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Abstract: Allosteric modulation of G protein-coupled receptors (GPCRs) is nowadays a hot topic
in medicinal chemistry. Allosteric modulators, i.e., compounds which bind in a receptor site topo-
logically distinct from orthosteric sites, exhibit a number of advantages. They are more selective,
safer and display a ceiling effect which prevents overdosing. Allosteric modulators of dopamine
D2 receptor are potential drugs against a number of psychiatric and neurological diseases, such as
schizophrenia and Parkinson’s disease. In this review, an insightful summary of current research
on D2 receptor modulators is presented, ranging from their pharmacology and structural aspects of
ligand-receptor interactions to their synthesis.
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1. Introduction

G protein-coupled receptors (GPCRs) are among the most important drug targets; about
60% of drugs under development and 36% of drugs on the market target GPCRs [1,2]. Among
the 19 marketed drugs with the highest sales revenues at their peak year, seven target
GPCRs and, in particular, three of them are antipsychotics [3,4]. In 2017 six out of twenty
medicines with the highest global sales were GPCR-targeting drugs (clopidogrel, mon-
telukast, valsartan and three antipsychotics: aripiprazole, olanzapine and quetiapinie) [5].
Furthermore, GPCRs are currently the most intensively investigated drug targets in the
pharmaceutical industry as they are targeted by about 50% of recently launched drugs [6].
In spite of current narrowing of the pharmaceutical pipeline, the GPCR field remains active,
which can be exemplified by FDA approval of two novel antipsychotics only in the year
2015, i.e., brexpiprazole and cariprazine [7] which are dopamine D2 receptor partial ago-
nists falling into the same category as aripiprazole. In 2019, FDA approved lumateperone,
which is a butyrophenone atypical antipsychotic with a multi-target mode of action [8].

Classically, the action of GPCRs is described by the ternary complex model [9], which
implies that a GPCR is involved in a single mechanism (binding with an agonist and signal-
ing via G protein) and only one-dimensional activity is measured [4]. However, GPCR drug
action is significantly more nuanced than formerly thought [4], and the lack of control over
previously neglected or unrecognized pharmacological factors may very probably result
in a lack of efficacy or unfavorable side effects in clinical trials [10]. Moreover, the latest
achievements in GPCR pharmacology have challenged the conventional understanding of
agonism, antagonism, affinity and efficacy [11]. Novel approaches to tuning the pleotropic
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action of GPCRs involve allosteric modulators, biased ligands, GPCR heterodimer-targeting
compounds, manipulation of polypharmacology, receptor antibodies and tailoring of drug
molecules [4,11].

Allosteric ligands interact with binding sites different from orthosteric sites, which
are sites for interactions with agonists and competitive antagonists [12]. Allosteric binding
sites are evolutionarily conserved to a lesser extent than orthosteric binding sites, which
makes it possible to design ligands selective for receptor subtypes [13]. Generally, the
allosteric modulators are receptor subtype selective. However, in the case of closely related
GPCR subtypes with significant sequence identity, it might happen that a modulator
acts on more than one receptor subtype. This is the case with dopamine D2 and D3
receptors, but it is less likely that modulators act on both D1-like (D1 and D5) and D2-
like (D2, D3 and D4) receptors. Allosteric ligands do not activate the receptors (with the
exception of allosteric agonists) but only modulate their response by reinforcement (PAM,
positive allosteric modulator) or attenuation (NAM, negative allosteric modulator) of the
signal of the orthosteric ligand. Silent allosteric modulators (SAMs, also called silent
allosteric ligands) bind to the allosteric site but have no effect on receptor activity. The
action of allosteric modulators requires the presence of an endogenous compound (or
agonist) which binds to the orthosteric site. Allosteric modulators display a number of
advantages over orthosteric ligands. The already mentioned selectivity is one of them.
Moreover, the effects of allosteric modulators are subjected to saturation, which prevents
the possibility of overdosing (the ceiling effect). It is also important that the effects of
modulator action are only visible in the presence of an orthosteric ligand, which results in
the modulation of only those neurons in the brain where a neurotransmitter was released.
The Allosteric Database (ASD, http://mdl.shsmu.edu.cn/ASD/) [14] lists (as for November
2022) 34,731 allosteric compounds acting through 166 different GPCRs. Most modulators
are small organic compounds (33,944), and the rest are polypeptides (420) and ions (7).
The practical importance of allosteric drugs was confirmed by approval of the first four
allosteric modulators of GPCRs. Cinacalet, introduced to the market in 2004, is a positive
allosteric modulator of CaS calcium-sensing receptor, which is used to treat secondary
hyperparathyroidism (elevated parathyroid hormone levels) as it blocks the secretion
of parathyroid hormone [15]. Maraviroc, approved in 2007, is an allosteric antagonist
of chemokine CCR5 receptor and is used to treat AIDS [16]. Plerixafor, which gained
FDA approval in 2008, is an allosteric antagonist of CXCR4 receptor, developed for the
treatment of AIDS [17]. Ticagrelor, approved by FDA in 2011, is an allosteric antagonist of
P2Y12 purinoreceptor for the treatment of stroke and acute coronary syndrome undergoing
percutaneous coronary intervention [18]. ASD records 369 allosteric drugs for GPCRs.
Apart from the four approved drugs, the database lists 340 compounds in preclinical
development, 10 compounds in phase 1, 12 in phase 2 and 3 in phase 3 of clinical studies.

In light of the above, at present one of the hot topics in GPCR-oriented drug discovery
is the design of allosteric modulators instead of orthosteric ligands [19,20]. Allosteric
modulators that target ion channels (eg. nicotinic ion channels) are well-established drugs;
however, it is a relatively new field regarding GPCRs. It is also worth emphasizing that
among the 20 allosteric drugs approved by the FDA, only a few have been developed
applying an allosteric approach (i.e., GPCR targeting drugs mentioned above and trame-
tinib and cobimetinib targeting kinases) [21]. In contrast, the allosteric mode of action of
benzodiazepines on GABAA receptors was demonstrated decades after their development
in the 1950s [21].

Allosteric modulators of dopamine D2 receptors have untapped clinical potential as
more efficient and safer drugs for a number of central nervous system (CNS) disorders,
including schizophrenia and Parkinson’s disease (PD). There are also recent reports that
modulation of dopaminergic system, in particular through D3 receptors, may lead to the
discovery of treatments for opioid use disorder [22,23].

In this review we focus on the recent progress in the field of allosteric modulators of
dopamine D2 receptor as modern agents for precise tuning of dopaminergic neurotrans-
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mission for the potential treatment CNS disorders. We present synthesis of the modulators,
their pharmacology and structural aspects to illustrate the perspectives of future treatment
of schizophrenia, PD and other CNS diseases.

2. Overview of Allosteric Modulators of Dopamine D2 Receptor
2.1. Small Molecules

One of the most thoroughly investigated small molecule allosteric modulators of
dopamine D2 receptor is compound 1 (SB-269652), Figure 1, which was first described
in 1998 in a patent filled by SmithKline Beecham [24,25]. In 2010 it was reevaluated and
reported as D2 allosteric modulator [26]. It is the first drug-like allosteric modulator of D2
receptor [27]. SB-269652 is a NAM at dopamine D2 receptor; however, it contains structural
features of an antagonist at this receptor.
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Figure 1. SB-269652 analogues with different motifs. Blue motif binds to the allosteric site, pink 
binds to the orthosteric site and green is the linker. 
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Figure 1. SB-269652 analogues with different motifs. Blue motif binds to the allosteric site, pink binds
to the orthosteric site and green is the linker.

Lane et al. [27] investigated the mode of binding of this compound and reported it
as a new mechanism of allostery at GPCR dimer. Indeed, by applying a functional com-
plementation system to control the identity of individual protomers within a dopamine
D2 receptor dimer, they proved that when binding to a dimer is impaired, the mode of
action changes from allosteric to competitive. Thus, they concluded that binding of SB-
269652 to D2 receptor requires the dimer of this receptor. In addition, they demonstrated
a ‘bitopic’ pose for SB269652 extending from the orthosteric site into a secondary pocket
at the extracellular end of the transmembrane domain, involving TM2 and TM7 [27]. It
was found that binding to the secondary binding pocket is required for the allosteric phar-
macology of the compound. The new mechanism of allostery at D2 receptor relies on
the binding of the bitopic ligand to one protomer to allosterically modulate the binding
of the orthosteric ligand in the other protomer [27]. It was also suggested that at higher
concentration of SB269652 can bind to two allosteric sites within one protomer, which is,
however, unfavorable considering its bitopic character [28]. Moreover, it was determined
that the sodium ion present within the conserved Na+-binding site is necessary for the
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activity of SB269652 [29]. Draper-Joyce et al. [29] applied fragments of SB269652 and its
new derivatives to demonstrate that sodium ions are crucial for the high-affinity interaction
of the tetrahydroisoquinoline part of the molecule with the orthosteric binding site. Fur-
thermore, the binding of the indole-2-carboxamide group to the secondary binding pocket
is responsible for the range of Na+-sensitivity. These findings demonstrate that NAMs of
D2 receptor may modulate the action of orthosteric ligands synergistically with sodium
ions, which opens new avenues for fine-tuning of the receptor activity by novel allosteric
drugs. Ågren and Sahlholm suggested [30] that SB269652 induces or selects a D2 receptor
conformation with higher affinity for this ligand upon binding. Furthermore, the mecha-
nism they observed is dependent on the order of application of dopamine and SB269652,
so it is probably competitive in nature or disfavored by simultaneous dopamine binding.
Mutagenesis experiments suggest that both the secondary binding site and the orthosteric
binding site of D2 receptor take part in this mechanism, as the effect of pre-incubation to
elevate SB269652 potency was significantly reduced by both E95A and S193A mutation.

In order to design novel efficient antipsychotics, SB269652 can be modified using two
main approaches: (i) by preserving its bitopic mode of action and ameliorating its affinity
and allosteric effect across dimers at D2 receptors, or (ii) by the development of more potent
allosteric modulators derived from its indole-2-carboxamide moiety (Figure 1) [28].

Optimization of SB269562 (see Figure 1 and Table 1) was performed by Shonberg et al. [31],
Mistry et al. [32] and Kopinathan et al. [33]. Shonberg et al. [31] reported that tetrahy-
droisoquinoline head group is important to maintain allosteric mode of action and negative
cooperativity, in particular when it is C7-substituted with small substituents (halide or
cyano group, compound 1b). Replacement of this moiety with other “privileged structures”
for the dopamine D2 receptor leads to orthosteric antagonists. Moreover, replacement of
cyclohexane linker (compounds 1a and 1b) with polymethylene linker allows us to con-
clude about the dependency of linker length on the allosteric properties of the compounds
(flexibility in the spacer region is beneficial for enhancements to functional affinity relative
to the rigid cyclohexylene space; an odd number of carbon atoms is unfavorable).

Table 1. Allosteric parameters of SB269562 and its analogues. NA—not available. a Estimate of the
equilibrium dissociation constant determined in a pERK1/2 functional assay; b Estimate of the net
cooperativity factor between the modulator and determined in an pERK1/2 functional assay.

Compound KB
a, nM αβ b

SB-269562 (1) [27] 776 0.06
1a [31] 87 0.091
1b [31] 23.4 0.04
1c [32] 81 0.05
1d [31] 72.4 NA
1e [31] 30 0.021
1f [32] 4600 0.08
1g [32] 6000 0.02

1h [33] 0.148 α = 0.048
B = 0.16

Shonberg et al. [31] also found that indolic hydrogen is crucial for allosteric phar-
macology. When the indole core is replaced with the azaindole (compound 1b) affinity
is significantly increased and the negative cooperativity is maintained. Mistry et al. [32]
reported compound 1c with a bitopic mode of action. Moreover, they designed and
synthesized a fragment library to analyze SAR and to identify compound 1g, which ex-
hibited increased negative cooperativity and affinity for dopamine D2 receptor. Finally,
Kopinathan et al. [33] reported that subtle modifications to the indole-2-carboxamide motif
led to a significant increase in functional affinity and cooperativity and a novel action to
modulate dopamine efficacy (compound 1h).
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Another D2 allosteric modulator 2 (Figure 2) was found in a structure-based vir-
tual screening campaign [34]. This modulator contains a thieno[2,3-d]pyrimidine moiety
which has not been previously found in dopaminergic ligands [34]. This compound is a
NAM of dopamine efficacy. Fyfe et al. [34] performed an optimization campaign of 2 and
found that its main structural groups are responsible for its affinity and cooperativity (see
Figures 2 and 3). It turned out that a secondary amine group is important for allostery, as
well as that there is an alkyl chain linker dependency for allostery. Moreover, it was found
that substitution at the thienopyrimidine at the 5- and 6-positions leads to derivatives with
divergent cooperativity profiles. The obtained derivatives displayed a 10-fold improvement
in functional affinity, as well as increased negative cooperativity with dopamine affinity
and efficacy; see Figure 4 and Table 2 [34].
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Table 2. Examples of derivatives of compound 2. a Estimate of the negative logarithm of the equilib-
rium dissociation constant determined in an cAMP functional assay. b Estimate of the logarithm of
the net cooperativity factor between the modulator and dopamine. c Estimate of the logarithm of
the modulatory effect upon efficacy factor induced by the allosteric modulator. Values represent the
mean ± SEM from at least three independent experiments performed in duplicate.

Compound pKB
a (KB) [µM] Logα b (α) Logβ c (β)

2 [34] 5.41 ± 0.22 (3.87) 0 −0.55 ± 0.08 (0.28)
2a [34] 5.55 ± 0.12 (2.81) −1.22 ± 0.16 (0.06) −3.0
2b [34] 6.18 ± 0.16 (0.662) −0.17 ± 0.17 (0.68) −1.10 ± 0.10 (0.08)
2c [34] 5.58 ± 0.10 (1.4) −0.88 ± 0.16 (0.13) −1.21 ± 0.16 (0.06)
2d [35] 6.25 ± 0.12 (0.57) −0.72 ± 0.12 (0.19) −0.65 ± 0.07 (0.22)
2e [35] 5.53 ± 0.13 (2.92) 0 −1.55 ± 0.19 (0.03)

In the subsequent work, the same research group showed that subtle modifications to
a thieno[2,3-d]pyrimidine scaffold yield negative allosteric modulators of D2 receptor [35].
They obtained NAMs with divergent affinity/cooperativity profiles (see Figure 4 and
Table 2). First, they evaluated the effect of the type of amine substituent at the 4-position
in the 5,6,7,8-tetrahydrobenzo[4,5]thieno[2,3-d]pyrimidine scaffold. Next, they studied
various substituents at the 5/6-fused cyclohexane moiety, together with the most favorable
amine types at the 4-position.

As a result of another HTS campaign carried out at UCB Biopharma, a positive
allosteric modulator of D2 receptor 3, see Figure 5 was identified [36]. It was a benzothiazole
derivative and in its racemic form, it behaves as a PAM of D2 receptor. The R enantiomer
potentiates the effects of dopamine while the S enantiomer attenuates the effects of the
PAM and the effects of dopamine. The effect of enantiomers of compound 3 on the
saturation binding of [3H]-dopamine to the human dopamine D2 receptor is shown in
Table 3. Żuk et al. [37] performed molecular dynamics simulations, which confirmed that
the R enantiomer of compound 3 is a PAM of the D2L receptor, while its S enantiomer is
a NAM. Moreover, the authors obtained a derivative of compound 3, compound 3a (see
Figure 5) as a racemic mixture and based on the principal component analysis (PCA), they
hypothesized that both enantiomers of compound 3a behave as silent allosteric modulators,
which was in accordance with in vitro studies; however the allosteric parameters for this
compound are not available.

Scientists at UCB went on and identified another compound 4 as a more potent and
efficacious PAM (see Figure 5) [36]. This PAM potentiated the effect of dopamine by an Emax
of 89% over basal, which is more than the R enantiomer of compound 3 (57%). The effect
of enantiomers of compound 4 on the saturation binding of [3H]-dopamine to the human
dopamine D2 receptor is shown in Table 3. This PAM was suitable for behavioral studies, so
the authors also investigated its in vivo effects on L-dopa turning behavior. The compound
(at the dose of 30 mg/kg i.p.) statistically increased the L-dopa-induced contralateral
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rotations in the unilateral 6OHDA lesion model in rats. It indicates the possibility of
application of compound 4 for the treatment of Parkinson’s disease.
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Table 3. Effects of the stereoisomers of compound 3 and compound 4 on the saturation binding of
[3H]-dopamine to the human dopamine D2 receptor. Data are mean 6 standard deviation from three
separate experiments [36].

Parameter +R Isomer of 3
(10 µM)

+S Isomer of 3
(10 µM)

+Compound 4
(10 µM)

Kd [nM] 13 ± 3 17 ± 6 11 ± 4
Bmax [%control] 137 ± 10 82 ± 16 278 ± 51

Recently, another D2 allosteric modulator has been discovered. ONC-201 (5), Figure 5,
is a first-in-class imipridone-based derivative currently in clinical studies for the treatment
of gliomas and other cancers [38]. Functional parameters for ONC201 antagonism of D2R-
mediated signaling are shown in Table 4. ONC201 antagonizes the D2 receptor with novel
bitopic and negative allosteric mechanisms of action, which makes it possible to apply it in
the treatment of psychiatric diseases, such as schizophrenia.

Table 4. Functional parameters for ONC201 antagonism of D2R-mediated signaling. Data are the
best fit of grouped data from at least 3 independent experiments, expressed as geometric means
[95% confidence interval]. a The logarithm of dopamine efficacy; b the logarithm of ONC201 efficacy
constrained to−3 to indicate ONC201 displays no detectable agonist efficacy; c the negative logarithm
of dopamine affinity; d the negative logarithm of ONC201 affinity; e the logarithm of the binding
cooperativity between dopamine and ONC201; f the logarithm of the magnitude of the allosteric
effect of the modulator on the efficacy of the orthosteric agonist, constrained to −3 indicating that
ONC201 exhibits a very high level of negative cooperativity; g the Hill slope [38].

Assay logτA
a logτB

b pKA
c pKB

d Logα e Logβ f Slope g

β-arrestin 1.57
[0.73–2.40] −3.00 5.26

[4.39–6.14]

5.53
5.42–5.64]

(3 µM)

−0.70
[−1.59–0.20]

(0.2)
−3.00 1.21

[1.06–1.35]

cAMP 1.68
[1.21–2.23] −3.00 5.62

[5.05–6.15]

5.64
[5.37–5.92]
(2.3 µM)

−0.28
[−0.85–0.34]

(0.5)
−3.00 0.88

[0.77–1.02]

2.2. Peptidomimetics

L-Prolyl-L-leucylglycinamide (PLG, Figure 6) is a CNS neuropeptide which has the
ability to modulate D2 receptors [39]. It is currently termed melanostatin (MIF-1) [40]. It po-
tentiates the binding of agonists to this receptor (Emax of 93.6± 4.4% for dopamine) [41–44]
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with no effect on antagonist binding; see Table 5 [41]. PLG served as a template for develop-
ment of (S)-N-((R)-1-(2-amino-2-oxoethyl)-2-oxopyrrolidin-3-yl)pyrrolidine-2-carboxamide
6 (PAOPA), its conformationally constrained analog (Figure 6). PAOPA is also a PAM
at D2 receptor which has the ability to increase dopamine binding; see Table 5 [45]. In
behavioral studies, PAOPA (at the dose of 1 mg/kg) prevents NMDA receptor antagonist
(MK-801)-induced deficits in social interaction in the rat model [46] and prevents and
reverses behavioral and biochemical abnormalities in an amphetamine-sensitized animal
model of schizophrenia [47]. It was also shown that PAOPA (at the dose of 1 mg/kg) has a
potential for schizophrenia treatment demonstrated in phencyclidine model of schizophre-
nia in rats [48].
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Figure 6. Chemical structures of PLG and PAOPA.

Multiple other analogues of PLG were designed and synthesized. Notable examples in-
clude incorporating 4-azidobenzoyl and 4-azido-2-hydroxybenzoyl photoaffinity-labelling
moieties [49], constraining conformation into spiro bicyclic scaffold [50,51], bicyclic thiazo-
lidine scaffold [52], changing the size of the thiazolidine and lactam in constrained ring
systems (Figure 7) [53]. Among these compounds D2 receptor PAMs and NAMs have been
identified. An excellent review outlining chemistry of known peptidomimetics up to 2013
has been published by Bhagwanth et al. [54].

Table 5. Modulation of [3H]spiperone/N-n-Propylnorapomorphine (NPA) at D2L receptors by PLG
and PAOPA [45]. KH and KL represent the inhibition constant (Ki) of agonist, calculated from the high-
affinity and low-affinity component of [3H]spiroperidol binding, respectively. Percent RH and percent
RL are, respectively, the percentage of sites in high- or low-affinity form for the agonist. RH/RL is the
ratio of the two percentages. Each value is an average of three to four separate experiments ± S.E.M.,
carried out in duplicate or triplicate. The concentration of PLG used was 1 µM and the concentration
of PAOPA was 1 nM. Gpp(NH)p: guanosine 5′-(β,γ-imido)triphosphate.

Condition
Binding Parameter

KH [nM] KL [nM] RH [%] RL [%] RH/RL

PLG-treated-Gpp(NH)p 0.020 ± 0.001 78.0 ± 5.0 73.0 ± 6.0 27.0 ± 3.0 2.70 ± 0.28
PLG-treated+Gpp(NH)p 0.040 ± 0.002 92.0 ± 8.0 34.0 ± 2.5 66.0 ± 11 0.55 ± 0.040

PAOPA-treated-Gpp(NH)p 0.030 ± 0.002 63.0 ± 4.0 74.0 ± 8.0a 26.0 ± 3.0 2.80 ± 0.19
PAOPA-treated+Gpp(NH)p 0.050 ± 0.003 88.0 ± 9.0 44.0 ± 6.0 56.0 ± 7.0 0.78 ± 0.050
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Further studies involved generating lower homologs by one carbon atom, replacing 
leucine with valine [55]. Here compounds 7a and 7b (Figure 8) were obtained. These com-
pounds potentiated the binding of the dopamine receptor agonist [3H] NPA to dopamine 
D2S receptor at concentrations between 10−12 and 109− M, similarly to the results for PLG in 
this assay, which allows us to conclude that they are PAMs of D2S receptor. More recent 
efforts were related to increasing hydrophobicity of PLG [56]. However, no pharmacolog-
ical data are available for these compounds. Another attempt at constructing constrained 
analogues was based on introducing 2-azanorbornane scaffold [57]. A statistically signif-
icant increase (p < 0.05) in the [3H]-NPA response was found for compound 8 (see Figure 
8) at 10 pM and 100 pM which indicates that this compound is PAM at D2 receptor. The 
maximum effect was 15 ± 6% at 10 pM. A different strategy by the same group relied on 
incorporation of picolinoyl group as heteroaromatic proline surrogate [44]. Compound 9 
(see Figure 8) obtained within this series produced a statistically significant increase in the 
maximal [3H]-NPA response at 0.01 nM (11.9 ± 3.7%) which indicates it is a PAM at D2 
receptor. Recently this group elaborated new PAMs of D2 receptor based on the bioiso-
steric replacement of proline to 3-furoic acid in PLG (MIF-1) [40]. They obtained two po-
tent MIF-1 analogues, methyl 3-furoyl-L-leucylglycinate (10a) and 3-furoyl-L-leucyl-
glycinamide (10b), (Figure 8). PAMs 10a and 10b had up to 2-fold and 4.3-fold increase in 
the EC50 of dopamine, respectively. The EC50 of 7a is 0.28 μM and that of 7b is 0.13 μM. 
Emax of both compounds is 100%. These compounds share the same central dipetide as 
MIF-1 and changing it results in the loss of PAM activity. Furthermore, the C-terminal 
carboxamide in 10a is superior to the methyl ester functional group (10b), but is not re-
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Further studies involved generating lower homologs by one carbon atom, replacing
leucine with valine [55]. Here compounds 7a and 7b (Figure 8) were obtained. These com-
pounds potentiated the binding of the dopamine receptor agonist [3H] NPA to dopamine
D2S receptor at concentrations between 10−12 and 10−9 M, similarly to the results for PLG
in this assay, which allows us to conclude that they are PAMs of D2S receptor. More recent
efforts were related to increasing hydrophobicity of PLG [56]. However, no pharmacologi-
cal data are available for these compounds. Another attempt at constructing constrained
analogues was based on introducing 2-azanorbornane scaffold [57]. A statistically signifi-
cant increase (p < 0.05) in the [3H]-NPA response was found for compound 8 (see Figure 8)
at 10 pM and 100 pM which indicates that this compound is PAM at D2 receptor. The
maximum effect was 15 ± 6% at 10 pM. A different strategy by the same group relied on
incorporation of picolinoyl group as heteroaromatic proline surrogate [44]. Compound 9
(see Figure 8) obtained within this series produced a statistically significant increase in the
maximal [3H]-NPA response at 0.01 nM (11.9 ± 3.7%) which indicates it is a PAM at D2
receptor. Recently this group elaborated new PAMs of D2 receptor based on the bioisosteric
replacement of proline to 3-furoic acid in PLG (MIF-1) [40]. They obtained two potent
MIF-1 analogues, methyl 3-furoyl-L-leucylglycinate (10a) and 3-furoyl-L-leucylglycinamide
(10b), (Figure 8). PAMs 10a and 10b had up to 2-fold and 4.3-fold increase in the EC50
of dopamine, respectively. The EC50 of 7a is 0.28 µM and that of 7b is 0.13 µM. Emax of
both compounds is 100%. These compounds share the same central dipetide as MIF-1 and
changing it results in the loss of PAM activity. Furthermore, the C-terminal carboxamide in
10a is superior to the methyl ester functional group (10b), but is not required for the PAM
activity. The lack of a C-terminal carboxamide in 10a refutes the hypothesis that type II
β-turn conformation is necessary for bioactivity as suggested by molecular modeling data.
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3. Computational Methods to Study Allostery in GPCRs—Dopamine Receptors as
an Example

Allosteric modulation is an elusive phenomenon, details of which are difficult to eluci-
date with in vitro experiments. While there are several X-ray structures of some GPCRs
revealing the locations of allosteric sites, especially in chemokine receptors [12,58], clues
for allosteric pockets in most other superfamily members, at least so far, could only be
derived from indirect experimental evidence or computational methods [59]. While devel-
opment of the Cryo-EM technique has boosted progress in the field, still less than 10% of
available experimentally solved GPCR structures contain allosteric ligands [13]. Experi-
mental explanation of mechanisms underlying allostery is also challenging. For instance,
it is suggested that an entropic component may play important role in allosteric signal
transmission, allowing modulation without changes to the protein’s shape [60–62]. While
experimental methods like nuclear magnetic resonance (NMR), double electron-electron
resonance (DEER) or Förster resonance energy transfer (FRET) can help to understand
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protein dynamics upon modulation to some extent [63], in silico tools are the method of
choice to gain atomic-level insight into mechanisms of protein function, including pathways
of allosteric signal transmission [64].

Computational methods are useful in locating the allosteric site, as well as in elucida-
tion of allosteric mechanisms and signal transmission, which can be further used for the
design of either novel small-molecule modulators, or modified proteins with particular
signaling properties [65]. As in silico methods commonly used for investigation of allostery
in proteins were extensively described in a number of papers published recently, this
section provides only short description of available tools and approaches, with particular
emphasis on the methods used to study allostery in dopamine receptors and closely related
rhodopsin-like GPCRs. For more detailed information on available methods, the reader is
referred to appropriate reviews [66–72].

One possible area of study on allostery, where computers can be successfully employed,
is an allosteric pocket search. Identification of possible allosteric pockets suitable for
targeting by small organic molecules is crucial for the design of novel modulators, as well
as for understanding the structure-activity relationships of those already known, which
provides a solid basis for design of improved derivatives.

As described in an excellent review [72], some hints can be deduced from the protein
sequence alone. Assuming that allosteric sites and pathways are evolutionarily conserved,
their location can be calculated from multi-sequence alignments (MSA) by coevolution
analysis. Such an approach was used to identify allosteric communication in D2 dopamine
receptor [73]. In this study, Sung et al. identified a number of residues participating in
the allosteric signal transmission within the receptor, a role of which was subsequently
tested in vitro. The sequence-based approaches have important benefits, e.g., modest
computational costs. However, there are also apparent disadvantages, including inability to
distinguish between residues crucial for transferring allosteric signals from those conserved
for other reasons, e.g., structural role. Allosteric pockets can also be found with simple
geometry-based algorithms [72], but they do not guarantee that binding to the cavity can
induce a signal that could be propagated through the protein of interest.

Improved analysis is possible by including information inferred from protein dynam-
ics. While the main requirement for considering a compound as allosteric is binding away
from orthosteric site, the most interesting cases are the molecules that are capable of modi-
fying the protein function upon binding. Consequently, the most interesting binding sites
are those from which an allosteric signal can be propagated to regions involved in protein
function, e.g., in case of GPCRs, ligand binding sites and/or intracellular effector binding
sites. Such sites can be identified by analyzing patterns of protein vibrations, i.e., its normal
modes. Normal Mode Analysis (NMA) is a method implemented in several tools, including
PARS [74], SPACER [75] or AlloPred [76]. This method allows identification of sites with
the greatest potential of affecting dynamics of a protein, at a modest computational cost,
even in the absence of any information about the structure of possible modulators [70].
NMA was recently used to investigate vibrations in inactive and active D2 receptor models,
revealing an important role of TM5 in signal transduction [77].

Protein dynamics can also be implemented in the form of Monte Carlo (MC) [78]
or Molecular Dynamics (MD) simulations and related methods. The former is capable
of sampling a broad range of protein conformations efficiently, at a cost of losing the
time information and, consequently, causation. The latter simulates evolution of a given
system in time, which is more computationally demanding, but provides more complete
information. Both methods provide a wealth of data to be analyzed. The actual allosteric
signal can be sifted by various methods and tools, e.g., MutInf [79], WISP [80], or with
Principal Component Analysis (PCA) [81]. Interestingly, in some cases, timescales possible
to reach during all-atom unbiased MD with current hardware and software may allow for
the observation of large-scale motions associated with allosteric modulation. For instance,
Bruzzese et al. used unbiased MD with a long timestep of 4 fs to simulate adenosine
A2a receptor, preparing simulation boxes with two different agonists and two different
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membranes, composed of DOPC (1,2-Dioleoyl-sn-glycero-3-phosphocholine) or DOPG (1,2-
dioleoyl-sn-glycero-3-phosphoglycerol) [82]. In this case, a modulatory effect of membrane
lipids on receptor activation was observed. The reason for observing very pronounced
allosteric effects in a relatively short simulation time was probably the fact that receptor
molecules were immersed in pure membranes composed of lipids suspected of modulation,
i.e., modulator was provided in a large excess. Allosteric effect of membrane was also
observed in earlier, shorter MD simulations of adenosine A2a receptor [83] or µ opioid recep-
tor [84], where the allosteric influence was uncovered with subsequent PCA. In the former,
the effect of different head groups (phosphatidylcholine vs. phosphatidylethanolamine)
was investigated, uncovering apparent differences in behavior of loop regions upon im-
mersion in different lipid environments [83]. In the latter, different cholesterol concen-
trations in POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine) were considered
in comparison to a raft-like composition, containing POPC, POPE (1-palmitoyl-2-oleoyl-
phosphatidylethanolamine), sphingomyelin and cholesterol, which was eventually chosen
to study receptor allosteric modulation by three terpenoid negative modulators: salvinorin
A, cannabidiol and tetrahydrocannabinol [84].

Another application of all-atom MD for studies on allostery was the seminal work
of Dror et al. [85]. Simulation of binding of several allosteric modulators (gallamine,
alcuronium, strychnine, C7/3-phth and dimethyl-W84) to M2 muscarinic receptor was
possible due to availability of Anton, a high-performance computing facility designed
especially for the purpose of MD simulations [86]. The set of 10 µs simulations allowed us
to predict the allosteric binding site and the modulators’ binding mode at the extracellular
vestibule of the M2 receptor.

While the above-mentioned papers have shown that all-atom unbiased MD simula-
tions can provide reliable data describing allosteric processes, nowadays, supervised or
enhanced sampling methods are usually employed to study allostery at a lower compu-
tational cost [87–89]. As an example, binding of an allosteric modulator BMS-986187 to δ

opioid receptor was simulated by Shang et al. with a metadynamics-based method [90].
In metadynamics, additional history-dependent potentials are used in order to improve
sampling of higher-energy states and facilitate overcoming energy barriers. In the work
of Shang et al. an allosteric site was found to be located at the top of transmembrane
helices (TM): TM1, TM2 and TM7. These findings are consistent with other MD-based
studies on allosteric modulation of a closely related µ opioid receptor [84,91], where the
important role of 7.35 residue was underlined. Residue at the 7.35 position is also a part
of allosteric binding pocket at dopamine D2 receptor [34,92]. While opioid and dopamine
receptors belong to different groups within the rhodopsin-like family according to the
GRAFS classification (group γ and α, respectively) [93] and classification by Pelé et al.
(Group G1 and G2, respectively) [94], they have some common features. In particular, while
insertion/deletion in TM2 puts opioid receptors in a group together with chemokine and
somatostatin receptors, only opioid receptors in this group contain the key aspartate 3.32 in
the binding pocket, serving as an anchor for protonated amine moieties in the way seen in
aminergic receptors. Notably, the existence of common allosteric pocket in opioid receptor
subtypes was recently postulated [59]. Therefore, the overlap of allosteric pocket location
in opioid and dopamine receptors may reflect common allosteric mechanisms.

Both biased and unbiased MD simulations were used by Selent et al. to investigate the
entry of sodium ions into D2 dopamine receptor [95]. The study included one microsecond-
scale unbiased simulation performed with ACEMD [96], as well as several short unbiased
and biased simulations. Analysis of trajectories has shown that sodium ions enter the
receptor from the extracellular side, bind at the conserved D2.50 residue and affect the
conformation of the conserved W6.48. Notably, the study supported previous reports on
putative allosteric sodium binding site at the conserved aspartate [97], before publication
of 1.8 Å structure of δ opioid receptor, confirming location of the allosteric sodium at that
site [98].
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Recently Żuk at al. [37] studied interactions of PAM, NAM and SAM (enantiomers
of compounds 3 and 3a, Figure 5) with previously constructed models of D2 receptor in
active conformation in complex with respective G proteins [99]. In this work molecular
docking and all-atom MD simulations in native-like membranes were followed by PCA
analysis. PCA allowed the conclusion that the most significant modulator-induced receptor
rearrangements are observed at TM7. TM7 bending at the conserved P7.50 and G7.42
was found. Next, the presence of the positive allosteric modulator affected the W7.40
conformation. In the subsequent studies Żuk et al. [100] investigated the role of lipids
for allosteric modulation of D2 receptor. They found that there is a significant interplay
between the membrane, G proteins, receptor and modulators.

Interesting insights into allostery at dopamine receptors were also provided by various
techniques of molecular docking. It is another computational tool that can be useful in the
identification of allosteric sites. In the absence of any prior information on possible regions
of interaction, blind docking can be used [101–103]. If there are any experimental data to
guide the process, regular flexible docking to the suspected area can be used [67]. Allosteric
sites can be located in the flexible regions of a protein, which can be a challenging task for
docking algorithms. However, if an allosteric site is located in proximity to the orthosteric
one, docking of a bitopic ligand can reveal its location. The first known allosteric modulator
of D2 and D3 receptors, SB269652 [26] is an example of such a situation. With molecular
docking followed by molecular dynamics simulations, supported by various experimen-
tal assays, Lane et al. have shown that the modulator binds to the orthosteric binding
site with its tetrahydroisiquinoline (THIQ) moiety, while its indole group preferentially
binds to the secondary pocket (SP) [27]. The study used a homology model of D2 receptor
built on a D3 receptor template. Further, an Induced-Fit Docking (IFD) [104] approach
was used to find possible binding poses, which were further assessed with molecular
mechanics/generalized Born surface area (MM-GBSA) approach [105]. Docking poses
were refined via MD performed with Desmond [106]. Their findings were consistent with
previous studies on selectivity determinants of a compound R22 and its derivatives at
D2 and D3 receptor models [107], applying IFD with subsequent MD simulations. These
conclusions were surprising, as SB269652 was earlier found to act purely as an allosteric
compound [26], while molecular modelling and interaction studies indicated occupation
of the orthosteric pocket [27]. Further experiments with a functional complementation
assay led to the conclusion that allosteric effect is exerted only in the receptor dimeric
form, when the modulator bound to one subunit modulates ligand binding to the second
subunit [27]. Studies on SB269652 were later pushed forward by the same team, with a
similar molecular modelling protocol, supporting in vitro investigation of newly synthe-
sized compounds [108]. The new research revealed the crucial role of interactions with
E2.65 residue in activity of the modulator derivatives, regardless of deploying competitive
or allosteric mechanisms. The same group presented also a more detailed computational
analysis of the modulator binding at D2 and D3 receptors, additionally using the Markov
state model analysis, which allowed the enhancement of sampling [109]. These extended
simulations revealed that the hydrogen bond of the modulator with E2.65 is not maintained
for most of the simulation time, and E2.65A mutation changes the modulator properties by
affecting shape and dynamics of the allosteric binding pocket.

Another application of IFD in dopamine receptors allostery studies was recently
reported by Wang and co-workers. In their work, molecular docking was used as a
complimentary approach together with functional assays on D1 receptor chimeras and
mutants, aiming at identification of the DETQ binding site [110]. After narrowing the
search area with experimental studies, molecular docking to the region of the second
intracellular loop (icl2) of the D1 receptor homology model was performed, which allowed
identification of interacting residues, i.e., V119, W123, R130 and L143. Mutation of these
residues confirmed their role in modulator binding.

One of the important applications of molecular docking is structure-based virtual
screening (VS). It is very useful in searching for novel lead compounds. In recent years,
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some examples of application of VS to dopamine receptors were reported [92,111]. In
particular, in a study published in 2013, Lane et al. performed a screening docking to
two D3 receptor models, i.e., in the presence or absence of dopamine in the orthosteric
binding pocket [92]. Before docking, models were improved with ligand-guided receptor
optimization procedure (LiBERO) [112]. Screening against the dopamine-bound receptor
was expected to provide candidates for novel allosteric modulators. In contrast to SB269652,
none of the 25 candidate compounds had a protonable nitrogen atom, and two of them
were confirmed as negative allosteric modulators of D3 receptor. Moreover, in a recent
work, Fyfe et al. studied pharmacology of one of the hits from the study of Lane et al.,
found by docking to the receptor in absence of dopamine, and provided evidence for its
allosteric mode of action [34]. Additionally, the authors performed a series of molecular
dockings of the novel modulator and its analogues, using ICM-Pro software [113]. The
docking results underlined the importance of the modulator interactions with TM7, in
particular with residues 7.35 and 7.36.

Another recent VS study was focused on signaling bias [111]. Männel et al. used
Modeller [114] to create a set of homology models of D2 receptor on the D3 dopamine
receptor template. Subsequently, they used DOCK [115] to identify secondary (allosteric)
binding pockets most frequently targeted by biased dopamine receptor ligands. Their
results were consistent with previous findings about the importance of TM2 and TM7 in
allosteric ligand binding, with residues 2.65 and 7.36 frequently interacting with biased
bitopic ligands. On the basis of these findings, Männel et al. were able to identify and
synthesize 18 compounds, 16 of which were found to be partial agonists of D2 receptor.
Among hits, one compound with significant bias toward the β-arrestin pathway was found,
proving the usefulness of VS in the design of biased GPCR ligands.

Apart from allosteric pocket search, computational methods can provide relevant
information about allosteric signal transmission through a receptor molecule. Such data
can be very helpful, not only in the identification of spots located along allosteric signaling
pathways, and therefore probably sensitive to modulation by small molecules, but also
in the design of modulators with desired properties, e.g., affecting appropriate molecular
switches [116]. In a very interesting study, Vaidehi and Bhattacharya employed MD sim-
ulations of GPCRs followed by mutual information calculations to identify residue pairs
with MI values above average [117,118]. Then, by constructing graphs, with residues as
nodes and inter-residue contacts forming edges, the allosteric pathways were calculated.
Subsequently, pathways were clustered into pipelines on the basis of spatial proximity.
Calculations of allosteric pipelines in three different activation states of β2 adrenergic
receptor revealed different patterns coupled to inactive, intermediate and active receptor
structure. In particular, dynamic behavior of the active structure was characterized by
the most pronounced pipeline mediated by the TM7 [119]. In a further study, the same
methodology was applied to a set of GPCRs, with the aim to reveal common patterns
in dopamine D3 receptor, histamine H1 receptor, M2 and M3 muscarinic receptors, A2a
adenosine receptor, protease-activated receptor 1 and adrenergic β1 and β2 receptors [118].
Calculations revealed the existence of two common allosteric pipelines: one starting at the
second extracellular loop, leading through parts of TM2, TM5 and TM6 to the intracellular
region, and the second, leading through TM7 and ending at helix 8. Notably, these findings
are in line with other research described above, underlining the important role of TM2
and TM 7 in allosteric signal transmission, and explaining the special role of the secondary
binding pocket/allosteric pocket at the extracellular part of TM2 and TM7 in dopamine
receptors and related GPCRs.

4. Synthesis of Allosteric Modulators of D2 Receptor
4.1. Small Molecules

The synthesis of 1 (SB-269562) was first described in a 1998 patent filled by SmithKline
Beecham [24,25]. At the time, this compound was investigated as a ligand for D3 receptors.
Scientist at SmithKline Beecham envisioned that the target molecule can be obtained by
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coupling 2-(2-(trans-4-aminocyclohexyl)ethyl)-1,2,3,4-tetrahydroisoquinoline-7-carbonitrile
with 1H-indole-2-carboxylic acid (Scheme 1). Their synthesis started with preparation
of the necessary amine. N-protected bromotetrahydroisoquinoline was converted into
a cyano derivative first. Second part of the molecule was elaborated from 2-(trans-4-
aminocyclohexyl)acetic acid by esterification, Boc protection and subsequent reduction to
obtain tert-butyl (trans-4-(2-oxoethyl)cyclohexyl)carbamate. These two fragments were
joined via reductive amination forming the necessary amine required for the final coupling,
which was achieved using EDC and HOBt to create an amide bond. Several other protocols
have been published since the original procedure involving other coupling reagents such
as BOP or HCTU [27,31].
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Scheme 1. Synthesis of SB-269562.

SB-269562 served as an inspiration that spawned numerous analogues different in re-
spect to motifs present in the molecule (Figure 1). Many of the changes introduced involved
alkylating nitrogen at carboxamide and indole ring to assess their roles in a hydrogen
bond interaction, altering the indole motif to explore the requirement for aromaticity and
steric bulk, modifying the spacer group or the tetrahydroisoquinoline core [31]. Truncated
analogues were also designed and synthesized, varying at the carboxamide moiety, with
the introduction of fluorine to indole at various positions and alterations made to the indole
core itself [32]. Other efforts focused exclusively on modifications applied to the indole
motif [33]. The synthesis of these compounds utilized previously established chemistry.

Another D2 allosteric modulator 2 was found in HTS campaign. The published
synthesis encompasses a five-step linear sequence (Scheme 2) [34]. In the first step, for-
mation of tetrahydrobenzothiophene was realized via Gewald reaction. Subsequent treat-
ment with chloroacetonitrile in an acidic environment afforded the fused pyrimidine ring
with the chloromethyl handle. After morpholine alkylation and activation with phospho-
rus oxychloride, the stage was set for the final nucleophilic aromatic substitution with
3-(trifluoromethyl)aniline to furnish the final compound. The obtained compound bears
close resemblance to D1 positive allosteric modulator MLS-6585 [120]. Both compounds
stem from a common 4,5,6,7-tetrahydrobenzo[b]thiophene scaffold.
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Scheme 2. Synthesis of allosteric modulator 2.

Together with the hit compound 2, the authors synthesized a focused library containing
numerous derivatives (Figures 3 and 4). The incorporated changes included exploring
the size of the fused carbocyclic ring along with functionalization with single substituents
at positions 5 and 6 of the thieno[2,3-d]pyrimidine core. Other modifications relied on
removing morpholinomethyl substituent, isosteric replacement of morpholine, varying
the length of the methylene linker and transforming the substituent at position 4 in the
pyrimidine ring [35,92].

Compound 3 (AB02-12), a positive allosteric modulator of D2 receptor identified
in the HTS campaign, is a racemic mixture of benzo[d]thiazol-2-yl(2-methylindolin-1-
yl)methanone. No synthetic details were provided at the time; however, Bonifazi et al. in
their work used the compound as a fragment to construct new D2 receptor agonists [121].
Their synthesis of 3 employed simple coupling of activated benzo[d]thiazole-2-carboxylic
acid with 2-methylindoline (Scheme 3). In an analogous way, Żuk et al. [37] synthesized a
derivative 3a suggested as SAM.
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Scheme 3. Synthesis of PAM compound 3.

Scientists at UCB found another compound 4 [36] as a more potent and efficacious
PAM. Its synthesis started with 1,4-dibromo-2,5-difluorobenzene, which was carbonylated,
esterified and treated with sodium methoxide. The product was subjected to Stille coupling
catalyzed by dichlorobis(triphenylphosphine)palladium and the resulting alkene was
converted into aldehyde. Reduction with sodium borohydride produced ester alcohol
which was first hydrolyzed and then protected. The stage was set for the coupling with
4-fluoroindole, which afforded the final compound after deprotection of the alcohol group
(Scheme 4).
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Scheme 4. Synthesis of PAM compound 4.

ONC201 was synthesized by coupling the piperidone derivative with the N-substituted
aminoimidazoline [122] The former coupling partner was obtained by reacting benzylamine
with methyl acrylate via Michael reaction followed by Dieckmann condensation, which
afforded the necessary N-benzylpiperidone. The other intermediate was obtained by alky-
lating 2-methylbenzylamine with S-methyl imidazoline. Both partners, upon condensation,
yielded the target compound in satisfactory amounts (Scheme 5).
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Scheme 5. Synthesis of ONC201.

4.2. Peptidomimetics

PAOPA, derived from PLG, was synthesized starting from Boc protected (R)-2-(3-
amino-2-oxopyrrolidin-1-yl)acetic acid, which was esterified with diazomethane first. Then,
in a sequence of reactions, it was deprotected, coupled with Cbz protected L-proline using
DPPA and converted into amide. As a final step, hydrogenolysis removed the Cbz group
affording the desired compound (Scheme 6) [123].

Further studies focused on replacing leucine with valine. This modification was also
accompanied by connecting two azidomethyl groups to the proline ring. The synthesis of
these compounds was initiated by coupling Boc protected 3,5-bis(azidomethyl)pyrrolidine-
2-carboxylic acid, which was prepared from the corresponding ester, with either L-leucine
or L-valine methyl ester using TBTU as a coupling reagent. Subsequent hydrolysis was
followed by the second coupling with glycine methyl ester under analogous conditions.
Thus 11 novel compounds were obtained after manipulation of glycine carbonyl group and
final deprotection (Scheme 7) [55].
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In order to increase hydrophobicity of PLG, four novel fluorinated analogous were
generated. Using L-Leu-Gly-NH2 hydrochloride as a starting material and EDC together
with HOBt did not require protected fluorinated amino acid, prevented formation of
unwanted diketopiperazines and allowed synthesizing of required compounds as two
pairs of diastereomers (Scheme 8) [56].
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Another attempt at constructing constrained analogues was based on introducing 2-
azanorbornane scaffold [57]. An aza-Diels-Alder adduct served as a starting material, which
was subjected to high-pressure hydrogenolysis affording proline mimetic in enantiopure
form. It was then protected with the Boc group and hydrolyzed. The intermediate obtained
in that fashion was then subjected to coupling with separately prepared dipeptides. After
final removal of the Boc group, three series of analogues were produced, where (a) L-leucine
and glycine were replaced by L-valine and L-alanine, (b) the sequence was maintained and
(c) the sequence was reversed (Scheme 9).
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ber of identified modulators is relatively small. It results from the fact that subtle factors 
govern the activity of allosteric compounds and often a small change in the compound 
structure results in a complete loss of activity. Here, molecular modeling methods, in par-
ticular molecular docking, virtual screening and various techniques of molecular dynam-
ics, may be used to facilitate rational modulator design. However, computer-aided design 
of GPCRs allosteric modulators is hampered by the existence of multiple allosteric sites 
visible in available experimental structures of receptor-modulator complexes. Further 
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A different strategy by the same group relied on incorporation of picolinoyl group
as heteroaromatic proline surrogate [44]. The synthesis was based on the previously
established chemistry (Scheme 10).
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5. Conclusions

Allosteric modulators of GPCRs are nowadays one of the hot topics in GPCR-oriented
drug discovery as they offer a number of advantages in comparison with classical orthos-
teric drugs. This is illustrated by the introduction of the first four allosteric modulators to
the market. In particular, allosteric modulators of dopamine D2 receptor have an untapped
potential for the treatment of mental (e.g., schizophrenia) and neurodegenerative (e.g.,
Parkinson’s disease) disorders. The available modulators belong to two chemical classes:
small molecules and peptidomimetics. Although the field is very active, the number of
identified modulators is relatively small. It results from the fact that subtle factors govern
the activity of allosteric compounds and often a small change in the compound structure
results in a complete loss of activity. Here, molecular modeling methods, in particular
molecular docking, virtual screening and various techniques of molecular dynamics, may
be used to facilitate rational modulator design. However, computer-aided design of GPCRs
allosteric modulators is hampered by the existence of multiple allosteric sites visible in
available experimental structures of receptor-modulator complexes. Further studies are
necessary to decipher the structural requirements of particular binding pockets and design
more potent compounds. It should be also stated that despite the progress in GPCR in vitro
pharmacology, it is often difficult to detect allosteric properties of novel compounds due to
a number of affecting factors, in particular the phenomenon of probe dependence. Future
efforts in the field should be focused on the elaboration of molecular modeling tools for
allosteric modulators design and improvement of in vitro pharmacology tools to reflect
the nuanced picture of GPCRs allosteric modulation. Furthermore, the available synthetic
protocols, while capable of producing the desired compounds, can be improved in cer-
tain cases where the reported yield is low. Moreover, newer synthetic methods should
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allow for the generation of analogs for possible SAR exploration. Summing up, although
challenging, the design and discovery of D2 receptor allosteric modulators is worth an
effort, as it may bring a breakthrough in the field of antipsychotics and drugs used to treat
Parkinson’s disease.
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