations [68]. The sequence-based methods exploit
evolutionary information, and the potential binding sites are identified by extracting motif
patterns from multiple sequence alignment of already known drug sites. Template-based
methods reveal binding sites by comparing them with predefined 3D patterns based on
known binding sites. Geometric methods rely on the assumption that a binding site
is usually a cleft or a pocket, and they determine complementarity by evaluating the
shape, size, and polarity of a binding pocket using putative ligands. ICMPocketFinder
(https://www.molsoft.com/icmpocketfinder.html ; accessed on 11 October 2022) is a nice
example of a software for determining putative active sites from scratch; It only uses
the protein structure for the prediction of cavities and clefts, and no prior knowledge
of the substrate is required. The use of this software has allowed for the construction
of Pocketome, a database that collects conformational ensembles of druggable binding
sites that have been experimentally identified from co-crystal structures in the PDB [69].
Another example is COAH, which generates complementary ligand binding site predictions
from given structures of a target protein. It uses two comparative methods, TM-SITE and
S-SITE, which recognize ligand-binding templates from the BioLiP database using binding-
specific substructure and sequence profile comparisons. The predictions are combined
with the program COFACTOR to generate final ligand binding site predictions (https:
//zhanglab.ccmb.med.umich.edu/COFACTOR/; accessed on 11 October 2022) [70,71].
Additional programs are FPocket [72], MDpocket [73] or SiteMap [74].

As an alternative to the pocket prediction algorithms, docking programs can be used
to search for favorable binding sites around the whole protein surface. As an example,
CB-Dock is a user-friendly blind docking web server that predicts binding sites of a pro-
tein, calculates the centers and sizes of cavities, and performs docking with the popular
AutoDock Vina program [75]. Similarly, the EDock program performs blind docking on
protein structures whose ligand binding sites are previously predicted by COACH. The
initial ligand poses are generated on the predicted binding pockets, and replica-exchange
Monte Carlo simulations are performed for conformation sampling using force field and
binding site constraints to select the final docking model [76].

Special attention must be paid to proteins containing flexible regions without a pre-
formed pocket, commonly referred to as cryptic sites. These sites remain unnoticed in
the unbound form, but they are formed after ligand binding, providing a tractable drug
target site. It has been suggested that these cryptic sites can provide new sites directed
to proteins that would otherwise be considered undruggable [77]. Interestingly, protein–
protein interactions include many such cryptic targets that could be potentially used to
bind small molecule inhibitors. Furthermore, cryptic sites located away from the orthosteric
site of a protein, but with the ability to allosterically modulate the activity of the protein,
are potentially useful to improve target specificity [78]. As an example of a cryptic site
detection, Cimermancic et al. curated a data set of apo- and holo-protein pairs containing
cryptic binding sites to build CryptoSite, a machine learning model to predict such sites in
proteins considered undruggable [79].

(iii) Selection of libraries—There are several compound libraries available for use
with docking programs in VS campaigns. The bigger the library, the greater the chance
of finding more active compounds with favorable pharmacokinetics. The nature of these
libraries is diverse, spanning from chemical to natural products, as well as approved drugs,
patent-free products, purchasable compounds, etc. Chemical libraries can be generated
containing a large number of compounds through several methods, including fragmen-
tation, combination, and deep learning [80]. Nonetheless, natural products, defined as
chemicals produced by living organisms, have attracted the attention of the scientific com-

https://www.molsoft.com/icmpocketfinder.html
https://zhanglab.ccmb.med.umich.edu/COFACTOR/
https://zhanglab.ccmb.med.umich.edu/COFACTOR/
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munity in the past decade, and its interest continues to incessantly grow. As an example,
a collection of open natural products (COCONUT) has been assembled, analyzed, and
made available in a user-friendly web interface (https://coconut.naturalproducts.net/;
accessed on 14 October 2022). The database is freely available and contains more than
400,000 unique natural products annotated with molecular properties, descriptors, and pub-
lished biological activities [81]. The ZINC database (https://zinc.docking.org/; accessed
on 14 October 2022) contains over 230 million purchasable compounds in ready-to-dock
3D formats as well as 750 million purchasable compounds [82]. ChEMBL is a manually
curated database of bioactive molecules that have drug-like properties; it brings together
chemical, bioactivity, and genomic data to aid the translation of genomic information into
effective new drugs. It contains 2.3 million unique compounds comprising 1.5 million
assays, 15,000 targets, and more than 85,000 published papers [83]. Databases such as
DrugBank [84] and the Human Metabolome Database [85] are commonly used to repur-
pose approved drugs to novel targets. Finally, the compound collection Enamine REAL
(https://enamine.net/compound-libraries; accessed on 14 October 2022) contains more
than 31 billion compounds [86].

(iv) Docking protocol—There are many docking protocols available that deal differ-
ently with the flexibility of the molecular structures that intervene in the docking, as stated
in Section 3. While rigid docking is used for protein–protein and protein–peptide docking,
flexible docking is commonly used for small organic molecules, keeping the receptor rigid
or semi-flexible. The selection of the docking applications depends on the system under
study, the affordable software resources, and the computational power available. The
number of applications for docking is more than 100 [87] and are either free or commercial
software. All of the software differs in the conformational search algorithms and in the
scoring functions that they are composed of. There are many examples of the use of these
applications, and the ability of docking methods to bind ligands into protein has been
extensively reviewed [29,30] and adapted for soluble or membrane proteins, including ion
channels and receptors [57,88,89]. Nonetheless, there is no one docking application that is
superior to others [90].

The most commonly used algorithms for docking are, for example: AutoDock4, which
uses an efficient Lamarckian genetic algorithm for global search, a local search for energy
optimization, and empirical binding free energy functions [91]; Dock6 uses an anchor-and-
grow search algorithm for conformational sampling as well as a footprint similarity scoring
function and supports MPI parallelism acceleration [92]; the AutoDock Vina program
includes an iterated local search global optimizer, while the binding energy determination
combines knowledge-based and empirical scoring functions [93]; PLANTS is another
docking program based on an ant colony optimization algorithm to find a minimum energy
conformation of the ligand in the protein’s binding site. It uses the empirical scoring
functions CHEMPLP and PLP, which are expressly designed for the algorithm [94,95];
RxDock software includes fast intermolecular scoring functions (van der Waals, polar,
desolvation), and a stochastic search engine based on a genetic algorithm together with a
novel genetic programming-based post-docking filtering to increase the accuracy of the
docking [96].

(v) Re-scoring—The poses generated by the docking program are evaluated to find
favorable conformations and ranked to select the high scoring hits. Nevertheless, the
binding affinity calculation is uncertain because of inherent problems related to the sim-
plified scoring terms. A way to fix this problem is the use of more rigorous energy
calculations after the docking process, although it is limited by the excessive compu-
tational cost in large chemical libraries. In this way, the results obtained after docking
can be rescored and/or filtered by using different scoring functions, such as MLP in-
teractions, which evaluate hydrophobic contacts [97], contacts score, which evaluates
interaction of surrounding residues [98], or APBS score, which evaluates ionic interac-
tions [99]. Of note, XScore and DSX are commonly used for rescoring: XScore (https:
//www.ics.uci.edu/~dock/manuals/xscore1.1_manual/intro.html; accessed on 7 October

https://coconut.naturalproducts.net/
https://zinc.docking.org/
https://enamine.net/compound-libraries
https://www.ics.uci.edu/~dock/manuals/xscore1.1_manual/intro.html
https://www.ics.uci.edu/~dock/manuals/xscore1.1_manual/intro.html
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2022) computes the binding affinities of the given ligand molecules bound to the target
protein by means of an empirical function that comprises van der Waals interactions, hydro-
gen bonds, and hydrophobic and deformation terms [100,101]. DSX is a knowledge-based
scoring function to score protein–ligand complexes of interest and to visualize the per-atom
score contributions, which is an intuitive way to learn about differences between putative
ligand geometries or learn about the importance of certain binding regions [102]. Either the
primary or the recalculated scores can be used to decide which compounds are predicted
to bind to the target.

Tran-Nguyen et al. have recently carried out an unbiased evaluation of four scoring
functions to rescore docking poses of a high-confidence screening data collection covering
several pharmaceutical targets. They found that rescoring based on simplistic knowledge-
based scoring functions, e.g., measuring interaction fingerprints, appears to outperform
modern machine learning methods, highlighting the importance of the use of rescoring
methods to properly detect the most potent binders [103]. Similarly, recent studies have
demonstrated that the use of machine learning approaches to rescore docking poses greatly
enhances the performance of structural models and that ensembles of rescoring functions
increase prediction accuracy [27]. They concluded that the use of empirical data to assess
docking predictions is a key factor to improve the prediction of protein–ligand interaction
in drug discovery. Finally, Singh et al. have reviewed the structure-based virtual screening
web servers, including those having rescoring methods, such as Automatic Molecular Mech-
anisms Optimization (AMMOS2), CompScore, PlayMolecule, farPPI, and idTarget, which
can help not only to identify new hits, but also identify drug repositioning, target-fishing,
and polypharmacology prediction (see [104] and references therein). Thus, rescoring tech-
niques can improve the accuracy of the docking results rather than the docking itself being
the only filter prior to experimentation [105].

(vi) Post-docking—The structure-based MD approach has been widely used in combi-
nation with docking programs to enhance the performance of VS [106]. Although computa-
tionally very expensive, MD deals with a spatial and temporal view of the ligand–receptor
complex and provides an accurate way to calculate reliable binding affinities [107]. MD is
based on the classical equations of motion, estimating the position and the moment of all
atoms in the system. The calculated potential energy is used to derive the force acting on
all atoms at certain time intervals, resulting in the time evolution of the system as a trajec-
tory [53]. In contrast to the inaccurate binding affinity of docking programs, MD precisely
calculates the free energy of the system. There are two main methods: (i) thermodynamic
integration, which evaluates the free energy differences for loading/unloading the lig-
and molecule into the binding pocket versus the bulk; and (ii) alchemical transformations,
which pull the ligand from the pocket to the bulk while evaluating the free energy [107,108].

As an alternative, the term post-docking usually refers to low computational cost
methods that enhance the hit rates in VS by reducing the number of false positives obtained
in docking experiments. As example, the Tanimoto similarity of molecular interaction
fingerprints between the predicted and the co-crystal poses accurately discriminates actives
from decoys in reference benchmarks [109]. Similarly, machine learning protocols have been
used for re-rank docked poses compared with co-crystal ones by the use of a convolutional
neural network [67]. Other post-docking strategies have been recently reviewed [40]. The
development of consensus models by means of the enrichment factor optimization (EFO)
approach is particularly efficient in studies benchmarking the VS docking strategy [110,111].

5. Consensus Models of Docking

It has been found that the accuracy of each docking program is system-dependent.
This is because the search of best poses depends on the protocols of parameterizations
and the training sets used to fine-tune the algorithms. In addition, the performance of
VS was shown to greatly vary for the different structural conformations of the proteins,
which implies the selection and elimination of structures with the worst performance in
the ensemble [112,113]. In the last two decades, several studies have been conducted to



Molecules 2023, 28, 175 12 of 29

evaluate and compare the performance of different docking software on the same systems
using known databases of binders and non-binders and using structure ensembles when
available [112–122].

Classical consensus approaches focus on the intersection of the best scores produced
by individual docking programs [117,118], although more elaborated screening score
combinations are commonly used [112,123]. These studies have shown that combining the
results of individual docking programs (consensus docking) improves the reliability of the
search [124] and helps to obtain a higher success rate in VS [114–119,125,126].

5.1. Consensus Methods

The screening power measures the ability of programs to identify known binders
in a dataset of binders and non-binders (decoys) to determine the agreement between
experimental and docking-predicted affinities. There is, however, no single method to
quantify this agreement, and several methods to combine the individual results of docking
programs have been proposed: rank-by-rank, rank-by-number, rank-by-vote, auto-scales
score, Z-score, or exponential consensus ranking score, which were reviewed by Palacio-
Rodriguez et al. [112]. In the rank-by-rank method, the rank position of a molecule is
obtained as the average rank obtained in each individual docking program [117]. In general,
the lower the averaged rank, the better. The rank-by-number calculates the average score
over all scoring functions. The rank-by-vote method provides votes to molecules if they
are ranked in the top x% of the results of each docking program [117]. Typically, a value of
10% of the benchmark is selected for calculations, where the higher the number of votes,
the better. The average auto-scaled scores normalize each docking score between 0 and 1
to avoid differences in scale offset among different docking programs [127]. The rank by
Z-score is calculated by subtracting the score of the molecule and the average score of all
molecules and dividing by the standard deviation of the scores. The final value is calculated
as the average score among all docking programs [128]. The exponential consensus ranking
uses an exponential distribution for each rank obtained in the docking runs. An exponential
score is calculated for each molecule in all docking programs, and the final score is obtained
as the sum of the exponential scores [112]. When available, it is also possible to combine the
docking of an ensemble of structures of the protein of interest and the consensus-scoring
to determine their impact on the improvements of the VS method [112]. Nevertheless,
the prediction accuracy of sampling and scoring power relies on the adequate selection of
docking programs and VS workflows [90,113,114,122], and current scoring functions are
still not reliable enough [90].

5.2. Datasets

The use of molecular datasets where the active compounds are known allows the
metric validation to evaluate the performance of the docking methods. In this case, the
generation of decoy molecules is mandatory, that is, molecules with physical properties
similar to active compounds, but being inactive. The selection of the decoy datasets is not
trivial, and several biases have been reported in the literature that may over/underestimate
VS performance: analogous, artificial enrichment, and false negative biases [129]. The
analogous bias arises in the limited chemical space of the active molecules [130]. The
artificial enrichment (or complexity) bias captures the differences in structural complexity
between active and decoy molecules [131]. The false negative bias describes the presence
of active molecules in the decoy datasets [132].

Property-matched decoys methods match ligands by physical properties (molecu-
lar weight, calculated logP, number of rotatable bonds, and hydrogen bond donors and
acceptors) but are topologically dissimilar and are presumed not to bind, which repre-
sents a challenge for docking programs. In this sense, to avoid mentioned biases, the
physicochemical properties between actives and decoys should be well-matched, and the
presence of active structures in the decoy sets should be prevented. To further improve the
quality of decoy sets, several tools have been developed. The most popular tool to generate
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decoys is DUD-E [133], a property-matched decoy generator which uses 2D similarity
fingerprints to minimize the topological similarity between decoys and actives. Similarly,
DEKOIS 2.0 provides a balanced decoy selection to optimize active–decoy physicochemical
similarity and to avoid latent actives in the decoy sets [132]. Maximum unbiased validation
(MUV) generates data sets with a spatial statistics approach using PubChem HTS bioac-
tivity data [134]. More recently, DeepCoy developed a deep learning method that uses a
graph neural network to generate property-matched decoys with user-defined particular
requirements [135]. Similarly, TocoDecoy generates unbiased and expandable datasets for
training and benchmarking scoring functions based on machine learning. This tool gen-
erates property-matched decoy sets in combination with decoy conformation sets having
low docking scores to mitigate bias [136]. However, property-matched decoy generation is
prone to falsely increase the enrichment and does not represent the chemical space expected
in a large library. Stein et al. developed a property-unmatched tool that generates decoy
sets that have average physical features of the larger library to be docked, being decoys not
too big, not too small, not too hydrophobic, and not too polar [137].

5.3. Metric Validation

A parameter commonly used is the enrichment factor (EF), defined as the ratio between
the number of actives found in a given percentage of the dataset and the number of com-
pounds at that percentage, normalized by the ratio between the total actives and the total
number of compounds in the dataset. EF1% and EF10% are commonly used in VS studies,
although they are affected by large variances in datasets with a low number of actives [121].
The confusion matrix allows the visualization of the performance of an algorithm and easily
determines whether the system is confusing two classes (binder/non-binder). The binary
confusion matrix uses the four kinds of results (TP, true positives, FN, false negatives, FP,
false positives, and TN, true negatives) along with the positive and negative classifications.
There are many derivations from the confusion matrix, such as sensitivity (recall) or true
positive rate [TPR = TP/(TP + FN)], precision [PRE = TP/(TP + FP)], fall-out of false posi-
tive rate [FPR = FP/(FP + TN)], specificity or true negative rate [TNR = TN/(TN + FP)], etc.

The calculated metrics can be plotted to discern which docking method is the best.
As an example, the enrichment plots (EP) represent the percentage of active compounds
recovered in a given percentage of the top-ranked compounds. Similarly, the receiver
operating characteristics (ROC), which represents the proportion of TPR against FPR, and
the area under the ROC curve (ROC-AUC) are commonly used to evaluate the performance
of the model to distinguish binder versus non-binder compounds [121]. Precision–recall
(PR) is a curve that combines precision (PRE) and sensitivity (TPR) in a single visualization.
The area under the precision–recall curve describes the model performance as the average
of the precision scores calculated for each recall threshold. The PR-AUC curve can be
used as an alternative metric to evaluate the classifier when the data are imbalanced. In
general, PR-AUC provides the ability to differentiate the performance between balanced
and imbalanced data and helps to identify the performance around the higher-rank area.
Advantages and disadvantages of these evaluation metrics are depicted in Table 1. Other
metrics are the robust initial enhancement (RIE) metric, which incorporates an exponential
weight as the ranking function [138], and the Boltzmann-Enhanced Discrimination of
Receiver Operation Characteristics (BEDROC), a normalized and improved version of
RIE [139]. The BEDROC is a metric to quantify early enrichment, thus increasing the
contribution from compounds in the first positions. It applies a decreasing exponential
function as a weight for the ranking, and adopts values between 0 and 1, which represent
the probability that an active, randomly selected, will be better ranked than a compound
randomly taken from the database (instead of a uniform distribution as in the ROC).
Regarding error estimation, in the context of docking and VS, error has the meaning of
“predictive error”, that is, the confidence that the method has to correctly predict, knowing
how it has been able to predict a supervised dataset in a retrospective test [121]. In a
supervised dataset, the active and inactive compounds are readily known to the researcher,
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but it is unknown to the docking program itself. The statistics of VS are commonly estimated
either numerically (bootstrap) or analytically (formulas) to obtain the error of the metrics.
The bootstrapping error is calculated by sampling the original hit list with replacement,
generating a set of bootstrapped hit lists. The EF and/or the AUC are then calculated for
every hit list, and the error variance is estimated. The analytical error can be computed by
calculating the variance for AUC or EF using already described formulas and converting it
into 95% confidence interval [121].

Table 1. Metric validation. The advantages and disadvantages of receiver operating characteristics
(ROC) and precision–recall (PR) evaluation metrics.

Metric Advantages Disadvantages

ROC

1. Simple graphical representation and
exact measure of the accuracy of a test.
2. Performs equally well on both
classes in balanced datasets.
3. The AUC is used as a simple numeric
rating of diagnostic test accuracy.

1. Actual decision thresholds are
usually not displayed.
2. As the sample size decreases, the plot
becomes irregular.
3. Not considered a good indicator for
early enrichment of true active samples.

PR

1. Points out the efficiency of the model.
2. Shows how much the data are biased
towards one class.
3. Helps understand whether the
model is performing well in
imbalanced datasets.

1. It does not deal with all the cells of
the confusion matrix. True negatives
are never considered.
2. Focuses only on positive class.
3. Only suited for binary classification.

There are many examples of the use of consensus docking and the development of
metrics to improve docking performance. For instance, Palacio-Rodriguez et al. introduced
a novel consensus method based on a sum of exponential distributions as a function of the
molecular ranking obtained from each individual program [112]. They evaluated an array
of docking programs over four diverse benchmark systems with two target crystallized
structures each. They found that the new method outperformed the individual docking
results and even the traditional consensus strategies, either using single target or receptor
ensemble docking, thus improving the enrichment of actives [112].

Chilingaryan et al. developed a VS workflow integrating several methods and ap-
proaches to enhance VS performance. They combined ensemble docking and consensus-
scoring approaches in two different scenarios. In the first case, the docking scores were
combined between the structures for each docking program, then consensus scoring was
applied to rank the compounds. In the second case, the consensus-scoring approach is
used for a given structure, then the normalized scores are combined between structures.
They concluded that there is a big dependence on the combination of the ensemble and
consensus docking used, which increases the VS reliability when correctly used. On the
contrary, an inappropriate combination of approaches can lead to a marked decrease in VS
performance [113].

Di Stefano et al. identified inhibitors of cyclin-dependent kinase 5 by employing a ma-
chine learning-based VS protocol with subsequent molecular docking, molecular dynamics
simulations, and binding free energy evaluations. To boost the predictive performance
of the VS platform for small-molecule toxicity predictions, they employed a consensus
strategy to combine the different predictions of the four top-scored models selected. In
this context, the compound was only predicted as active if classified by all four models as
active [140].

Gimeno et al. predicted a series of novel inhibitors of the SARS-CoV-2 main protease,
a key target for antiviral drugs, through consensus docking and drug reposition. Using two
different libraries of approved drugs, they considered bioactive poses that the equivalent
high affinity binding modes simultaneously predicted by the three docking programs,
taking advantage of the various sampling algorithms without relying on a single scoring
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function to rank the results [141]. Interestingly, Ochoa et al. developed dockECR, an open
computational pipeline for consensus docking and ranking protocols. The protocol uses
four open-source molecular docking programs and was calibrated with several protein
targets with known actives and decoys. In addition to an exponential consensus method to
re-rank molecular candidates, the method employs a scoring strategy based on the average
RMSD of best poses from each single program. Using this protocol, the authors evaluated
the SARS-CoV-2 main protease and discovered eight inhibitor candidates [142].

Similarly, the DockBox package facilitates the use of multiple docking programs
and scoring functions for VS purposes [143]. This package uses score-based consensus
docking, which enhanced EF and produced higher hit rates. The approach allows for the
use of many scoring functions to assess consensus without a significant computational
effort, facilitating the screening of large chemical libraries. Tuccinardi et al. evaluated the
reliability of consensus docking by combining ten different docking procedures in terms
of consensus cross-docking using an enriched database. The results obtained for three
different targets highlighted that consensus docking predicts the ligand binding pose better
than the single docking programs and that the VS performs well, substantiating the tenet
that this procedure can be used fruitfully for the identification of new hits [144].

6. Computational Power

In addition to the progress in structural biology, the refinement of docking algorithms,
consensus methods, the set-up of HTVS, or the availability of large chemical libraries,
drug discovery has emerged thanks to advancements in computational power, which
include (a) grid computing, (b) cloud computing, and (c) hardware acceleration such as
graphics processing units [145,146]. Grid computing is composed of several geographically
distributed supercomputers, and it can manage massive computational tasks and is widely
used in HTVS, thereby reducing time and cost [146]. Cloud computing enables rapid and
easy access to shared computing resources, such as networks, servers, storage, applications,
etc. [145,147]. The use of accelerators such as graphical processing units (GPUs), used
either alone or in conjunction with CPUs, has represented a tremendous computational
resource that can currently be used for general purpose computing. GPUs can perform over
500 billion operations per second. As a consequence, molecular modeling applications can
be programmed to obtain optimal GPU performance. Several countries have developed
E-class computing programs to implement large-scale heterogeneous supercomputing
systems. However, although supercomputers correctly manage large files, they fail at
handling massive amounts of small molecules files, causing communication pressure on
the system.

The best way to solve this issue is currently challenging. Several approaches are com-
monly used to accelerate VS calculations. As examples, AutoDock4 divides the docking
tasks into multiple folders and files and launches individual docking jobs for each ligand.
Dock6 supports the message passing interface (MPI) wrapper acceleration by simulta-
neously launching thousands of docking executions. The MPI is a standardized means
of exchanging messages between multiple computers running a parallel program across
distributed memory. AutoDock Vina employs multi-thread parallelism, and AutoDock-
GPU implements GPU acceleration [148]. These approaches support calculations of up
to 107 ligands, but cannot handle ultra-large-scale VS applications. Noteworthily, Zhang
et al. have developed aweVS, a package that uses multi-layer databases to integrate all
docking tasks and dynamically distribute the large list of docking jobs. The VS process is
linearly scaled with the available GPU and CPU to efficiently manage billions of ligands,
minimizing the input and output loads [149]. Interestingly, the platform can integrate
different docking programs, heterogeneous acceleration software, and different hardware,
including GPU processors.
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7. The Vanilloid Receptor TRPV1: A Case Study

The TRPV1 receptor (or vanilloid receptor) is a polymodal ion channel that responds to
both physical and chemical stimuli. TRPV1 is activated by noxious temperatures (≥43 ◦C),
vanilloids (capsaicin), extracellular acidic pH, and membrane depolarization. At the molec-
ular level, TRPV1 is a tetrameric integral membrane protein that presents a modular
organization consisting of a transmembrane domain composed of 6 helices (S1 to S6) that
form the pore and gating domains, as well as cytosolic domains (N- and C-termini) contain-
ing sites for modulating the channel sensitivity [150] (Figure 4). The channel assembly is
stable and has been determined by cryo-EM at a 3–4 Å resolution [150,151] in the apo form
or in complex with capsaicin, the active principle of chili peppers, which is a desensitizing
agonist of TRPV1 [152]. Upon activation, the channel opens and permeabilizes with a
preference for Ca2+ ions, which activate intracellular signaling pathways. Prolonged expo-
sure to the agonist desensitizes TRPV1 or induces tachyphylaxis to preserve cellular ionic
homeostasis. In addition, TRPV1 can be modulated by proinflammatory or pruritogenic
agents, and its sensitization produces a notable increase of channel activity due in part
to a decrease in the threshold of temperature activation. Other mediators such as NGF
increase TRPV1 expression via p28/MAPK or PI3K signaling pathways, thus contributing
to TRPV1 sensitization.
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These properties are behind the interest of capsaicin as a therapeutic to treat pain
and itch [153]. In support of this, capsaicin exhibits clinically relevant analgesic, anti-
inflammatory, and anti-pruritic activities targeting TRPV1 [154]. Thus, the central role
of the TRPV1 receptor in pain and pruritus has focused the interest of pharmaceutical
companies in the discovery of TRPV1 modulators [155–158]. However, the use of potent
TRPV1 antagonists has presented secondary effects (hyperthermia) that have prevented
clinical development of the antagonists. In this sense, the discovery of soft inhibitors or
activators able to modulate peripheral TRPV1 function with minimal side-effects seems to
be a good alternative to alleviate chronic pain and itch [154].

To illustrate a simple VS approach, we used five docking protocols and two re-scoring
methods on the TRPV1 mammal receptor as determined by cryo-EM (PDB code: 7LR0) [159]
and a dataset of active/inactive compounds. The complex TRPV1–capsaicin was down-
loaded from the PDB database (RCSB-PDB) and the ligand was stripped-out for the VS
study. The library of known inhibitors was obtained from the ChEMBL database [83]. Com-
pounds were classified as active if they had an IC50 value of less than 200nM and include
“inhibition of capsaicin-induced” in the “Assay Description” heading in ChEMBL. The
database filtering produced a total of 212 unique compounds identified as human TRPV1
antagonist, which were considered as the active training set. Decoys were obtained from
DUD-E webpage (http://dude.docking.org/; accessed on 2 September 2022), generating
50 decoys per active compound (10,600 inactives) to create a library of 10,812 compounds
to screen.

The docking software used was Dock6 [92], AutoDock4 [91], AutoDock Vina [93],
PLANTS [94,95], and RxDock [96], keeping the receptor rigid and the ligands free to move.
In addition, the AutoDock4 results were re-scored using XScore [100,101] and DSX [102]
methods. The docking procedures were performed as homogeneously as possible in
order to obtain comparable results. The Dock6 simulation was performed following the
geometrical docking procedure implemented in the protocol. The docking search was
focused within a 3 Å radius sphere around the reference ligand (capsaicin). The AutoDock4
simulation was accomplished by the Lamarckian genetic algorithm, with the population
size being set to 150. Docking scores were calculated by the default scoring function.
AutoDock Vina implemented in YASARA used the default optimization parameters for
conformational sampling, and the docking scores were calculated with default functions as
well. The PLANTS simulation followed the ant colony optimization with a binding site
radius of 18 Å from the reference ligand center. Up to 10 poses per ligand were generated
and ranked by the ChemPLP scoring function. The RxDock simulation followed the
standard docking protocol including three steps of the genetic algorithm search, a Monte
Carlo step, and final energy minimization to obtain the best ligand poses. The scoring
functions were the default ones. XScore and DSX protocols were used to re-score the
sampling performed by AutoDock4 (dlg files) with the default empirical scoring functions
of these methods was used to determine the binding free energy of the poses (Table 2).

As previously stated, there is sometimes a poor correlation between the results of
two different docking programs, as is the case in our TRPV1 docking example. Figure 5A
plots the ranking obtained by PLANTS for the selected library compared with the ranking
obtained in AutoDock Vina for the same molecules.

http://dude.docking.org/
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Table 2. Resources used in the screening workflow for TRPV1.

Stage Resource Description

Target structure RCSB Protein Data
Bank (PDB)

PDB is the data center for the global Protein Data Bank (PDB) of 3D structure data for large
biological molecules. https://www.rcsb.org; accessed 2 September 2022.

Ligand structures
ChEMBL ChEMBL is a database of bioactive molecules with drug-like properties.

https://www.ebi.ac.uk/chembl/; accessed 2 September 2022.

Decoys from DUD-E DUD-E is designed to help benchmark molecular docking programs by providing challenging
decoys. http://dude.docking.org; accessed 2 September 2022.

Target preparation YASARA 22.5.22
YASARA is a molecular modeling and simulation program for structure validation and
prediction tools. It is used to rebuild missing side chains and loops. http://www.yasara.org;
accessed 1 September 2022.

Ligand preparation
Openbabel 2.4.1

Openbabel. Addition of MMFF94 partial charges, salts removing, protonation at pH 7.4,
conversion 2D-3D. https://openbabel.org/docs/dev/Command-line_tools/babel.html;
accessed 3 October 2022.

RDKit 2020.09.1.0 RDKit (Chem package from RDKit). http://www.rdkit.org; accessed 3 October 2022.
Marvin 6.0 Marvin (molconvert). https://chemaxon.com/marvin; accessed 3 October 2022.

Ligand optimization
RDKit RDKit (package AllChem). http://www.rdkit.org; accessed 3 October 2022.
YASARA YASARA (NOVA force field and energy minimization steps).

ADMET descriptors

Marvin 6 Marvin. ChemAxon’s calculator (cxcalc) is a command line program that performs chemical
calculations using calculator plugins. https://chemaxon.com/marvin; accessed 3 October 2022.

XLOGP3 XLOGP3 is an optimized atom-additive method for the fast calculation of logP.
http://www.sioc-ccbg.ac.cn/skins/ccbgwebsite/software/xlogp3/; accessed 6 September 2022.

RDKit RDKit is used to obtain molecular descriptors. http://www.rdkit.org; accessed 3 October 2022.

FILTER-IT FILTER-IT obtains some molecular descriptors and filters out molecules with unwanted
properties. https://github.com/silicos-it/filter-it; accessed 6 September 2022.

UCSF Chimera 1.15 UCSF Chimera is used for calculations of some molecular descriptors such as SASA and SESA
(surf tool). https://www.cgl.ucsf.edu/chimera/; accessed 6 September 2022.

AMSOL 7.1 AMSOL is used for calculating the free energies of solvation of molecules and ions in solution
and partial atomic charges. https://comp.chem.umn.edu/amsol/; accessed 6 September 2022.

Docking

UCSF DOCK6.7
UCSF DOCK6 identifies potential binding geometries and interactions of a molecule to a target
using the anchor-and-grow search algorithm.
https://dock.compbio.ucsf.edu/DOCK_6/index.htm; accessed 1 September 2022.

AutoDock4 AutoDock4 performs the docking of the ligands to a set of grids describing the target protein and
pre-calculates these grids. https://autodock.scripps.edu; accessed 1 September 2022.

YASARA YASARA is used to run macro executing VINA docking algorithms.

PLANTS
PLANTS is based on ant colony optimization employed to find a minimum energy conformation
of the ligand in the protein’s binding site. https://github.com/discoverdata/parallel-PLANTS;
accessed 1 September 2022.

RxDock RxDock is designed for high-throughput virtual screening campaigns and binding mode
prediction studies. https://rxdock.gitlab.io; accessed 1 September 2022.

XScore

XScore is an empirical scoring function which computes the binding affinities of the given ligand
molecules to their target protein.
https://www.ics.uci.edu/~dock/manuals/xscore1.1_manual/intro.html; accessed 1
September 2022.

DSX
DSX is a knowledge-based scoring function that consists of distance-dependent pair potentials,
novel torsion angel potentials, and newly defined solvent accessible
surface-dependent potentials.

Hits identification
(Score-based
consensus strategies)

NSR NSR: Normalized score ratio
ECR ECR: Exponential Consensus Ranking
RBR RBR: Rank-by-rank
RBV RBV: Rank-by-vote
RBN RBN: Rank-by-number
AASS AASS: Average of auto-scaled score
Z-Score Z-Score

https://www.rcsb.org
https://www.ebi.ac.uk/chembl/
http://dude.docking.org
http://www.yasara.org
https://openbabel.org/docs/dev/Command-line_tools/babel.html
http://www.rdkit.org
https://chemaxon.com/marvin
http://www.rdkit.org
https://chemaxon.com/marvin
http://www.sioc-ccbg.ac.cn/skins/ccbgwebsite/software/xlogp3/
http://www.rdkit.org
https://github.com/silicos-it/filter-it
https://www.cgl.ucsf.edu/chimera/
https://comp.chem.umn.edu/amsol/
https://dock.compbio.ucsf.edu/DOCK_6/index.htm
https://autodock.scripps.edu
https://github.com/discoverdata/parallel-PLANTS
https://rxdock.gitlab.io
https://www.ics.uci.edu/~dock/manuals/xscore1.1_manual/intro.html
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Figure 5. Dispersion of docking results in TRPV1. (A) Correlation between the results of AutoDock
Vina and PLANTS. The docking results of AutoDock Vina were ranked and plotted against the
ranking of the same molecules in PLANTS. The red dots represent the inhibitors obtained from
the ChEMBL database while the grey dots indicate the decoys obtained from DUD-E. (B) A Venn
diagram representing the intersections between four different docking programs (Vina, PLANTS,
RxDock and DSX) used on TRPV1. The numbers indicate the amount of shared compounds detected
by the different docking methods. The overlapping degree shown was calculated using the top
1000 molecules of the rankings.

The dispersion of the active molecules (red dots) indicates the limitations of the current
approaches and the difficulties to encounter the correct poses and/or measure the binding
affinity. The active molecules in the upper-left rectangle (Figure 5A) were detected by
PLANTS within 10% of the database, but Vina failed to correctly rank them. The contrary
was true for the actives in the lower-right rectangle, where PLANTS was unable to correctly
find the actives. A classical consensus approach would select molecules in the intersection
of both programs (bottom-left square), although many active molecules were lost in the
selection. The scenario is more complicated when additional docking programs further
restrict the area of intersection to a few active compounds (Figure 5B). As an example,
PLANTS and AutoDock Vina detected 37 actives, while PLANTS, AutoDock Vina, and
DSX detected 23 actives, or 7 actives if RxDock was additionally included.

To assess the screening accuracy of the docking programs and consensus methods, all
results were ranked by score, and the EP and the AUC-ROC were calculated. Figure 6A
(left) shows the area under the ROC curve determined for all methods used to dock the
library of inhibitors on the selected TRPV1 template. This area indicates how adequate a
method is for discriminating active compounds. A value of AUC-ROC equaling 1 means
a perfect performance, while a value of 0.5 indicates that the performance of the method
does not differ from a random selection of the compounds.

In the present TRPV1 example, the best docking program was AutoDock Vina, which
performed similarly or slightly better than the other docking software. On the contrary,
Dock6 and AutoDock4 poorly discriminated between binders and non-binders, with
AutoDock4 showing the worst docking results. Nonetheless, re-scoring of the poses
obtained in AutoDock4 by means of XScore or DSX improved the ability of the model to
discriminate between binders and non-binders. The use of consensus strategies (Figure 6A,
right) increased the area under the ROC curve, indicating an improvement in the dis-
crimination of the active compounds over decoys. The normalized score ratio (NSR),
rank-by-number (RBN), rank-by-rank (RBR) and Z-score methods outperform better than
any individual docking software. Figure 6B also illustrates the EP, the percentage of active
compounds recovered in a certain percentage of the top-ranked compounds. The shaded
area represents the performance of the best and the worst individual docking program
compared with the performance of the consensus metrics (colored plots). These consen-
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sus metrics produce better results than individual docking programs, thus recovering
molecules that were well-ranked by one program but poorly ranked by another, with the
global result of performance improvement. Noteworthily, the rank-by-rank (RBR) and
exponential consensus ranking (ECR) methods outperform better than other metrics in the
1–10% of the database.
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Despite the improvements outlined here, the results are not as good as could be
expected. Recently, Llanos et al. performed a structure-based VS on TRPV1 to find potential
modulators among approved drugs without thermoregulatory side-effects. Using several
TRPV1 structures, they assessed the pose and scoring prediction power to discover three
promising candidates for experimental testing [120]. Nonetheless, the worst-performing
structure these authors obtained was the capsaicin-derived one, similar to that used in
the example. The authors argued that this is something to be expected, as this agonist-
derived model was screened with inhibitors, not agonists. In fact, the vanilloid pocket is
slightly different in the apo-, agonist-, and antagonist-structures [151,160,161] playing the
Y511 orientation, which is an important role in establishing hydrophobic and electrostatic
contacts with the effectors [162].

The performance of the VS consensus methods could be easily increased if: (i) a
selection of docking protocols and combination of consensus strategies were studied to
validate the VS for the actual system; and (ii) several receptor structures were used and
compared. In this sense, Chilingaryan et al., searching for inhibitors of dihydroorotate
dehydrogenase, concluded that an appropriate combination of ensemble and consensus
docking approaches actually increases the reliability of the VS, but an inappropriate combi-
nation of these strategies can lead to a dramatic decrease in the performance [113]. Similarly,
Manelfi et al., searching for effectors of SARS-CoV-2 protease, determined that the correct
combination of the algorithms was key to enhance the VS performance [122].

8. Outlook

The understanding of the human genome and the advances experienced by structural
biology have identified a large number of proteins likely to be biological targets. The rapid
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growth of public databases, the fact that these data are capable of being computationally
studied, and the increased computing power have boosted the development of compu-
tational tools to previously analyze thousands of small molecules to experimental tests.
These approaches have the potential to discover drugs with enhanced stability, specificity,
and selectivity, attracting the attention of industries and academia.

The computational strategy has a number of advantages, including high speed, low
cost, unlimited scalability, and implied automation to limit human intervention, which has
revolutionized rational drug design. In contrast, computational approaches require the
use of high-resolution atomic structures and optimized methods to evaluate thousands of
potential conformations and the theoretical interaction energy between molecules. In this
regard, novel and renewed computational methods, such as molecular docking, virtual
screening, molecular dynamics, and artificial intelligence, applied together in early stages
of the discovery process, may help find clinically useful drugs with improved therapeutic
potential and clinical translation.

Molecular docking and VS are the approaches most commonly used to screen large
compound libraries. These high-throughput docking methods are very fast to find the most
favorable position and orientation of the ligand or to estimate the likelihood of binding,
being currently termed as computationally efficient. However, despite recent advances
in docking and VS strategies, there are major challenges to be solved: (i) Target avail-
ability is a limitation, especially for large membrane protein targets, which traditionally
resisted X-ray crystallography. Fortunately, recent advances in the cryo-EM technique have
filled that gap by efficiently delivering high-resolution structural models that maintain
the functional states of the protein or capturing multiple conformational states in a single
experiment [14]. In addition, either homology or ab initio strategies produce high-quality
models for performing effective virtual screening, comparable with crystallographic struc-
tures, as suggested by several studies [25,26]. (ii) Selection of the active site for docking
in the apo-proteins is also challenging as the binding pocket is almost indistinguishable
from the rest of the protein surface. The holo-proteins structures facilitate this selection.
(iii) The definition of the type of activity for a given ligand is also a threat, and sometimes
there are no clues about its possible behavior as activator or inhibitor [163]. (iv) Protein
flexibility is challenging because it is not possible to account for backbone and side chain
flexibility in an efficient manner. Receptor flexibility is currently limited to a few side
chains in the binding pocket. Alternatively, the conformational space of the target can
be screened by multiple reference structures [164,165]. In this approach, the results of an
ensemble of structures are combined with the merging and shrinking procedure [166,167],
which merges the individual docking results of the different structures. Acharya et al. used
ensemble docking to obtain target flexibility in docking-based VS on the main protease of
SARS-CoV-2 in different protonated states and in monomeric or dimeric form. The docking
protocols produced enrichment rates higher than those produced experimentally [168].
(v) The scoring functions for docking are probably the most complex challenge. The dock-
ing output presents too many false positives and false negatives, and the hit list critically
depends on the quality of the scoring function. Furthermore, different docking software
use different sampling strategies and scoring functions, leading to important differences in
performance among programs. To date, a large number of studies have been conducted to
evaluate and compare docking programs to assess their performance in recovering active
molecules [114,144,169–173]. Wang et al. analyzed the results of several docking programs,
either public or commercial, more or less popular, newly released or traditional, and deter-
mined that although there are clear differences in the scoring functions or conformational
search algorithms, there are no significant differences in performance for finding active
compounds [114].

Calculating the free energy of protein–ligand binding is not a trivial task. Free energy
is a thermodynamic observable that involves (de)solvation effects and entropy changes
upon binding, which requires computationally expensive procedures. Nevertheless, the
need for a dynamic description of protein–ligand interactions has gradually grown, and
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several approximations have been developed, mainly based on combined docking and
MD strategies, usually referred to as dynamic docking [174]. An MD approach allows for
the study of protein–ligand recognition and binding from an energetic and mechanistic
point of view, in which the binding and unbinding kinetic constants can be calculated.
However, similarly to static docking methods, dynamic docking should generate binding
modes, which strongly depends on the sampling strategy used and should evaluate the
reliability of the identified poses, processes that are very computationally expensive to
be routinely used in drug discovery programs. To solve this drawback, new strategies
are being developed, such as the simulation of protein–ligand formation by a guided fast
dynamic docking, with the aim of an affordable computational cost [175]. In this sense, it
cannot be ruled out that in the future dynamic docking will replace static docking, leading
to a paradigm shift in structure-based drug discovery.

In this context, consensus methods have emerged as a tool to improve the reliability
of the individual docking programs by overriding the limitations of a single algorithm,
enhancing the quality of the predictions from qualitative and quantitative viewpoints.
The rationale behind this is that a docking pose with a high consensus level will be more
likely to be the biological one. On the contrary, the absence of consensus can be considered
suspicious and that the pose should be analyzed and probably discarded. A major challenge
in VS simulation is to encounter the combination of search algorithms that correctly predict
the binding mode and scoring functions that accurately quantify its binding affinity. Indeed,
an added problem is the difference in the effectiveness of the methods in different protein
systems. This has been tested in several studies dealing with several protein systems
and benchmarks composed of known binders and non-binders [112,113,122], resulting in
the conclusion that the correct combination of docking software selection together with
the adequate procedure of consensus selection significantly increases the reliability of
VS results.

Even though different approaches have been developed to obtain the consensus
results from individual docking programs, there is currently no consensus procedure
that stands out from the rest of methods. Nevertheless, from the quantitative viewpoint,
the analyzed studies strongly support that VS consensus docking can be efficiently used
for discovering new hit compounds [112–120,122]. The main objection to the consensus
approach is probably the computational time, as the compound libraries must be calculated
with all docking procedures. To override this inconvenience, alternative strategies are
used, such as the hierarchical approach, which employs in a first step the two faster
docking procedures. Only the resulting consensus compounds enter in a second step,
where the third docking procedure is calculated, and the consensus compounds are re-
filtered, and so on [144]. In addition, advances in computational resources have facilitated
the computational load. High-performance computing is entering into exascale computing
after years of development (https://www.exascaleproject.org/; accessed 28 November
2022.). Quantum computing, the logical evolution of high-performance computing, is a
promising tool to be used in drug discovery [176].

The VS methodology applied to the TRPV1 system with pre-validated data produced
inconsistencies in the performance of the individual docking processes, although the use of
consensus docking protocols slightly improved the global performance. Nevertheless, the
use of an ensemble of TRPV1 structures, together with the correct integration of docking
methods and metrics, could further improve the outcome performance and reliability of
the results, especially when applied to unsupervised libraries.

Overall, consensus docking is a fast, simple, and effective approach that helps the
identification of hits in VS campaigns through the identification of the correct poses of
ligands bound to the target. Drug discovery can strongly benefit with these promising
strategies to bring patients useful drug candidates with improved clinical translation.
It is predicted that the consensus docking analysis, together with molecular dynamics
simulation and machine learning approaches, will boost the design of new drugs with
limited side-effects and enhanced properties, selectivity, and safety.

https://www.exascaleproject.org/


Molecules 2023, 28, 175 23 of 29

Author Contributions: Conceptualization, G.F.-B.; writing—original draft preparation, G.F.-B. and
C.B.-M.; writing—review and editing, G.F.-B., C.B.-M., P.F.-A., J.d.A.-L., A.F.-C. and A.F.-M.; figure
preparation, P.F.-A., J.d.A.-L. and C.B.-M. All authors have read and agreed to the published version
of the manuscript.

Funding: We are thankful to the following funding bodies: grant RTI2018-097189-B-C21 and PID2021-
126423OB-C21 from MICIN/AEI (DOI/10.13030/501100011033, FEDER Una Manera de Hacer Eu-
ropa); grant PROMETEO/2021/031 from GVA; grant UMH-PAR2019 from UMH to A.F.-M.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: We are indebted to the members of our research group for their constructive
discussions. We are also grateful to the Cluster of Scientific Computing (http://ccc.umh.es/; accessed
1 September 2022) of Miguel Hernández University (UMH) for providing computing facilities. We
thank Pilar Aguado-Jiménez for editing the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

Sample Availability: Samples of the compounds are available from the authors.

References
1. Dhasmana, A.R.; Jahan, S.R.; Lohani, M.; Arif, J.M. Chapter 19—High-Throughput Virtual Screening (HTVS) of Natural

Compounds and Exploration of Their Biomolecular Mechanisms: An In Silico Approach. In New Look to Phytomedicine; Ahmad,
M.S., Khan, I.A., Chattopadhyay, D., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 523–548.

2. Arrowsmith, J.; Miller, P. Trial watch: Phase II and phase III attrition rates 2011-2012. Nat. Rev. Drug. Discov. 2013, 12, 569.
[CrossRef] [PubMed]

3. Smith, C. Drug target validation: Hitting the target. Nature 2003, 422, 341, 343, 345 passim. [CrossRef]
4. Kontoyianni, M. Docking and Virtual Screening in Drug Discovery. Methods Mol. Biol. 2017, 1647, 255–266. [PubMed]
5. Parker, C.N.; Bajorath, J. Towards Unified Compound Screening Strategies: A Critical Evaluation of Error Sources in Experimental

and Virtual High-Throughput Screening. Qsar. Comb. Sci. 2006, 25, 1153–1161. [CrossRef]
6. Tomar, V.; Mazumder, M.; Chandra, R.; Yang, J.; Sakharkar, M.K. Small molecule drug design. In Encyclopedia of Bioinformatics and

Computational Biology: ABC of Bioinformatics; Ranganathan, S., Nakai, M.G.K., Schönbach, C.B., Eds.; Academic Press: Oxford, UK,
2018; Volume 1–3, pp. 741–760.

7. Abdolmaleki, A.; Ghasemi, J.B.; Ghasemi, F. Computer Aided Drug Design for Multi-Target Drug Design: SAR /QSAR, Molecular
Docking and Pharmacophore Methods. Curr. Drug. Targets. 2017, 18, 556–575. [CrossRef] [PubMed]

8. Srinivasarao, M.; Low, P.S. Ligand-Targeted Drug Delivery. Chem. Rev. 2017, 117, 12133–12164. [CrossRef]
9. Acharya, C.; Coop, A.; Polli, J.E.; Mackerell, A.D., Jr. Recent advances in ligand-based drug design: Relevance and utility of the

conformationally sampled pharmacophore approach. Curr. Comput. Aided. Drug. Des. 2011, 7, 10–22. [CrossRef]
10. Lionta, E.; Spyrou, G.; Vassilatis, D.K.; Cournia, Z. Structure-based virtual screening for drug discovery: Principles, applications

and recent advances. Curr. Top. Med. Chem. 2014, 14, 1923–1938. [CrossRef]
11. Aminpour, M.; Montemagno, C.; Tuszynski, J.A. An Overview of Molecular Modeling for Drug Discovery with Specific Illustrative

Examples of Applications. Molecules 2019, 24, 1693. [CrossRef]
12. Liu, Y.; Wang, K. Exploiting the Diversity of Ion Channels: Modulation of Ion Channels for Therapeutic Indications. Handb. Exp.

Pharm. 2019, 260, 187–205.
13. Fernandez-Ballester, G.; Fernandez-Carvajal, A.; Ferrer-Montiel, A. Targeting thermoTRP ion channels: In silico preclinical

approaches and opportunities. Expert. Opin. Targets 2020, 24, 1079–1097. [CrossRef] [PubMed]
14. Benjin, X.; Ling, L. Developments, applications, and prospects of cryo-electron microscopy. Protein. Sci. 2020, 29, 872–882.

[CrossRef] [PubMed]
15. Denisov, I.G.; Sligar, S.G. Nanodiscs in Membrane Biochemistry and Biophysics. Chem. Rev. 2017, 117, 4669–4713. [CrossRef]

[PubMed]
16. Callaway, E. The revolution will not be crystallized: A new method sweeps through structural biology. Nature 2015, 525, 172–174.

[CrossRef]
17. Fernandez-Ballester, G.; Serrano, L. Prediction of protein-protein interaction based on structure. Methods Mol. Biol. 2006, 340,

207–234.
18. Evers, A.; Gohlke, H.; Klebe, G. Ligand-supported homology modelling of protein binding-sites using knowledge-based

potentials. J. Mol. Biol. 2003, 334, 327–345. [CrossRef]
19. Enkavi, G.; Javanainen, M.; Kulig, W.; Rog, T.; Vattulainen, I. Multiscale Simulations of Biological Membranes: The Challenge To

Understand Biological Phenomena in a Living Substance. Chem. Rev. 2019, 119, 5607–5774. [CrossRef]

http://ccc.umh.es/
http://doi.org/10.1038/nrd4090
http://www.ncbi.nlm.nih.gov/pubmed/23903212
http://doi.org/10.1038/422341b
http://www.ncbi.nlm.nih.gov/pubmed/28809009
http://doi.org/10.1002/qsar.200610069
http://doi.org/10.2174/1389450117666160101120822
http://www.ncbi.nlm.nih.gov/pubmed/26721410
http://doi.org/10.1021/acs.chemrev.7b00013
http://doi.org/10.2174/157340911793743547
http://doi.org/10.2174/1568026614666140929124445
http://doi.org/10.3390/molecules24091693
http://doi.org/10.1080/14728222.2020.1820987
http://www.ncbi.nlm.nih.gov/pubmed/32972264
http://doi.org/10.1002/pro.3805
http://www.ncbi.nlm.nih.gov/pubmed/31854478
http://doi.org/10.1021/acs.chemrev.6b00690
http://www.ncbi.nlm.nih.gov/pubmed/28177242
http://doi.org/10.1038/525172a
http://doi.org/10.1016/j.jmb.2003.09.032
http://doi.org/10.1021/acs.chemrev.8b00538


Molecules 2023, 28, 175 24 of 29

20. Corradi, V.; Sejdiu, B.I.; Mesa-Galloso, H.; Abdizadeh, H.; Noskov, S.Y.; Marrink, S.J.; Tieleman, D.P. Emerging Diversity in
Lipid-Protein Interactions. Chem. Rev. 2019, 119, 5775–5848. [CrossRef]

21. Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graph. 1996, 14, 33–38. [CrossRef]
22. Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Zidek, A.; Potapenko,

A.; et al. Highly accurate protein structure prediction with AlphaFold. Nature 2021, 596, 583–589. [CrossRef]
23. Skolnick, J.; Gao, M.; Zhou, H.; Singh, S. AlphaFold 2: Why It Works and Its Implications for Understanding the Relationships of

Protein Sequence, Structure, and Function. J. Chem. Inf. Model 2021, 61, 4827–4831. [CrossRef] [PubMed]
24. Baek, M.; DiMaio, F.; Anishchenko, I.; Dauparas, J.; Ovchinnikov, S.; Lee, G.R.; Wang, J.; Cong, Q.; Kinch, L.N.; Schaeffer, R.D.;

et al. Accurate prediction of protein structures and interactions using a three-track neural network. Science 2021, 373, 871–876.
[CrossRef] [PubMed]

25. Carlsson, J.; Coleman, R.G.; Setola, V.; Irwin, J.J.; Fan, H.; Schlessinger, A.; Sali, A.; Roth, B.L.; Shoichet, B.K. Ligand discovery
from a dopamine D3 receptor homology model and crystal structure. Nat. Chem. Biol. 2011, 7, 769–778. [CrossRef] [PubMed]

26. Lim, V.J.Y.; Du, W.; Chen, Y.Z.; Fan, H. A benchmarking study on virtual ligand screening against homology models of human
GPCRs. Proteins 2018, 86, 978–989. [CrossRef]

27. Wong, F.; Krishnan, A.; Zheng, E.J.; Stark, H.; Manson, A.L.; Earl, A.M.; Jaakkola, T.; Collins, J.J. Benchmarking AlphaFold-enabled
molecular docking predictions for antibiotic discovery. Mol. Syst. Biol. 2022, 18, e11081. [CrossRef]

28. Weng, Y.; Pan, C.; Shen, Z.; Chen, S.; Xu, L.; Dong, X.; Chen, J. Identification of Potential WSB1 Inhibitors by AlphaFold Modeling,
Virtual Screening, and Molecular Dynamics Simulation Studies. Evid. Based. Complement. Altern. Med. 2022, 2022, 4629392.
[CrossRef]

29. Lee, A.C.; Harris, J.L.; Khanna, K.K.; Hong, J.H. A Comprehensive Review on Current Advances in Peptide Drug Development
and Design. Int. J. Mol. Sci. 2019, 20, 2383. [CrossRef]

30. Sousa, S.F.; Fernandes, P.A.; Ramos, M.J. Protein-ligand docking: Current status and future challenges. Proteins 2006, 65, 15–26.
[CrossRef]

31. Pinzi, L.; Rastelli, G. Molecular Docking: Shifting Paradigms in Drug Discovery. Int. J. Mol. Sci. 2019, 20, 4331. [CrossRef]
32. Tovchigrechko, A.; Vakser, I.A. GRAMM-X public web server for protein-protein docking. Nucleic. Acids. Res. 2006, 34,

W310–W314. [CrossRef]
33. Wang, J.; Dokholyan, N.V. MedusaDock 2.0: Efficient and Accurate Protein-Ligand Docking with Constraints. J. Chem. Inf. Model.

2019, 59, 2509–2515. [CrossRef] [PubMed]
34. Yadava, U. Search algorithms and scoring methods in protein-ligand docking. Endocrinol. Int. J. 2018, 6, 359–367. [CrossRef]
35. Kearsley, S.K.; Underwood, D.J.; Sheridan, R.P.; Miller, M.D. Flexibases: A way to enhance the use of molecular docking methods.

J. Comput. Aided. Mol. Des. 1994, 8, 565–582. [CrossRef] [PubMed]
36. Huang, S.Y.; Zou, X. Advances and challenges in protein-ligand docking. Int. J. Mol. Sci. 2010, 11, 3016–3034. [CrossRef]
37. Hart, T.N.; Read, R.J. A multiple-start Monte Carlo docking method. Proteins 1992, 13, 206–222. [CrossRef]
38. Morris, G.M.; Goodsell, D.S.; Halliday, R.S.; Huey, R.; Hart, W.E.; Belew, R.K.; Olson, A.J. Automated docking using a Lamarckian

genetic algorithm and an empirical binding free energy function. J. Comput. Chem. 1998, 19, 1639–1662. [CrossRef]
39. Arun Prasad, P.; Gautham, N. A new peptide docking strategy using a mean field technique with mutually orthogonal Latin

square sampling. J. Comput. Aided. Mol. Des. 2008, 22, 815–829. [CrossRef]
40. Yang, C.; Chen, E.A.; Zhang, Y. Protein-Ligand Docking in the Machine-Learning Era. Molecules 2022, 27, 4568. [CrossRef]
41. Liu, J.; Wang, R. Classification of current scoring functions. J. Chem. Inf. Model. 2015, 55, 475–482. [CrossRef]
42. Goodsell, D.S.; Morris, G.M.; Olson, A.J. Automated docking of flexible ligands: Applications of AutoDock. J. Mol. Recognit. 1996,

9, 1–5. [CrossRef]
43. Pu, C.; Yan, G.; Shi, J.; Li, R. Assessing the performance of docking scoring function, FEP, MM-GBSA, and QM/MM-GBSA

approaches on a series of PLK1 inhibitors. Medchemcomm 2017, 8, 1452–1458. [CrossRef] [PubMed]
44. Li, Y.; Su, M.; Liu, Z.; Li, J.; Liu, J.; Han, L.; Wang, R. Assessing protein-ligand interaction scoring functions with the CASF-2013

benchmark. Nat. Protoc. 2018, 13, 666–680. [CrossRef] [PubMed]
45. Huang, S.Y.; Zou, X. An iterative knowledge-based scoring function to predict protein-ligand interactions: II. Validation of the

scoring function. J. Comput. Chem. 2006, 27, 1876–1882. [CrossRef] [PubMed]
46. Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [CrossRef]
47. Schmidhuber, J. Deep learning in neural networks: An overview. Neural. Netw. 2015, 61, 85–117. [CrossRef] [PubMed]
48. Liaw, A.; Wiener, M. Classification and regression by randomForest. R. News. 2002, 2, 18–22.
49. Vieira, T.; Magalhaes, R.; Sousa, S. Tailoring specialized scoring functions for more efficient virtual screening. Frontiers 2019, 2,

1–4.
50. Shen, C.; Weng, G.; Zhang, X.; Leung, E.L.; Yao, X.; Pang, J.; Chai, X.; Li, D.; Wang, E.; Cao, D.; et al. Accuracy or novelty: What

can we gain from target-specific machine-learning-based scoring functions in virtual screening? Brief. Bioinform. 2021, 22, bbaa410.
[CrossRef]

51. Wallach, I.; Heifets, A. Most Ligand-Based Classification Benchmarks Reward Memorization Rather than Generalization. J. Chem.
Inf. Model 2018, 58, 916–932. [CrossRef]

52. Maia, E.H.B.; Assis, L.C.; de Oliveira, T.A.; da Silva, A.M.; Taranto, A.G. Structure-Based Virtual Screening: From Classical to
Artificial Intelligence. Front. Chem. 2020, 8, 343. [CrossRef]

http://doi.org/10.1021/acs.chemrev.8b00451
http://doi.org/10.1016/0263-7855(96)00018-5
http://doi.org/10.1038/s41586-021-03819-2
http://doi.org/10.1021/acs.jcim.1c01114
http://www.ncbi.nlm.nih.gov/pubmed/34586808
http://doi.org/10.1126/science.abj8754
http://www.ncbi.nlm.nih.gov/pubmed/34282049
http://doi.org/10.1038/nchembio.662
http://www.ncbi.nlm.nih.gov/pubmed/21926995
http://doi.org/10.1002/prot.25533
http://doi.org/10.15252/msb.202211081
http://doi.org/10.1155/2022/4629392
http://doi.org/10.3390/ijms20102383
http://doi.org/10.1002/prot.21082
http://doi.org/10.3390/ijms20184331
http://doi.org/10.1093/nar/gkl206
http://doi.org/10.1021/acs.jcim.8b00905
http://www.ncbi.nlm.nih.gov/pubmed/30946779
http://doi.org/10.15406/emij.2018.06.00212
http://doi.org/10.1007/BF00123666
http://www.ncbi.nlm.nih.gov/pubmed/7876901
http://doi.org/10.3390/ijms11083016
http://doi.org/10.1002/prot.340130304
http://doi.org/10.1002/(SICI)1096-987X(19981115)19:14&lt;1639::AID-JCC10&gt;3.0.CO;2-B
http://doi.org/10.1007/s10822-008-9216-5
http://doi.org/10.3390/molecules27144568
http://doi.org/10.1021/ci500731a
http://doi.org/10.1002/(SICI)1099-1352(199601)9:1&lt;1::AID-JMR241&gt;3.0.CO;2-6
http://doi.org/10.1039/C7MD00184C
http://www.ncbi.nlm.nih.gov/pubmed/30108856
http://doi.org/10.1038/nprot.2017.114
http://www.ncbi.nlm.nih.gov/pubmed/29517771
http://doi.org/10.1002/jcc.20505
http://www.ncbi.nlm.nih.gov/pubmed/16983671
http://doi.org/10.1007/BF00994018
http://doi.org/10.1016/j.neunet.2014.09.003
http://www.ncbi.nlm.nih.gov/pubmed/25462637
http://doi.org/10.1093/bib/bbaa410
http://doi.org/10.1021/acs.jcim.7b00403
http://doi.org/10.3389/fchem.2020.00343


Molecules 2023, 28, 175 25 of 29

53. Sledz, P.; Caflisch, A. Protein structure-based drug design: From docking to molecular dynamics. Curr. Opin. Struct. Biol. 2018,
48, 93–102. [CrossRef] [PubMed]

54. Li, H.; Lu, G.; Sze, K.H.; Su, X.; Chan, W.Y.; Leung, K.S. Machine-learning scoring functions trained on complexes dissimilar to the
test set already outperform classical counterparts on a blind benchmark. Brief. Bioinform. 2021, 22, bbab225. [CrossRef] [PubMed]

55. Ohue, M.; Aoyama, K.; Akiyama, Y. High-Performance Cloud Computing for Exhaustive Protein–Protein Docking. In Advances in
Parallel & Distributed Processing, and Applications; Springer: Berlin/Heidelberg, Germany, 2021; pp. 737–746.

56. Fernandez-Ballester, G.; Fernandez-Carvajal, A.; Gonzalez-Ros, J.M.; Ferrer-Montiel, A. Ionic channels as targets for drug design:
A review on computational methods. Pharmaceutics 2011, 3, 932–953. [CrossRef] [PubMed]

57. Oakes, V.; Domene, C. Combining Structural Data with Computational Methodologies to Investigate Structure-Function Relation-
ships in TRP Channels. Methods Mol. Biol. 2019, 1987, 65–82.

58. Cavasotto, C.N.; Abagyan, R.A. Protein flexibility in ligand docking and virtual screening to protein kinases. J. Mol. Biol. 2004,
337, 209–225. [CrossRef]

59. Cavasotto, C.N.; Orry, A.J.; Abagyan, R.A. The challenge of considering receptor flexibility in ligand docking and virtual screening.
Curr. Comput.-Aided. Drug. Des. 2005, 1, 423–440. [CrossRef]

60. Tian, S.; Sun, H.; Pan, P.; Li, D.; Zhen, X.; Li, Y.; Hou, T. Assessing an ensemble docking-based virtual screening strategy for kinase
targets by considering protein flexibility. J. Chem. Inf. Model 2014, 54, 2664–2679. [CrossRef]

61. Korb, O.; Olsson, T.S.; Bowden, S.J.; Hall, R.J.; Verdonk, M.L.; Liebeschuetz, J.W.; Cole, J.C. Potential and limitations of ensemble
docking. J. Chem. Inf. Model 2012, 52, 1262–1274. [CrossRef]

62. Amaro, R.E.; Baudry, J.; Chodera, J.; Demir, O.; McCammon, J.A.; Miao, Y.; Smith, J.C. Ensemble Docking in Drug Discovery.
Biophys. J. 2018, 114, 2271–2278. [CrossRef]

63. Du, X.; Li, Y.; Xia, Y.L.; Ai, S.M.; Liang, J.; Sang, P.; Ji, X.L.; Liu, S.Q. Insights into Protein-Ligand Interactions: Mechanisms,
Models, and Methods. Int. J. Mol. Sci. 2016, 17, 144. [CrossRef]

64. Wong, C.F. Flexible receptor docking for drug discovery. Expert. Opin. Drug. Discov. 2015, 10, 1189–1200. [CrossRef] [PubMed]
65. Mohammadi, S.; Narimani, Z.; Ashouri, M.; Firouzi, R.; Karimi-Jafari, M.H. Ensemble learning from ensemble docking: Revisiting

the optimum ensemble size problem. Sci. Rep. 2022, 12, 410. [CrossRef] [PubMed]
66. Bender, B.J.; Gahbauer, S.; Luttens, A.; Lyu, J.; Webb, C.M.; Stein, R.M.; Fink, E.A.; Balius, T.E.; Carlsson, J.; Irwin, J.J.; et al. A

practical guide to large-scale docking. Nat. Protoc. 2021, 16, 4799–4832. [CrossRef] [PubMed]
67. Stafford, K.A.; Anderson, B.M.; Sorenson, J.; van den Bedem, H. AtomNet PoseRanker: Enriching Ligand Pose Quality for

Dynamic Proteins in Virtual High-Throughput Screens. J. Chem. Inf. Model. 2022, 62, 1178–1189. [CrossRef] [PubMed]
68. Ghersi, D.; Sanchez, R. Beyond structural genomics: Computational approaches for the identification of ligand binding sites in

protein structures. J. Struct. Funct. Genom. 2011, 12, 109–117. [CrossRef]
69. Kufareva, I.; Ilatovskiy, A.V.; Abagyan, R. Pocketome: An encyclopedia of small-molecule binding sites in 4D. Nucleic Acids. Res.

2012, 40, D535–D540. [CrossRef]
70. Zhao, J.; Cao, Y.; Zhang, L. Exploring the computational methods for protein-ligand binding site prediction. Comput. Struct.

Biotechnol. J. 2020, 18, 417–426. [CrossRef]
71. Zhang, C.; Freddolino, P.L.; Zhang, Y. COFACTOR: Improved protein function prediction by combining structure, sequence and

protein-protein interaction information. Nucleic Acids Res. 2017, 45, W291–W299. [CrossRef]
72. Schmidtke, P.; Le Guilloux, V.; Maupetit, J.; Tuffery, P. fpocket: Online tools for protein ensemble pocket detection and tracking.

Nucleic Acids. Res. 2010, 38, W582–W589. [CrossRef]
73. Schmidtke, P.; Bidon-Chanal, A.; Luque, F.J.; Barril, X. MDpocket: Open-source cavity detection and characterization on molecular

dynamics trajectories. Bioinformatics 2011, 27, 3276–3285. [CrossRef]
74. Halgren, T.A. Identifying and characterizing binding sites and assessing druggability. J. Chem. Inf. Model 2009, 49, 377–389.

[CrossRef] [PubMed]
75. Liu, Y.; Grimm, M.; Dai, W.T.; Hou, M.C.; Xiao, Z.X.; Cao, Y. CB-Dock: A web server for cavity detection-guided protein-ligand

blind docking. Acta Pharm. Sin. 2020, 41, 138–144. [CrossRef] [PubMed]
76. Zhang, W.; Bell, E.W.; Yin, M.; Zhang, Y. EDock: Blind protein-ligand docking by replica-exchange monte carlo simulation. J.

Cheminform. 2020, 12, 37. [CrossRef] [PubMed]
77. Vajda, S.; Beglov, D.; Wakefield, A.E.; Egbert, M.; Whitty, A. Cryptic binding sites on proteins: Definition, detection, and

druggability. Curr. Opin. Chem. Biol. 2018, 44, 1–8. [CrossRef]
78. Lu, S.; Ji, M.; Ni, D.; Zhang, J. Discovery of hidden allosteric sites as novel targets for allosteric drug design. Drug. Discov. Today

2018, 23, 359–365. [CrossRef]
79. Cimermancic, P.; Weinkam, P.; Rettenmaier, T.J.; Bichmann, L.; Keedy, D.A.; Woldeyes, R.A.; Schneidman-Duhovny, D.; Demer-

dash, O.N.; Mitchell, J.C.; Wells, J.A.; et al. CryptoSite: Expanding the Druggable Proteome by Characterization and Prediction of
Cryptic Binding Sites. J. Mol. Biol. 2016, 428, 709–719. [CrossRef]

80. Zhavoronkov, A.; Ivanenkov, Y.A.; Aliper, A.; Veselov, M.S.; Aladinskiy, V.A.; Aladinskaya, A.V.; Terentiev, V.A.; Polykovskiy,
D.A.; Kuznetsov, M.D.; Asadulaev, A.; et al. Deep learning enables rapid identification of potent DDR1 kinase inhibitors. Nat.
Biotechnol. 2019, 37, 1038–1040. [CrossRef]

81. Sorokina, M.; Merseburger, P.; Rajan, K.; Yirik, M.A.; Steinbeck, C. COCONUT online: Collection of Open Natural Products
database. J. Cheminform. 2021, 13, 2. [CrossRef]

http://doi.org/10.1016/j.sbi.2017.10.010
http://www.ncbi.nlm.nih.gov/pubmed/29149726
http://doi.org/10.1093/bib/bbab225
http://www.ncbi.nlm.nih.gov/pubmed/34169324
http://doi.org/10.3390/pharmaceutics3040932
http://www.ncbi.nlm.nih.gov/pubmed/24309315
http://doi.org/10.1016/j.jmb.2004.01.003
http://doi.org/10.2174/157340905774330291
http://doi.org/10.1021/ci500414b
http://doi.org/10.1021/ci2005934
http://doi.org/10.1016/j.bpj.2018.02.038
http://doi.org/10.3390/ijms17020144
http://doi.org/10.1517/17460441.2015.1078308
http://www.ncbi.nlm.nih.gov/pubmed/26313123
http://doi.org/10.1038/s41598-021-04448-5
http://www.ncbi.nlm.nih.gov/pubmed/35013496
http://doi.org/10.1038/s41596-021-00597-z
http://www.ncbi.nlm.nih.gov/pubmed/34561691
http://doi.org/10.1021/acs.jcim.1c01250
http://www.ncbi.nlm.nih.gov/pubmed/35235748
http://doi.org/10.1007/s10969-011-9110-6
http://doi.org/10.1093/nar/gkr825
http://doi.org/10.1016/j.csbj.2020.02.008
http://doi.org/10.1093/nar/gkx366
http://doi.org/10.1093/nar/gkq383
http://doi.org/10.1093/bioinformatics/btr550
http://doi.org/10.1021/ci800324m
http://www.ncbi.nlm.nih.gov/pubmed/19434839
http://doi.org/10.1038/s41401-019-0228-6
http://www.ncbi.nlm.nih.gov/pubmed/31263275
http://doi.org/10.1186/s13321-020-00440-9
http://www.ncbi.nlm.nih.gov/pubmed/33430966
http://doi.org/10.1016/j.cbpa.2018.05.003
http://doi.org/10.1016/j.drudis.2017.10.001
http://doi.org/10.1016/j.jmb.2016.01.029
http://doi.org/10.1038/s41587-019-0224-x
http://doi.org/10.1186/s13321-020-00478-9


Molecules 2023, 28, 175 26 of 29

82. Sterling, T.; Irwin, J.J. ZINC 15—Ligand Discovery for Everyone. J. Chem. Inf. Model. 2015, 55, 2324–2337. [CrossRef]
83. Gaulton, A.; Hersey, A.; Nowotka, M.; Bento, A.P.; Chambers, J.; Mendez, D.; Mutowo, P.; Atkinson, F.; Bellis, L.J.; Cibrian-Uhalte,

E.; et al. The ChEMBL database in 2017. Nucleic Acids Res. 2017, 45, D945–D954. [CrossRef]
84. Wishart, D.S.; Feunang, Y.D.; Guo, A.C.; Lo, E.J.; Marcu, A.; Grant, J.R.; Sajed, T.; Johnson, D.; Li, C.; Sayeeda, Z.; et al. DrugBank

5.0: A major update to the DrugBank database for 2018. Nucleic Acids Res. 2018, 46, D1074–D1082. [CrossRef] [PubMed]
85. Wishart, D.S.; Guo, A.; Oler, E.; Wang, F.; Anjum, A.; Peters, H.; Dizon, R.; Sayeeda, Z.; Tian, S.; Lee, B.L.; et al. HMDB 5.0: The

Human Metabolome Database for 2022. Nucleic Acids Res. 2022, 50, D622–D631. [CrossRef] [PubMed]
86. Frye, L.; Bhat, S.; Akinsanya, K.; Abel, R. From computer-aided drug discovery to computer-driven drug discovery. Drug. Discov.

Today Technol. 2021, 39, 111–117. [CrossRef] [PubMed]
87. Pagadala, N.S.; Syed, K.; Tuszynski, J. Software for molecular docking: A review. Biophys. Rev. 2017, 9, 91–102. [CrossRef]

[PubMed]
88. Miranda, W.E.; Ngo, V.A.; Perissinotti, L.L.; Noskov, S.Y. Computational membrane biophysics: From ion channel interactions

with drugs to cellular function. Biochim. Biophys. Acta Proteins Proteom. 2017, 1865, 1643–1653. [CrossRef] [PubMed]
89. Nikolaeva Koleva, M.; Fernandez-Ballester, G. In Silico Approaches for TRP Channel Modulation. Methods Mol. Biol. 2019, 1987,

187–206. [PubMed]
90. Wang, G.; Zhu, W. Molecular docking for drug discovery and development: A widely used approach but far from perfect. Future

Med. Chem. 2016, 8, 1707–1710. [CrossRef]
91. Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4:

Automated docking with selective receptor flexibility. J. Comput. Chem. 2009, 30, 2785–2791. [CrossRef]
92. Allen, W.J.; Balius, T.E.; Mukherjee, S.; Brozell, S.R.; Moustakas, D.T.; Lang, P.T.; Case, D.A.; Kuntz, I.D.; Rizzo, R.C. DOCK 6:

Impact of new features and current docking performance. J. Comput. Chem. 2015, 36, 1132–1156. [CrossRef]
93. Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient

optimization, and multithreading. J. Comput. Chem. 2010, 31, 455–461. [CrossRef]
94. Korb, O.; Stützle, T.; Exner, T.E. PLANTS: Application of ant colony optimization to structure-based drug design. In International

Workshop on Ant Colony Optimization and Swarm Intelligence, 2006; Springer: Berlin/Heidelberg, Germany, 2006; pp. 247–258.
95. Korb, O.; Stutzle, T.; Exner, T.E. Empirical scoring functions for advanced protein-ligand docking with PLANTS. J. Chem. Inf.

Model. 2009, 49, 84–96. [CrossRef] [PubMed]
96. Ruiz-Carmona, S.; Alvarez-Garcia, D.; Foloppe, N.; Garmendia-Doval, A.B.; Juhos, S.; Schmidtke, P.; Barril, X.; Hubbard, R.E.;

Morley, S.D. rDock: A fast, versatile and open source program for docking ligands to proteins and nucleic acids. PLoS. Comput.
Biol. 2014, 10, e1003571. [CrossRef] [PubMed]

97. Vistoli, G.; Pedretti, A.; Mazzolari, A.; Testa, B. In silico prediction of human carboxylesterase-1 (hCES1) metabolism combining
docking analyses and MD simulations. Bioorg. Med. Chem. 2010, 18, 320–329. [CrossRef] [PubMed]

98. Vistoli, G.; Mazzolari, A.; Testa, B.; Pedretti, A. Binding Space Concept: A New Approach to Enhance the Reliability of Docking
Scores and Its Application to Predicting Butyrylcholinesterase Hydrolytic Activity. J. Chem. Inf. Model 2017, 57, 1691–1702.
[CrossRef] [PubMed]

99. Jurrus, E.; Engel, D.; Star, K.; Monson, K.; Brandi, J.; Felberg, L.E.; Brookes, D.H.; Wilson, L.; Chen, J.; Liles, K.; et al. Improvements
to the APBS biomolecular solvation software suite. Protein Sci. 2018, 27, 112–128. [CrossRef]

100. Wang, R.; Lai, L.; Wang, S. Further development and validation of empirical scoring functions for structure-based binding affinity
prediction. J. Comput. Aided. Mol. Des. 2002, 16, 11–26. [CrossRef]

101. Obiol-Pardo, C.; Rubio-Martinez, J. Comparative evaluation of MMPBSA and XSCORE to compute binding free energy in
XIAP-peptide complexes. J. Chem. Inf. Model 2007, 47, 134–142. [CrossRef]

102. Neudert, G.; Klebe, G. DSX: A knowledge-based scoring function for the assessment of protein-ligand complexes. J. Chem. Inf.
Model 2011, 51, 2731–2745. [CrossRef]

103. Tran-Nguyen, V.K.; Bret, G.; Rognan, D. True Accuracy of Fast Scoring Functions to Predict High-Throughput Screening Data
from Docking Poses: The Simpler the Better. J. Chem. Inf. Model 2021, 61, 2788–2797. [CrossRef]

104. Singh, N.; Chaput, L.; Villoutreix, B.O. Virtual screening web servers: Designing chemical probes and drug candidates in the
cyberspace. Brief. Bioinform. 2021, 22, 1790–1818. [CrossRef]

105. Glaser, J.; Vermaas, J.V.; Rogers, D.M.; Larkin, J.; LeGrand, S.; Boehm, S.; Baker, M.B.; Scheinberg, A.; Tillack, A.F.; Thavappira-
gasam, M. High-throughput virtual laboratory for drug discovery using massive datasets. Int. J. High. Perform. Comput. Appl.
2021, 35, 452–468. [CrossRef]

106. Talarico, C.; Gervasoni, S.; Manelfi, C.; Pedretti, A.; Vistoli, G.; Beccari, A.R. Combining Molecular Dynamics and Docking
Simulations to Develop Targeted Protocols for Performing Optimized Virtual Screening Campaigns on the hTRPM8 Channel. Int.
J. Mol. Sci. 2020, 21, 2265. [CrossRef] [PubMed]

107. Mobley, D.L.; Klimovich, P.V. Perspective: Alchemical free energy calculations for drug discovery. J. Chem. Phys. 2012, 137, 230901.
[CrossRef] [PubMed]

108. Steinbrecher, T.; Labahn, A. Towards accurate free energy calculations in ligand protein-binding studies. Curr. Med. Chem. 2010,
17, 767–785. [CrossRef] [PubMed]

109. Marcou, G.; Rognan, D. Optimizing fragment and scaffold docking by use of molecular interaction fingerprints. J. Chem. Inf.
Model. 2007, 47, 195–207. [CrossRef]

http://doi.org/10.1021/acs.jcim.5b00559
http://doi.org/10.1093/nar/gkw1074
http://doi.org/10.1093/nar/gkx1037
http://www.ncbi.nlm.nih.gov/pubmed/29126136
http://doi.org/10.1093/nar/gkab1062
http://www.ncbi.nlm.nih.gov/pubmed/34986597
http://doi.org/10.1016/j.ddtec.2021.08.001
http://www.ncbi.nlm.nih.gov/pubmed/34906321
http://doi.org/10.1007/s12551-016-0247-1
http://www.ncbi.nlm.nih.gov/pubmed/28510083
http://doi.org/10.1016/j.bbapap.2017.08.008
http://www.ncbi.nlm.nih.gov/pubmed/28847523
http://www.ncbi.nlm.nih.gov/pubmed/31028681
http://doi.org/10.4155/fmc-2016-0143
http://doi.org/10.1002/jcc.21256
http://doi.org/10.1002/jcc.23905
http://doi.org/10.1002/jcc.21334
http://doi.org/10.1021/ci800298z
http://www.ncbi.nlm.nih.gov/pubmed/19125657
http://doi.org/10.1371/journal.pcbi.1003571
http://www.ncbi.nlm.nih.gov/pubmed/24722481
http://doi.org/10.1016/j.bmc.2009.10.052
http://www.ncbi.nlm.nih.gov/pubmed/19932971
http://doi.org/10.1021/acs.jcim.7b00121
http://www.ncbi.nlm.nih.gov/pubmed/28633528
http://doi.org/10.1002/pro.3280
http://doi.org/10.1023/A:1016357811882
http://doi.org/10.1021/ci600412z
http://doi.org/10.1021/ci200274q
http://doi.org/10.1021/acs.jcim.1c00292
http://doi.org/10.1093/bib/bbaa034
http://doi.org/10.1177/10943420211001565
http://doi.org/10.3390/ijms21072265
http://www.ncbi.nlm.nih.gov/pubmed/32218173
http://doi.org/10.1063/1.4769292
http://www.ncbi.nlm.nih.gov/pubmed/23267463
http://doi.org/10.2174/092986710790514453
http://www.ncbi.nlm.nih.gov/pubmed/20088755
http://doi.org/10.1021/ci600342e


Molecules 2023, 28, 175 27 of 29

110. Mazzolari, A.; Gervasoni, S.; Pedretti, A.; Fumagalli, L.; Matucci, R.; Vistoli, G. Repositioning Dequalinium as Potent Muscarinic
Allosteric Ligand by Combining Virtual Screening Campaigns and Experimental Binding Assays. Int. J. Mol. Sci. 2020, 21, 5961.
[CrossRef]

111. Pedretti, A.; Mazzolari, A.; Gervasoni, S.; Vistoli, G. Rescoring and Linearly Combining: A Highly Effective Consensus Strategy
for Virtual Screening Campaigns. Int. J. Mol. Sci. 2019, 20, 2060. [CrossRef]

112. Palacio-Rodriguez, K.; Lans, I.; Cavasotto, C.N.; Cossio, P. Exponential consensus ranking improves the outcome in docking and
receptor ensemble docking. Sci. Rep. 2019, 9, 5142. [CrossRef]

113. Chilingaryan, G.; Abelyan, N.; Sargsyan, A.; Nazaryan, K.; Serobian, A.; Zakaryan, H. Combination of consensus and ensemble
docking strategies for the discovery of human dihydroorotate dehydrogenase inhibitors. Sci. Rep. 2021, 11, 11417. [CrossRef]

114. Wang, Z.; Sun, H.; Yao, X.; Li, D.; Xu, L.; Li, Y.; Tian, S.; Hou, T. Comprehensive evaluation of ten docking programs on a diverse
set of protein-ligand complexes: The prediction accuracy of sampling power and scoring power. Phys. Chem. Chem. Phys. 2016,
18, 12964–12975. [CrossRef]

115. Xu, W.; Lucke, A.J.; Fairlie, D.P. Comparing sixteen scoring functions for predicting biological activities of ligands for protein
targets. J. Mol. Graph. Model. 2015, 57, 76–88. [CrossRef]

116. Huang, S.Y. Exploring the potential of global protein-protein docking: An overview and critical assessment of current programs
for automatic ab initio docking. Drug Discov. Today 2015, 20, 969–977. [CrossRef] [PubMed]

117. Wang, R.; Wang, S. How does consensus scoring work for virtual library screening? An idealized computer experiment. J. Chem.
Inf. Comput. Sci. 2001, 41, 1422–1426. [CrossRef] [PubMed]

118. Clark, R.D.; Strizhev, A.; Leonard, J.M.; Blake, J.F.; Matthew, J.B. Consensus scoring for ligand/protein interactions. J. Mol. Graph.
Model. 2002, 20, 281–295. [CrossRef] [PubMed]

119. Ericksen, S.S.; Wu, H.; Zhang, H.; Michael, L.A.; Newton, M.A.; Hoffmann, F.M.; Wildman, S.A. Machine Learning Consensus
Scoring Improves Performance Across Targets in Structure-Based Virtual Screening. J. Chem. Inf. Model 2017, 57, 1579–1590.
[CrossRef] [PubMed]

120. Llanos, M.A.; Enrique, N.; Sbaraglini, M.L.; Garofalo, F.M.; Talevi, A.; Gavernet, L.; Martin, P. Structure-Based Virtual Screening
Identifies Novobiocin, Montelukast, and Cinnarizine as TRPV1 Modulators with Anticonvulsant Activity In Vivo. J. Chem. Inf.
Model 2022, 62, 3008–3022. [CrossRef] [PubMed]

121. McGann, M.; Nicholls, A.; Enyedy, I. The statistics of virtual screening and lead optimization. J. Comput. Aided Mol. Des. 2015, 29,
923–926. [CrossRef]

122. Manelfi, C.; Gossen, J.; Gervasoni, S.; Talarico, C.; Albani, S.; Philipp, B.J.; Musiani, F.; Vistoli, G.; Rossetti, G.; Beccari, A.R.; et al.
Combining Different Docking Engines and Consensus Strategies to Design and Validate Optimized Virtual Screening Protocols
for the SARS-CoV-2 3CL Protease. Molecules 2021, 26, 797. [CrossRef]

123. Feher, M. Consensus scoring for protein-ligand interactions. Drug Discov. Today 2006, 11, 421–428. [CrossRef]
124. Houston, D.R.; Walkinshaw, M.D. Consensus docking: Improving the reliability of docking in a virtual screening context. J. Chem.

Inf. Model 2013, 53, 384–390. [CrossRef]
125. Kukol, A. Consensus virtual screening approaches to predict protein ligands. Eur. J. Med. Chem. 2011, 46, 4661–4664. [CrossRef]

[PubMed]
126. Ren, X.; Shi, Y.S.; Zhang, Y.; Liu, B.; Zhang, L.H.; Peng, Y.B.; Zeng, R. Novel Consensus Docking Strategy to Improve Ligand Pose

Prediction. J. Chem. Inf. Model 2018, 58, 1662–1668. [CrossRef] [PubMed]
127. Oda, A.; Tsuchida, K.; Takakura, T.; Yamaotsu, N.; Hirono, S. Comparison of consensus scoring strategies for evaluating

computational models of protein-ligand complexes. J. Chem. Inf. Model 2006, 46, 380–391. [CrossRef] [PubMed]
128. Liu, S.; Fu, R.; Zhou, L.H.; Chen, S.P. Application of consensus scoring and principal component analysis for virtual screening

against beta-secretase (BACE-1). PLoS ONE 2012, 7, e38086.
129. Reau, M.; Langenfeld, F.; Zagury, J.F.; Lagarde, N.; Montes, M. Decoys Selection in Benchmarking Datasets: Overview and

Perspectives. Front. Pharm. 2018, 9, 11. [CrossRef] [PubMed]
130. Good, A.C.; Oprea, T.I. Optimization of CAMD techniques 3. Virtual screening enrichment studies: A help or hindrance in tool

selection? J. Comput. Aided Mol. Des. 2008, 22, 169–178. [CrossRef]
131. Stumpfe, D.; Bajorath, J. Applied virtual screening: Strategies, recommendations, and caveats. In Virtual Screening: Principles,

Challenges, and Practical Guidelines; Wiley Online Library: Hoboken, NJ, USA, 2011; pp. 291–318.
132. Bauer, M.R.; Ibrahim, T.M.; Vogel, S.M.; Boeckler, F.M. Evaluation and optimization of virtual screening workflows with DEKOIS

2.0–a public library of challenging docking benchmark sets. J. Chem. Inf. Model 2013, 53, 1447–1462. [CrossRef]
133. Mysinger, M.M.; Carchia, M.; Irwin, J.J.; Shoichet, B.K. Directory of useful decoys, enhanced (DUD-E): Better ligands and decoys

for better benchmarking. J. Med. Chem. 2012, 55, 6582–6594. [CrossRef]
134. Rohrer, S.G.; Baumann, K. Maximum unbiased validation (MUV) data sets for virtual screening based on PubChem bioactivity

data. J. Chem. Inf. Model 2009, 49, 169–184. [CrossRef]
135. Imrie, F.; Bradley, A.R.; Deane, C.M. Generating Property-Matched Decoy Molecules Using Deep Learning. Bioinformatics 2021,

37, 2134–2141. [CrossRef]
136. Zhang, X.; Shen, C.; Liao, B.; Jiang, D.; Wang, J.; Wu, Z.; Du, H.; Wang, T.; Huo, W.; Xu, L.; et al. TocoDecoy: A New Approach

to Design Unbiased Datasets for Training and Benchmarking Machine-Learning Scoring Functions. J. Med. Chem. 2022, 65,
7918–7932. [CrossRef] [PubMed]

http://doi.org/10.3390/ijms21175961
http://doi.org/10.3390/ijms20092060
http://doi.org/10.1038/s41598-019-41594-3
http://doi.org/10.1038/s41598-021-91069-7
http://doi.org/10.1039/C6CP01555G
http://doi.org/10.1016/j.jmgm.2015.01.009
http://doi.org/10.1016/j.drudis.2015.03.007
http://www.ncbi.nlm.nih.gov/pubmed/25801181
http://doi.org/10.1021/ci010025x
http://www.ncbi.nlm.nih.gov/pubmed/11604043
http://doi.org/10.1016/S1093-3263(01)00125-5
http://www.ncbi.nlm.nih.gov/pubmed/11858637
http://doi.org/10.1021/acs.jcim.7b00153
http://www.ncbi.nlm.nih.gov/pubmed/28654262
http://doi.org/10.1021/acs.jcim.2c00312
http://www.ncbi.nlm.nih.gov/pubmed/35696534
http://doi.org/10.1007/s10822-015-9861-4
http://doi.org/10.3390/molecules26040797
http://doi.org/10.1016/j.drudis.2006.03.009
http://doi.org/10.1021/ci300399w
http://doi.org/10.1016/j.ejmech.2011.05.026
http://www.ncbi.nlm.nih.gov/pubmed/21640444
http://doi.org/10.1021/acs.jcim.8b00329
http://www.ncbi.nlm.nih.gov/pubmed/30044626
http://doi.org/10.1021/ci050283k
http://www.ncbi.nlm.nih.gov/pubmed/16426072
http://doi.org/10.3389/fphar.2018.00011
http://www.ncbi.nlm.nih.gov/pubmed/29416509
http://doi.org/10.1007/s10822-007-9167-2
http://doi.org/10.1021/ci400115b
http://doi.org/10.1021/jm300687e
http://doi.org/10.1021/ci8002649
http://doi.org/10.1093/bioinformatics/btab080
http://doi.org/10.1021/acs.jmedchem.2c00460
http://www.ncbi.nlm.nih.gov/pubmed/35642777


Molecules 2023, 28, 175 28 of 29

137. Stein, R.M.; Yang, Y.; Balius, T.E.; O'Meara, M.J.; Lyu, J.; Young, J.; Tang, K.; Shoichet, B.K.; Irwin, J.J. Property-Unmatched Decoys
in Docking Benchmarks. J. Chem. Inf. Model 2021, 61, 699–714. [CrossRef] [PubMed]

138. Sheridan, R.P.; Singh, S.B.; Fluder, E.M.; Kearsley, S.K. Protocols for bridging the peptide to nonpeptide gap in topological
similarity searches. J. Chem. Inf. Comput. Sci. 2001, 41, 1395–1406. [CrossRef] [PubMed]

139. Truchon, J.F.; Bayly, C.I. Evaluating virtual screening methods: Good and bad metrics for the “early recognition” problem. J.
Chem. Inf. Model 2007, 47, 488–508. [CrossRef]

140. Di Stefano, M.; Galati, S.; Ortore, G.; Caligiuri, I.; Rizzolio, F.; Ceni, C.; Bertini, S.; Bononi, G.; Granchi, C.; Macchia, M.; et al.
Machine Learning-Based Virtual Screening for the Identification of Cdk5 Inhibitors. Int. J. Mol. Sci. 2022, 23, 10653. [CrossRef]

141. Gimeno, A.; Mestres-Truyol, J.; Ojeda-Montes, M.J.; Macip, G.; Saldivar-Espinoza, B.; Cereto-Massague, A.; Pujadas, G.; Garcia-
Vallve, S. Prediction of Novel Inhibitors of the Main Protease (M-pro) of SARS-CoV-2 through Consensus Docking and Drug
Reposition. Int. J. Mol. Sci. 2020, 21, 3793. [CrossRef]

142. Ochoa, R.; Palacio-Rodriguez, K.; Clemente, C.M.; Adler, N.S. dockECR: Open consensus docking and ranking protocol for
virtual screening of small molecules. J. Mol. Graph. Model 2021, 109, 108023. [CrossRef]

143. Preto, J.; Gentile, F. Assessing and improving the performance of consensus docking strategies using the DockBox package. J.
Comput. Aided Mol. Des. 2019, 33, 817–829. [CrossRef]

144. Tuccinardi, T.; Poli, G.; Romboli, V.; Giordano, A.; Martinelli, A. Extensive consensus docking evaluation for ligand pose
prediction and virtual screening studies. J. Chem. Inf. Model 2014, 54, 2980–2986. [CrossRef]

145. Liu, B.; Qiu, W.; Jiang, L.; Gong, Z. Software pipelining for graphic processing unit acceleration: Partition, scheduling and
granularity. Int. J. High. Perform. Comput. Appl. 2016, 30, 169–185. [CrossRef]

146. Korb, O.; Finn, P.W.; Jones, G. The cloud and other new computational methods to improve molecular modelling. Expert. Opin.
Drug Discov. 2014, 9, 1121–1131. [CrossRef] [PubMed]

147. Ebejer, J.P.; Fulle, S.; Morris, G.M.; Finn, P.W. The emerging role of cloud computing in molecular modelling. J. Mol. Graph. Model
2013, 44, 177–187. [CrossRef] [PubMed]

148. Santos-Martins, D.; Solis-Vasquez, L.; Tillack, A.F.; Sanner, M.F.; Koch, A.; Forli, S. Accelerating AutoDock4 with GPUs and
gradient-based local search. J. Chem. Theory Comput. 2021, 17, 1060–1073. [CrossRef] [PubMed]

149. Zhang, B.; Li, H.; Yu, K.; Jin, Z. Molecular docking-based computational platform for high-throughput virtual screening. CCF
Trans. High Perform. Comput. 2022, 4, 63–74. [CrossRef]

150. Liao, M.; Cao, E.; Julius, D.; Cheng, Y. Structure of the TRPV1 ion channel determined by electron cryo-microscopy. Nature 2013,
504, 107–112. [CrossRef]

151. Gao, Y.; Cao, E.; Julius, D.; Cheng, Y. TRPV1 structures in nanodiscs reveal mechanisms of ligand and lipid action. Nature 2016,
534, 347–351. [CrossRef]

152. Tominaga, M.; Tominaga, T. Structure and function of TRPV1. Pflug. Arch. 2005, 451, 143–150. [CrossRef]
153. Arora, V.; Campbell, J.N.; Chung, M.K. Fight fire with fire: Neurobiology of capsaicin-induced analgesia for chronic pain.

Pharmacol. Ther. 2021, 220, 107743. [CrossRef]
154. Fernandez-Carvajal, A.; Fernandez-Ballester, G.; Ferrer-Montiel, A. TRPV1 in chronic pruritus and pain: Soft modulation as a

therapeutic strategy. Front. Mol. Neurosci. 2022, 15, 930964. [CrossRef]
155. Wong, G.Y.; Gavva, N.R. Therapeutic potential of vanilloid receptor TRPV1 agonists and antagonists as analgesics: Recent

advances and setbacks. Brain Res. Rev. 2009, 60, 267–277. [CrossRef]
156. Trevisani, M.; Gatti, R. TRPV1 antagonists as analgesic agents. Open Pain J. 2013, 6, 108–118. [CrossRef]
157. Jardin, I.; Lopez, J.J.; Diez, R.; Sanchez-Collado, J.; Cantonero, C.; Albarran, L.; Woodard, G.E.; Redondo, P.C.; Salido, G.M.; Smani,

T.; et al. TRPs in Pain Sensation. Front. Physiol. 2017, 8, 392. [CrossRef] [PubMed]
158. Fernandez-Carvajal, A.; Gonzalez-Muniz, R.; Fernandez-Ballester, G.; Ferrer-Montiel, A. Investigational drugs in early phase

clinical trials targeting thermotransient receptor potential (thermoTRP) channels. Expert. Opin. Investig. Drugs. 2020, 29,
1209–1222. [CrossRef] [PubMed]

159. Nadezhdin, K.D.; Neuberger, A.; Nikolaev, Y.A.; Murphy, L.A.; Gracheva, E.O.; Bagriantsev, S.N.; Sobolevsky, A.I. Extracellular
cap domain is an essential component of the TRPV1 gating mechanism. Nat. Commun. 2021, 12, 2154. [CrossRef] [PubMed]

160. Cao, E.; Liao, M.; Cheng, Y.; Julius, D. TRPV1 structures in distinct conformations reveal activation mechanisms. Nature 2013, 504,
113–118. [CrossRef] [PubMed]

161. van Goor, M.K.; de Jager, L.; Cheng, Y.; van der Wijst, J. High-resolution structures of transient receptor potential vanilloid
channels: Unveiling a functionally diverse group of ion channels. Protein Sci. 2020, 29, 1569–1580. [CrossRef] [PubMed]

162. Elokely, K.M.; Doerksen, R.J. Docking challenge: Protein sampling and molecular docking performance. J. Chem. Inf. Model 2013,
53, 1934–1945. [CrossRef]

163. Chen, Y.-C. Beware of docking! Trends Pharmacol. Sci. 2015, 36, 78–95. [CrossRef]
164. Rueda, M.; Bottegoni, G.; Abagyan, R. Recipes for the selection of experimental protein conformations for virtual screening. J.

Chem. Inf. Model 2010, 50, 186–193. [CrossRef]
165. Kovacs, J.A.; Cavasotto, C.N.; Abagyan, R. Conformational sampling of protein flexibility in generalized coordinates: Application

to ligand docking. J. Comput. Theor. Nanosci. 2005, 2, 354–361. [CrossRef]
166. McCammon, J.A. Target flexibility in molecular recognition. Biochim. Biophys Acta 2005, 1754, 221–224. [CrossRef] [PubMed]

http://doi.org/10.1021/acs.jcim.0c00598
http://www.ncbi.nlm.nih.gov/pubmed/33494610
http://doi.org/10.1021/ci0100144
http://www.ncbi.nlm.nih.gov/pubmed/11604041
http://doi.org/10.1021/ci600426e
http://doi.org/10.3390/ijms231810653
http://doi.org/10.3390/ijms21113793
http://doi.org/10.1016/j.jmgm.2021.108023
http://doi.org/10.1007/s10822-019-00227-7
http://doi.org/10.1021/ci500424n
http://doi.org/10.1177/1094342015585845
http://doi.org/10.1517/17460441.2014.941800
http://www.ncbi.nlm.nih.gov/pubmed/25146114
http://doi.org/10.1016/j.jmgm.2013.06.002
http://www.ncbi.nlm.nih.gov/pubmed/23835611
http://doi.org/10.1021/acs.jctc.0c01006
http://www.ncbi.nlm.nih.gov/pubmed/33403848
http://doi.org/10.1007/s42514-021-00086-5
http://doi.org/10.1038/nature12822
http://doi.org/10.1038/nature17964
http://doi.org/10.1007/s00424-005-1457-8
http://doi.org/10.1016/j.pharmthera.2020.107743
http://doi.org/10.3389/fnmol.2022.930964
http://doi.org/10.1016/j.brainresrev.2008.12.006
http://doi.org/10.2174/1876386301306010108
http://doi.org/10.3389/fphys.2017.00392
http://www.ncbi.nlm.nih.gov/pubmed/28649203
http://doi.org/10.1080/13543784.2020.1825680
http://www.ncbi.nlm.nih.gov/pubmed/32941080
http://doi.org/10.1038/s41467-021-22507-3
http://www.ncbi.nlm.nih.gov/pubmed/33846324
http://doi.org/10.1038/nature12823
http://www.ncbi.nlm.nih.gov/pubmed/24305161
http://doi.org/10.1002/pro.3861
http://www.ncbi.nlm.nih.gov/pubmed/32232875
http://doi.org/10.1021/ci400040d
http://doi.org/10.1016/j.tips.2014.12.001
http://doi.org/10.1021/ci9003943
http://doi.org/10.1166/jctn.2005.204
http://doi.org/10.1016/j.bbapap.2005.07.041
http://www.ncbi.nlm.nih.gov/pubmed/16181817


Molecules 2023, 28, 175 29 of 29

167. Leong, M.K.; Syu, R.-G.; Ding, Y.-L.; Weng, C.-F. Prediction of N-methyl-D-aspartate receptor GluN1-ligand binding affinity by a
novel SVM-pose/SVM-score combinatorial ensemble docking scheme. Sci. Rep. 2017, 7, 40053. [CrossRef] [PubMed]

168. Acharya, A.; Agarwal, R.; Baker, M.B.; Baudry, J.; Bhowmik, D.; Boehm, S.; Byler, K.G.; Chen, S.Y.; Coates, L.; Cooper, C.J.; et al.
Supercomputer-Based Ensemble Docking Drug Discovery Pipeline with Application to COVID-19. J. Chem. Inf. Model 2020, 60,
5832–5852. [CrossRef] [PubMed]

169. Vogel, S.M.; Bauer, M.R.; Boeckler, F.M. DEKOIS: Demanding evaluation kits for objective in silico screening—A versatile tool for
benchmarking docking programs and scoring functions. J. Chem. Inf. Model 2011, 51, 2650–2665. [CrossRef] [PubMed]

170. Li, Y.; Han, L.; Liu, Z.; Wang, R. Comparative assessment of scoring functions on an updated benchmark: 2. Evaluation methods
and general results. J. Chem. Inf. Model 2014, 54, 1717–1736. [CrossRef] [PubMed]

171. Li, Y.; Liu, Z.; Li, J.; Han, L.; Liu, J.; Zhao, Z.; Wang, R. Comparative assessment of scoring functions on an updated benchmark: 1.
Compilation of the test set. J. Chem. Inf. Model 2014, 54, 1700–1716. [CrossRef] [PubMed]

172. Zev, S.; Raz, K.; Schwartz, R.; Tarabeh, R.; Gupta, P.K.; Major, D.T. Benchmarking the Ability of Common Docking Programs to
Correctly Reproduce and Score Binding Modes in SARS-CoV-2 Protease Mpro. J. Chem. Inf. Model 2021, 61, 2957–2966. [CrossRef]

173. Weng, G.; Gao, J.; Wang, Z.; Wang, E.; Hu, X.; Yao, X.; Cao, D.; Hou, T. Comprehensive Evaluation of Fourteen Docking Programs
on Protein-Peptide Complexes. J. Chem. Theory Comput. 2020, 16, 3959–3969. [CrossRef] [PubMed]

174. Gioia, D.; Bertazzo, M.; Recanatini, M.; Masetti, M.; Cavalli, A. Dynamic Docking: A Paradigm Shift in Computational Drug
Discovery. Molecules 2017, 22, 2029. [CrossRef]

175. Spitaleri, A.; Decherchi, S.; Cavalli, A.; Rocchia, W. Fast Dynamic Docking Guided by Adaptive Electrostatic Bias: The MD-Binding
Approach. J. Chem. Theory. Comput. 2018, 14, 1727–1736. [CrossRef]

176. Arute, F.; Arya, K.; Babbush, R.; Bacon, D.; Bardin, J.C.; Barends, R.; Biswas, R.; Boixo, S.; Brandao, F.; Buell, D.A.; et al. Quantum
supremacy using a programmable superconducting processor. Nature 2019, 574, 505–510. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1038/srep40053
http://www.ncbi.nlm.nih.gov/pubmed/28059133
http://doi.org/10.1021/acs.jcim.0c01010
http://www.ncbi.nlm.nih.gov/pubmed/33326239
http://doi.org/10.1021/ci2001549
http://www.ncbi.nlm.nih.gov/pubmed/21774552
http://doi.org/10.1021/ci500081m
http://www.ncbi.nlm.nih.gov/pubmed/24708446
http://doi.org/10.1021/ci500080q
http://www.ncbi.nlm.nih.gov/pubmed/24716849
http://doi.org/10.1021/acs.jcim.1c00263
http://doi.org/10.1021/acs.jctc.9b01208
http://www.ncbi.nlm.nih.gov/pubmed/32324992
http://doi.org/10.3390/molecules22112029
http://doi.org/10.1021/acs.jctc.7b01088
http://doi.org/10.1038/s41586-019-1666-5
http://www.ncbi.nlm.nih.gov/pubmed/31645734

	Introduction 
	Structural Data Determination 
	Computational Approaches Based on Structural Data: Protein Docking 
	Search Algorithms 
	Scoring Functions 

	Computational Approaches Based on Structural Data: Virtual Screening (VS) 
	Consensus Models of Docking 
	Consensus Methods 
	Datasets 
	Metric Validation 

	Computational Power 
	The Vanilloid Receptor TRPV1: A Case Study 
	Outlook 
	References

