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Abstract The time taken for cells to complete a round of cell division is a stochastic process 
controlled, in part, by intracellular factors. These factors can be inherited across cellular generations 
which gives rise to, often non-intuitive, correlation patterns in cell cycle timing between cells of 
different family relationships on lineage trees. Here, we formulate a framework of hidden inherited 
factors affecting the cell cycle that unifies known cell cycle control models and reveals three distinct 
interdivision time correlation patterns: aperiodic, alternator, and oscillator. We use Bayesian infer-
ence with single-cell datasets of cell division in bacteria, mammalian and cancer cells, to identify the 
inheritance motifs that underlie these datasets. From our inference, we find that interdivision time 
correlation patterns do not identify a single cell cycle model but generally admit a broad posterior 
distribution of possible mechanisms. Despite this unidentifiability, we observe that the inferred 
patterns reveal interpretable inheritance dynamics and hidden rhythmicity of cell cycle factors. This 
reveals that cell cycle factors are commonly driven by circadian rhythms, but their period may differ 
in cancer. Our quantitative analysis thus reveals that correlation patterns are an emergent phenom-
enon that impact cell proliferation and these patterns may be altered in disease.

Editor's evaluation
This work makes an important contribution to the study of the cell cycle and inferring mechanisms 
by studying correlations in division timing between single cells. By treating the problem in a general 
way and computing over lineage trees, the authors can infer timescales in the underlying mecha-
nism. The method is validated on data sets from bacterial and mammalian cells and can suggest 
when additional measurements are needed to distinguish competing models.

Introduction
Cell proliferation, the process of repeated rounds of DNA replication and cell division, is driven by 
multiple cell extrinsic and intrinsic factors (Matson and Cook, 2017; Darzynkiewicz et al., 1982). 
Stochasticity in any or all of these factors therefore influences the time taken for a cell to divide, 
generating heterogeneity in cell cycle length, even in genetically identical populations. For example, 
stochastic gene expression (Elowitz et al., 2002) can lead to heterogeneity in cell cycle length (Kiviet 
et al., 2014; Ghusinga et al., 2016; Thomas et al., 2018) as these fluctuations can be propagated by 
concerted cellular cues (Co et al., 2017). These cues can exhibit reproducible stochastic patterns that 
are important in development, homeostasis and ultimately, for cell survival (Raser and O’Shea, 2005).

Single-cell technologies illuminate a world of cellular variation by replacing bulk-average infor-
mation with single-cell distributions. A key challenge is to exploit cell-to-cell variability to identify 
the mechanisms of cellular regulation and responses (Raser and O’Shea, 2005; Martins and Locke, 
2015). Time-lapse microscopy allows us to resolve cell dynamics such as division timing, growth and 
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protein expression (Locke and Elowitz, 2009, Figure 1a, left). This has led to many discoveries in cell 
cycle dynamics in bacteria (Taheri-Araghi et al., 2015; Martins et al., 2016; Martins et al., 2018; 
Kohram et al., 2021) and mammalian cells (Barr et al., 2017; Arora et al., 2017; Ryl et al., 2017; 
Chakrabarti and Michor, 2020). Early advances included measuring the distribution of division times 
across single cells (Powell, 1956) and the correlations between cellular variables leading to cell size 
homeostasis (Taheri-Araghi et al., 2015), while more recent applications of time-lapse microscopy 
have captured multiple generations of proliferating cells, making lineage tracing possible (Errington 
et al., 2013; Cooper and Bakal, 2017).

While single-cell distributions measure variation between cellular variables, they ignore both 
temporal signals and variations propagating across generations to entire lineage trees (Ulicna et al., 

Figure 1. Using interdivision time data on lineage trees to infer the hidden cell cycle factors. (a) Time lapse observations. Cartoon demonstrating how 
time-lapse microscopy allows single cells to be tracked temporally as they go through the cell cycle to division. Multiple different factors affect the rate 
at which cells progress through the cell cycle from birth to subsequent division. Interdivision time data. Example lineage tree structure with possible 
‘family relations’ of a cell between which correlations in interdivision time can be calculated. (b) Lineage correlation pattern. Plot of mother-daughter 
interdivision time correlation against cousin-cousin interdivision time correlation for the six publicly available datasets used in this work (Appendix 1—
table 1, Martins et al., 2018; Priestman et al., 2017; Chakrabarti et al., 2018; Kuchen et al., 2020; Mura et al., 2019). The shaded red area 
indicates the region where the cousin-mother inequality is satisfied. (c) Identifying hidden cell cycle factors. Schematic showing the model motivation 
and process. We produce a generative model that describes the inheritance of multiple hidden ‘cell cycle factors’ that affect the interdivision time. 
The model is fitted to lineage tree data of interdivision time, and we analyse the model output to reveal the possible biological factors that affect the 
interdivision time correlation patterns of cells.

https://doi.org/10.7554/eLife.80927
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2021; Kuchen et al., 2020; Sandler et al., 2015; Cowan and Staudte, 1986). These lineage tree 
correlation patterns can be robust and steady, similar to what is known in spatio-temporal pattern 
formation (Turing, 1990; Chaplain et  al., 1999). Common examples of lineage tree correlation 
patterns concern the mother-daughter and the sister correlations that have been used to study cell 
size homeostasis in E. coli (Taheri-Araghi et al., 2015; Ho et al., 2018) and other mechanisms gener-
ating correlated interdivision times such as population growth rate (Powell, 1956) and initiation of 
DNA synthesis (Cooper, 1982).

A counter-intuitive correlation pattern presented by many cell types is the ‘cousin-mother 
inequality’ (Sandler et al., 2015), where the interdivision times of cousin cells are more correlated 
than those of mother-daughter pairs. This inequality can be observed both in bacteria and mammalian 
cells (Figure 1b). More generally, lineage tree data gives rise to correlation patterns by comparing 
a single cell to any other cell on the tree (Figure  1a, right). Family relations – such as daughter, 
grandmother, cousin cells etc. – encode inheritance patterns, and correlations between these related 
cells have been used to understand the dynamics of cell populations (Mohammadi et  al., 2021; 
Nakashima et al., 2020, Figure 1c). Several stochastic models have been proposed to explain inter-
division time correlation patterns. Most of them make prior assumptions on the underlying mechanism 
controlling cell division such as those focusing on cell size control (Ho et al., 2018), DNA replication 
(Cooper and Helmstetter, 1968; Cooper, 1982) or underlying oscillators (Kohram et al., 2021). For 
example, inheritance of DNA content can explain the correlation in interdivision time between sister 
cells in bacteria (Cooper, 1982). Similarly, it has been shown that a simple model with interdivision 
time correlations (Cowan and Staudte, 1986) cannot satisfy the ‘cousin-mother inequality’ (Sandler 
et al., 2015), but a more complex kicked cell cycle model does (Mosheiff et al., 2018). It is presently 
unclear what information correlation patterns carry about the underlying mechanisms that generate 
them. This is because a unified and systematic framework to generate any desired interdivision time 
correlation pattern is lacking.

Here, we propose a stochastic model to investigate how cell cycle factors – which we define in this 
work as hidden properties that affect interdivision time – shape the lineage tree correlation patterns 
of cells. These could include physiological factors, such as cell size, growth rate and cell cycle check-
points, or specific cell cycle drivers such as CDKs, mitogens and division proteins. We will only focus 
on data describing patterns of interdivision time in bacterial and mammalian cell types, which circum-
vents intricate measurements of cell volume, mass, and DNA replication. This also avoids dealing with 
fluorescent reporter strains that may be difficult to engineer depending on cell type. We propose 
a generative model of correlation patterns that involves a number of hidden cell cycle factors and 
reduces to common mechanistic cell cycle models for specific parameter choices. Our theory predicts 
three distinct lineage correlation patterns; aperiodic, alternator and oscillator. We demonstrate how 
the model can be used to identify these patterns using Bayesian inference in bacteria and mammalian 
cells. Our analysis reveals several dynamical signatures of cell cycle factors hidden in lineage tree 
interdivision time data.

Results
A general inheritance matrix model provides a unified framework for 
lineage tree correlation patterns
Previous studies (Cowan and Staudte, 1986; Sandler et al., 2015) found that simple inheritance 
rules, where interdivision times are correlated from one generation to another through a single 
parameter, cannot explain the lineage correlation patterns seen in experimental single-cell data. 
To address this issue, we propose a unified framework where the interdivision time is determined 
by a number of cell cycle factors that represent hidden variables such as cell cycle phase lengths, 
protein levels, cell growth rate or other unknowns (Figure 1c), that each have their own inheritance 
pattern.

The states of the cell cycle factors is assumed to be a vector ‍yp = (yp,1, yp,1, . . . , yp,N)⊤‍ that deter-
mine the interdivision time of a cell with index ‍p‍ via

	﻿‍ τp = f(yp).‍� (1a)

https://doi.org/10.7554/eLife.80927
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Inheritance from mother to daughter of the ‍N ‍ cell cycle factors is described by a nonlinear stochastic 
Markov model on a lineage tree:

	﻿‍

y2m = g
(
ym

)
+ e2m,

y2m+1 = g
(
ym

)
+ e2m+1,‍�

(1b)

where ‍m in N‍ denotes the mother cell index and ‍2m‍ and ‍2m + 1‍ the daughter cell indices. ‍f : RN
+ → R+‍ 

and ‍g : RN
+ → RN

+‍ are possibly nonlinear functions that model the dependence of the interdivision time 
on cell cycle factors and the inheritance process. ‍ep = (ep,1, ep,2, . . . , ep,N)⊤‍ is a noise vector for which 
the pair ‍e2m, e2m+1‍ are identically distributed random vectors with covariance matrix independent of ‍m‍. 
A non-zero covariance between these noise vectors can account for correlated noise of sister cells. We 
implicitly assume symmetric cell division such that the deterministic part of the inheritance dynamics 

‍g‍ is identical between the daughter cells. Note that we choose Equation 1a to be deterministic since 
division noise can be modelled by adding one more cell cycle factor that does not affect inheritance 
dynamics ‍g‍.

The general model (Equation 1a and b) includes many known cell cycle models as a special case. 
For example, the interactions between cell cycle factors could model cell size control mechanisms 
(Appendix 1 - Section A6.1), the coordination of cell cycle phases (Appendix 1 - Section A6.3), or 
deterministic cues, such as periodic forcing of the cell cycle (Appendix 1 - Section A7.1), or coupling 
of the circadian clock to cell size control (Appendix 1 - Section A7.2).

The full model can only be solved for specific choices of ‍f ‍ and ‍g‍, and these functions are generally 
unknown in inference problems. To overcome this limitation, we assume small fluctuations resulting in 
an approximate linear stochastic system (see Appendix 1 - Section A1 for a derivation) involving the 
interdivision time

	﻿‍ τp = τ̄ + α⊤xp.‍� (2a)

The vector of cell cycle factor fluctuations ‍xp = (xp,1, xp,2, · · · , xp,N)⊤‍ obeys

	﻿‍

x2m = θxm + z2m,

x2m+1 = θxm + z2m+1.‍�
(2b)

Here, ‍̄τ ‍ is the stationary mean interdivision time, ‍θ‍ is the ‍N × N ‍inheritance matrix and ‍z2m‍ and ‍z2m+1‍ 
are two noise vectors of length ‍N ‍ that capture the stochasticity of inheritance dynamics and differen-
tiate the sister cells (Figure 2a). We denote the ‍N × N ‍ covariance matrices ‍S1 = Var(z2m) = Var(z2m+1)‍ 
and ‍S2 = Cov(z2m, z2m+1), for all m in N‍ of the noise terms ‍z‍ (and ‍e‍) in individual cells and between 
sister cells, respectively. The noise terms are independent for all other family relations. The cell cycle 
factor fluctuations are scaled such that ‍α = (α1,α2, . . . ,αN)⊤‍ is a binary vector of length ‍N ‍ made up of 
1 s and 0 s depending on whether the function ‍f ‍ determining the interdivision time has dependence 
on a given cell cycle factor (see Appendix 1 - Section A1 for details). Under this scaling each cell cycle 
factor has a positive effect on the interdivision time, and hence we do not distinguish between factors 
with positive or negative effects on interdivision time.

When the special case of a single cell cycle factor (‍N = 1‍) is considered, the inheritance matrix 
model system reduces to a well-known model with correlated division times (Cowan and Staudte, 
1986; Staudte et  al., 1984; Staudte, 1992; Staudte et  al., 1997), and we will refer to this case 
as simple inheritance rules (see also Appendix 1 - Section A5). In the following, we will explore the 
correlation patterns generated by multiple cell cycle factors.

The inheritance matrix model reveals three distinct interdivision time 
correlation patterns
Here, we define a correlation pattern to be the correlation coefficients of pairs of cells on a lineage 
tree. Here we introduce a function ‍ρ(k, l)‍ which we call the generalised tree correlation function:

	﻿‍
ρ(k, l) = Cov(τk, τl)

sτ
,
‍�

(3)

https://doi.org/10.7554/eLife.80927
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Figure 2. Analysis of the inheritance matrix model identifies three distinct lineage tree correlation patterns. (a) Diagram illustrating the inheritance 
matrix model with two cell cycle factors which affect the interdivision time of a cell. Each factor in the mother exerts an influence on a factor in the 
daughter through the inheritance matrix ‍θ‍. (b,c) Schematics showing how the coordinate ‍(k, l)‍ introduced in ‘The inheritance matrix model reveals 
three distinct interdivision time correlation patterns’ is determined. This coordinate describes the distance to the most recent common ancestor for 
chosen pair of cells. Examples shown are (b) sister pairs with ‍(k, l) = (1, 1)‍, and (c), aunt-niece pairs with ‍(k, l) = (2, 1)‍. (d-o) Panels demonstrating the 
three correlation patterns that arise from the inheritance matrix model with two cell cycle factors. (d-f) Example inheritance matrices ‍θ‍ that produce 
the desired patterns: (d) aperiodic, (e) alternator and (f) oscillator correlation patterns. (g–i) Three-dimensional plot of the generalised tree correlation 
function (Equation M3) demonstrating each of the three patterns. On each plot we highlight the lineage generation correlation function (‍k = 0‍ or 

Figure 2 continued on next page
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where ‍τk‍ and ‍τl‍ are the interdivision times of cells in the pair ‍(k, l)‍, and ‍sτ ‍ is the interdivision time 
variance. The coordinate ‍(k, l)‍ describes the distance in generations from each cell in the pair to their 
shared nearest common ancestor (Figure 2b and c). We have derived a closed-form formula for ‍ρ(k, l)‍ 
(Equation M3) in Materials and Methods - ‘Analytical solution of the inheritance matrix model’; (see 
Appendix 1 - Section A3 for a full derivation) as a weighted sum of powers of the inheritance matrix 
eigenvalues ‍λ‍:

	﻿‍
ρ(k, l) =

N∑
i,j=1

wijλ
k
i λ

l
j,
‍�

(4)

with

	﻿‍
wij =

α̂iα̂j

α̂⊤Σ̂α̂

(
(Ŝ1)ij

1 − λiλj
+ δk≥1δl≥1

(Ŝ2)ij
λiλj

)
.
‍�

(5)

We observe that the eigenvalues determine the dependence of the tree correlation function on ‍k‍ and 
‍l‍, while the noise matrices ‍S1‍ and ‍S2‍ determine their relative weights ‍wij‍ (see Equation 5).

Our theoretical analysis reveals three distinct correlation patterns that can be generated by the 
inheritance matrix model (further details in Materials and methods - ‘Analysis of tree correlation 
patterns’). These can be classified by the eigenvalues of the inheritance matrix ‍θ‍: (i) if the inheritance 
matrix exhibits real positive eigenvalues, we observe an aperiodic pattern (Figure 2d); (ii) if the inher-
itance matrix has real eigenvalues with at least one negative eigenvalue, we observe an alternator 
pattern (Figure 2e); and (iii) if there is a pair of complex eigenvalues we observe an oscillator pattern 
(Figure 2f). An intuitive interpretation of the eigenvalue decomposition is that it transforms the cell 
cycle factors into effective factors inherited independently. Hence, the inheritance matrix is diagonal 
in this basis. However, the analogy is limited to the case where the inheritance matrix is symmetric 
and the eigenvalues are real. For simplicity, we will focus on models with two cell cycle factors and 
note that in higher dimensions (‍N ≥ 3‍), the correlation patterns involve a mixture of the three patterns 
discussed in detail in this section (Appendix 1—figure 6c, d and g,h).

To demonstrate the aperiodic correlation pattern, we utilise an inheritance matrix with positive 
real eigenvalues (Figure  2d). Characteristically, the modelled interdivision time correlations decay 
to zero as the distance to the most recent ancestor increases (Figure 2g) since the eigenvalues in 
Equation 4 are bounded between 0 and 1. To look more closely at the patterns on the tree, we utilise 
two reductions of the generalised tree correlation function. These are the lineage correlation func-
tion (‍ρ(k, l)‍ for ‍k‍ or ‍l = 0‍) and the cross-branch correlation function (‍ρ(k, l)‍ for ‍k = l‍). We look at these 
functions for continuous ‍k, l‍ to visualise better the patterns that occur down the lineage and across 
the branches of the tree. The lineage correlation function gives the correlation dynamics as you go 
down the lineage tree, whereas the cross-branch correlation function gives the correlation dynamics 
as you move across neighbouring branches of the lineage tree. We observe that the interdivision time 
correlations decrease as we move both across generations and branches (Figure 2j).

In contrast, the alternator pattern generates oscillations with a fixed period of two generations in 
the lineage correlation function. The behaviour is typically observed for cell cycle factors with negative 
mother-daughter correlations (Appendix 1 - Section A6.1). In this case, we have at least one negative 
eigenvalue and thus Equation 4 will alternate between positive and negative values for successive 
generations, producing the period two oscillation. We demonstrate this correlation pattern for the 
generalised tree correlation function (Figure 2h) using a diagonal ‍θ‍ matrix (Figure 2e). We observe 
alternating correlations across generations in the lineage correlation function, and the continuous 

‍l = 0‍) (red line) and the cross-branch generation correlation function (‍k = l‍) (blue line). The shading of the 3D plot indicates the correlation coefficient 
at that point on the surface. (j–l) The lineage and cross-branch generation correlation functions plotted individually, showing the different dynamics for 
each pattern. (m–o) Region plots showing parameter values where the relevant pattern is obtained (orange) and where the cousin-mother inequality is 
satisfied (blue) for the ‍θ‍ matrices given in panels (d-f). White bands on (o) indicate where ‍P = 2

k ‍ which results in real eigenvalues and therefore does not 
produce an oscillator pattern. Within the parameter region that both produces the desired pattern and also satisfied the cousin-mother inequality, we 
choose a parameter set (red cross) which is used for the corresponding plots in the panels above. In all panels we fix ‍α = (1, 1)T

‍ and the noise vector ‍z‍ 
to have covariance equal to the identity matrix.

Figure 2 continued

https://doi.org/10.7554/eLife.80927
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interpolation of the cross-branch correlation function (Figure 2k). Although the period is fixed to two 
generations, the amplitude of the correlation oscillation varies with the absolute magnitude of the 
eigenvalues (Materials and methods - ‘Analysis of tree correlation patterns’).

To investigate the oscillator correlation pattern, we propose a hypothetical inheritance matrix ‍θ‍ 
with eigenvalues ‍λ = (De+i 2π

P , De−i 2π
P )‍ which are complex for ‍D, P ̸= 0‍ and ‍P ̸= 2

k , k in Z‍ (Figure 2f). 
The parameters ‍P‍ and ‍D‍ control the period and the respective damping of an underlying oscillator, 
i.e., the limit ‍D → 1‍ leads to an undamped oscillation and ‍D → 0‍ corresponds to an overdamped 
oscillation (see Materials and methods - ‘Determining the period of correlation oscillations from the 
eigenvalues’ for details). Correspondingly, the graph of the generalised tree correlation function 
(Figure 2i) shows clear oscillations across generations. These correlation oscillations are also evident 
in the lineage correlation function but are absent in the cross-branch correlation function (Figure 2l). 
However, oscillations are possible in the cross branch correlation function for other choices of ‍θ‍ with 
complex eigenvalues (see model fits in Figure 3 and Methods - ‘Analysis of tree correlation patterns‘). 
In summary, the qualitative behaviour of the interdivision time correlation patterns can be studied 
using the eigenvalue decomposition of the inheritance matrix ‍θ‍.

The cousin-mother inequality is not required to generate complex 
correlation patterns
Our analysis shows that of the three specified patterns, only the oscillator pattern cannot arise from 
simple inheritance rules. This is because it requires at least two inherited cell cycle factors (‍N ≥ 2‍) for 
the inheritance matrix to possess complex eigenvalues. We therefore asked whether the oscillator 
pattern is necessary for the cousin-mother inequality to be satisfied. We find that this is not the case, 
but instead, all three correlation patterns can be compatible with the cousin-mother inequality if ‍N ≥ 2‍. 
To demonstrate this, we choose three specific two-dimensional inheritance matrices ‍θ‍ that produce 
the required eigenvalue structure (Figure 2d–f). We then use these matrices with our analytical solu-
tion for the generalised tree correlation function (Materials and methods - ‘Analytical solution of the 
inheritance matrix model’) to map the regions where the cousin-mother inequality can be satisfied 
(Figure 2m–o). Interestingly, we find that oscillations can arise even in parameter regions that violate 
the cousin-mother inequality (Figure 2o). We conclude that both the cousin-mother inequality and 
the oscillator pattern are sufficient but not necessary conditions to rule out simple inheritance rules.

To understand which datasets can be explained by simple inheritance rules, we fit the one-
dimensional model (‍N = 1‍) to six publicly available lineage tree datasets (Appendix  1—table 1) 
using Bayesian methods (Materials and methods - ‘Data analysis and Bayesian inference of the inher-
itance matrix model’). These datasets were chosen as they each had a sufficient number of cells for 
correlation analysis and covered a broad range of cell types. We found that the model fit is poor for 
the datasets that display the cousin-mother inequality, which is the case for cyanobacteria, clock-
deleted cyanobacteria, neuroblastoma and human colorectal cancer cells (Appendix 1—figure 1a–f). 
Despite not obeying the cousin-mother inequality, the fit is also poor for mouse embryonic fibroblasts 
(Appendix 1—figure 1f) as the median inferred correlation lies outside the 95% confidence inter-
vals for both the grandmother and cousin correlations which are included in the model fit, and the 
confidence intervals for the data vs the credible intervals from the inference show minimal overlap 
(Appendix 1—figure 2f). Another inequality may be violated in this dataset that cannot be explained 
using the one-dimensional model, suggesting that the absence of the cousin-mother inequality cannot 
rule out more complex division rules. The only cell type that has a good fit for the one-dimensional 
model is mycobacteria (Appendix 1—figure 1c). We thus conclude that the majority of the datasets 
must be described by higher dimensional inheritance dynamics of multiple cell cycle factors.

The two-dimensional inheritance matrix model fits interdivision time 
correlation patterns from a range of cell types
We asked whether the correlation patterns are better described by a two-dimensional inheritance 
matrix model. Bayesian inference (Materials and methods - ‘Data analysis and Bayesian inference 
of the inheritance matrix model’) produced a good model fit for all six datasets (Figure 3a–f) for 
the two-factor inheritance matrix model, within relatively narrow error bars of mother, grandmother, 
sister and cousin correlations (Appendix 1—table 1). The credible intervals from the Bayesian infer-
ence matched the confidence intervals of correlations used for fitting (Appendix 1—figure 2). We 

https://doi.org/10.7554/eLife.80927
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quantified the quality of our fits using the Akaike information criterion (AIC) (Materials and methods 
- ‘Data analysis and Bayesian inference of the inheritance matrix model’, (Equation M11)) for each 
dataset and compared these to the one-dimensional model (Appendix 1—table 1). The AIC esti-
mates the goodness of fit with a penalty for model complexity allowing us to select the simplest 
model that explains the data. The AIC values indicate that the inheritance matrix model with two cell 
cycle factors provides the simplest fit for all cell types used here, except for the mycobacteria data 
where simple inheritance rules provided an equally good fit with a significant reduction in the number 
of model parameters. We expected the AIC to select the two dimensional model where the cousin-
mother inequality was satisfied such as in cyanobacteria, clock-deleted cyanobacteria, neuroblastoma, 
and human colorectal cancer cells. The match with the two-factor inheritance matrix model in fibro-
blasts was less obvious.

Crucially, we find that the model has a good predictive capacity for correlations further down the 
lineage tree. For each pattern, we show several samples from the conditional posterior distribution 
(solid and shaded lines) to illustrate fits of the lineage correlation and cross-branch correlation function 
(Figure 3a–f). For all datasets except neuroblastoma, the curves also intercept the great-grandmother 
and great-great-grandmother correlations that were not used for fitting (Figure 3a–d and f), and 
bootstrapped confidence intervals from the data overlapped with the credible intervals obtained 
from Bayesian inference (Appendix 1—figure 2). We then asked which correlation patterns underlie 
the data. To assess this, we calculated the eigenvalues of each posterior sample of the inheritance 

Figure 3. The inheritance matrix model with two cell cycle factors fits interdivision time correlation patterns for a range of cell types. Posterior 
correlation functions based on fitting to mother-daughter, grandmother-granddaughter, sister-sister and cousin-cousin correlations for three bacterial 
(left) and three mammalian (right) datasets: (a) cyanobacteria, (b) clock-deleted cyanobacteria, (c) mycobacteria, (d) human colorectal cancer, 
(e) neuroblastoma, and (f) mouse embryonic fibroblasts. Pearson correlation coefficients (white circles) and 95% bootstrapped confidence intervals 
(error bars) obtained through re-sampling with replacement of the original data (10,000 re-samples). Posterior distribution samples were clustered into 
aperiodic, alternator, and oscillator patterns (bar charts). We show multiple representative samples (solid and shaded lines) drawn from the posterior 
distribution Appendix 1—figure 2 without clustering. Where correlations appear missing, this is in cases where the lineage trees in the data were 
not deep enough for the correlations to be calculated. Only lineage and cross branch generations 1 and 2 were used in model fitting. Here all panels 
assume ‍α = (1, 1)⊤‍, but taking ‍α = (1, 0)⊤‍ produces similar results (Appendix 1—figure 4).

https://doi.org/10.7554/eLife.80927
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matrix to categorise the aperiodic, alternator and oscillator patterns (Figure 3a–f, bar charts). We 
found that in every dataset, the dominant correlation pattern was identifiable with probabilities well 
above 50%, except for mycobacteria (Figure 3c) that was better described by simple inheritance rules 
(Appendix 1—figure 1c).

Cyanobacteria, (Figure 3a), human colorectal cancer (Figure 3d), and mouse embryonic fibroblasts 
(Figure 3f) display a dominant oscillator pattern, but we see that their lineage correlation functions 
exhibit widely different periodicities. For example, the posterior lineage correlation for cyanobacteria 
displays a higher frequency oscillation than those in human colorectal cancer cells and fibroblasts. 
Clock-deleted cyanobacteria (Figure 3b) and mycobacteria (Figure 3c) display a dominant alternator 
pattern which could be induced by strong sister correlations. We see that clock-deleted cyanobacteria 
(Figure 3b) has a 100% alternator pattern in contrast to the 100% oscillator pattern seen for wild type 
cyanobacteria, suggesting that the deletion of the clock gene has completely transformed the correla-
tion pattern and has abolished the underlying oscillation. Neuroblastoma (Figure 3e) displays a domi-
nant aperiodic pattern. The predictive capacity for this cell type is weaker than for the other datasets, 
which we assume is due to the tight confidence interval in the correlations. Despite this discrepancy, 
we find that the inheritance matrix model produces excellent fits and has good predictive capacity for 
all other cell types studied in this work.

Bayesian inference reveals that individual inheritance parameters are 
not identifiable
We next ask which mechanisms are responsible for generating the observed correlation patterns. 
The Bayesian inference used for model fitting (Materials and methods - ‘Data analysis and Bayesian 
inference of the inheritance matrix model’) samples parameters using a MCMC Gibbs sampler. The 
Gibbs sampler can be thought of as a random walk in parameter space that settles around parameter 
regions with high likelihood. We found that the explorations of the Gibbs sampler did not settle in 
a particular parameter subspace but meandered off to explore vast areas of the parameter space 
without improving the likelihood values (Appendix 1—figure 3a and b). Such behaviour is expected 
when model parameters are not identifiable and the posterior distribution of parameters cannot be 
efficiently sampled (Rannala, 2002; Raue et al., 2013).

To provide further evidence of unidentifiablity, we obtained four histograms of a single parameter of 
the inheritance matrix for different initialisations. The four distributions are very different (Figure 4a), 
showing that the random walk does not settle to a stationary distribution. We further observe that 
the mean squared displacement increases without bound (Figure 4b) showing that the sampling does 
not settle in a particular subset of the parameter space. In contrast to the individual parameters, the 
sampled posterior distribution of the eigenvalues is consistent across the averages (Figure 4c) and 
their mean squared displacement converges rapidly (Figure 4d). We note that unidentifiability arises 
for the inheritance matrix model with multiple cell cycle factors and does not feature for simple inheri-
tance rules (Appendix 1 - Section A5). This ultimately demonstrates that the interdivision time correla-
tion patterns do not identify a single set of inheritance parameters, but rather need to be described 
by a distribution of inheritance mechanisms.

The inheritance matrix model predicts the hidden dynamical 
correlations of cell cycle factors
Clock-deleted cyanobacteria and neuroblastoma both satisfy the cousin-mother inequality (Figure 1b), 
which indicates that at least two cell cycle factors are responsible for the corresponding correlation 
patterns. The eigenvalues of the inheritance matrix concentrate in different regions of the admissible 
parameter space (Figure 4e), suggesting the correlation patterns that generate the cousin-mother 
inequality are distinct. For the clock-deleted cyanobacteria dataset, we found that all posterior samples 
were consistent with an alternator correlation pattern, while most posterior samples presented aperi-
odic correlation patterns in neuroblastoma (Figure 3b and e bar charts).

We hypothesised that different inheritance models generate these patterns. To verify this hypoth-
esis and since we cannot identify the cell cycle factors directly, we computed the mother-daughter 
correlations between the two hidden cell cycle factors. Since the order of factors is interchangeable, 
we only distinguish between mother-daughter correlations between the same (‍corr(xm,i, x2m,i)‍ and 

‍corr(xm,i, x2m+1,i)‍ for ‍i = 1, 2‍) and alternate factors (‍corr(xm,i, x2m+1,j)‍ and ‍corr(xm,i, x2m,j)‍ for ‍i ̸= j = 1, 2‍). 

https://doi.org/10.7554/eLife.80927
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Figure 4. Bayesian inference predicts hidden dynamical correlations between cell cycle factors. (a) Posterior distribution histograms for ‍θ11‍ depend 
on the realisations of a Gibbs sampler and do not settle to a stationary distribution. (b) A log-log plot of mean squared displacement for the four ‍θ‍ 
variables that make up the inheritance matrix ‍θ‍. The mean squared displacement for all four parameters increases linearly, meaning the sampling does 
not settle in any particular region of parameter space. (c) Sampled posterior distribution histograms for the eigenvalue ‍λ1‍ for each realisation. The 

Figure 4 continued on next page
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The resulting posterior distributions revealed distinct correlation patterns of cell cycle factor correla-
tions for clock-deleted cyanobacteria and neuroblastoma (Figure  4f). For clock-deleted cyano-
bacteria, we predict that at least one factor has a negative mother-daughter correlation while its 
cross-correlation with the other factor must be positive; while the correlations are of opposite sign for 
neuroblastoma (Figure 4f). We sketch influence diagrams that summarise these relationships between 
factors (Figure  4g and h). Thus, the different interdivision time correlation patterns observed for 
clock-deleted cyanobacteria and neuroblastoma stem from distinct hidden correlation patterns of cell 
cycle factor fluctuations.

The inheritance matrix model reveals biological rhythms underlying the 
cell cycle
We observe that the lineage correlation functions of cyanobacteria, human colorectal cancer cells, and 
fibroblasts exhibit vastly different correlation oscillation periods (Figure 3). Next, we are interested to 
see whether the oscillations seen in these datasets are compatible with biological oscillators known 
to affect cell cycle control.

Correlation oscillations and underlying rhythms can exhibit vastly different 
periods
The period of the correlation oscillation is related to the location of the eigenvalues of the inheritance 
matrix on the complex plane. We consider an eigenvalue ‍λ‍ of the inheritance matrix. In terms of the 
mean interdivision time ‍̄τ ‍, the correlation period ‍T0‍ is:

	﻿‍
T0 = τ̄

2π
|Arg(λ)|

≥ 2τ̄ ,
‍�

(6)

and the inequality means that the period ‍T0‍ is always greater than twice the mean interdivision time 
‍̄τ ‍. More generally, there is an oscillation period associated with each eigenmode of the inheritance 
matrix, but the period is infinite for real eigenvalues, and thus only complex eigenvalues generate 
correlation oscillations. This inequality follows from Equation 6 using ‍|Arg(λ)| ≤ π‍. However, known 
biological oscillators that influence cell cycle control often have periods less than twice the mean inter-
division time, such as stress response regulators (Harper et al., 2018; Stewart-Ornstein et al., 2017) 
and gene expression oscillations (William et al., 2007; Gao et al., 2014; Whitfield et al., 2002). How 
can relatively slow observed correlation oscillations be compatible with much faster biological oscilla-
tors underlying the cell cycle?

The resolution to this issue is that the period of the correlation oscillation does not always match 
the frequency of the underlying oscillator. Instead there are a number of possible oscillator periods ‍Tn‍ 
compatible with the correlation oscillation period ‍T0‍ (Appendix 1 - Section A4) given by:

	﻿‍
Tn = τ̄T0

|τ̄ + nT0|
,
‍�

(7)

for ‍n in Z‍. This phenomenon, that the same correlation oscillation can be explained by multiple under-
lying oscillators, can be understood using the intuition in Figure 5a.

Circadian oscillations in cyanobacteria and fibroblasts support coupling of 
the circadian clock and the cell cycle
Cyanobacteria and fibroblasts both exhibit correlation patterns consistent with an oscillator under-
lying cell divisions (Figure 3e, bar chart). We observe that the posterior distribution of the eigenvalues 

histograms are almost identical across the four averages, showing the distribution has converged. (d) Mean squared displacement for the eigenvalues of 
the inheritance matrix ‍θ‍ settles to a finite value. Plots (a) - (d) utilise sampling from the inference for the clock-deleted cyanobacteria dataset. (e) Density 
histogram of the real eigenvalue pairs for clock-deleted cyanobacteria (pink) and neuroblastoma (brown) demonstrating where the eigenvalues lie in 
the aperiodic (yellow) and alternator (red) regions. (f) Density histogram of same-factor against alternate-factor mother-daughter correlation for clock-
deleted cyanobacteria (pink) and neuroblastoma (brown). We take a minimum threshold of 0.3 for the probability density to remove irrelevant samples. 
(g–h) Influence diagrams for same factor vs alternate factor correlations for (g) clock-deleted cyanobacteria and (h) neuroblastoma.

Figure 4 continued
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Figure 5. The inheritance matrix reveals the periodicity of hidden biological oscillators underlying the cell cycle. (a) Schematic showing how sampling 
a high frequency rhythm at each cell division could result in a lower frequency oscillator being constructed. (b) Possible oscillator periods (Equation 7) 
indexed by ‍n‍ for a correlation oscillation period ‍T0 = 3τ̄ ‍. (c) Density plot of the complex eigenvalue output from the model sampling for cyanobacteria 
(purple) and mouse embryonic fibroblasts (orange). (d) Posterior distributions of the correlation oscillation period ‍T0‍ in cyanobacteria (purple) and 

Figure 5 continued on next page
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is confined to a region with negative real parts for cyanobacteria and positive real parts for fibro-
blasts (Figure 5c). Using these distributions, we estimate the median period of the correlation oscil-
lations (using Equation 6) to be 41.7 hr for cyanobacteria and 144.3 hr for fibroblasts (Figure 5d). 
We wondered whether the stark difference in the periods of the correlation oscillations indicates a 
different underlying rhythm. Conversely, we found this was not the case, but both correlation patterns 
were consistent with an approximate circadian rhythm. The posterior of the oscillator period ‍T−1‍, 
which is closest to the period of correlation oscillation ‍T0‍, suggests a median period of 24.6 hr for 
cyanobacteria and a median period of 23.8 hr for fibroblasts (Figure 5e). We also validated the infer-
ence result using simulated data (Appendix 1—figure 9). This finding supports a strong coupling of 
circadian rhythms to the cell cycle, as reported previously for both cyanobacteria (Yang et al., 2010; 
Martins et al., 2018) and fibroblasts (Nagoshi et al., 2004; Menger et al., 2007; Nagoshi et al., 
2005). Notably, we see that clock-deleted cyanobacteria displays 100% alternator pattern (Figure 3b) 
and therefore has a lineage tree correlation pattern that cannot be described by an approximate 24 hr 
oscillator, in contrast to wild type cyanobacteria.

Bimodal posterior distribution of underlying oscillations in human colon 
cancer
Finally, we turn to the analysis of cancer cell data. The dominant correlation pattern was oscillatory 
(78% posterior probability, Figure 3d, bar chart). The posterior distribution of complex eigenvalues 
for the oscillator pattern has support in a large region of the parameter space. It has two distribution 
modes depending on whether the eigenvalues have positive or negative real parts (Figure 5f). Simi-
larly, the posterior of the correlation oscillation period is bimodal, too (Figure 5g), which means that 
two competing oscillator patterns are compatible with the data.

To disentangle these alternative hypotheses, we cluster the posterior samples by the real part 
of the eigenvalues. We label cluster A for negative real parts and cluster B for positive ones. The 
correlation periods of the individual clusters do not provide us with immediate clues about the under-
lying oscillators. Cluster A has a median correlation oscillation period of 51.2 hr while cluster B has 
a median period of 100.6 hr (Figure 5g). We therefore inspected the oscillator periods ‍T−1‍ for each 
cluster, which are closest to the observed correlation period (Figure 5h). The median of the predicted 
oscillator period of cluster A has an oscillator period ‍T−1‍ of 24.1 hr, which hints at a circadian oscillator 
underlying the cell cycle in agreement with a previous model (Chakrabarti et al., 2018). However, 
only about 33% of posterior samples with complex eigenvalues were assigned to this cluster. The 
majority of posterior samples, cluster B, had a different predicted period with a median of 19.6 hr 
(Figure 5h). A possible explanation is that the circadian period is shortened in cancer cells.

A strength of the Bayesian framework is that it allows us to express our confidence in this predic-
tion. We find that our analysis is not conclusive about the correlation pattern as 78% of posterior 
samples showed an oscillator pattern. As a result, about 52% of all the posterior samples favour a 
19.6 hr oscillator and 26% for the 24.1 hr oscillator, matching approximately circadian rhythm. 16% 
of the samples demonstrate alternator correlation patterns, and the remaining 6% samples are aperi-
odic (compare bar charts in Figures 3d and 5g). We therefore ask whether these competing models 
make predictions that translate into testable hypotheses. We found that the oscillator correlation 
pattern predicts a negative grandmother correlation while the alternator pattern predicts a posi-
tive grandmother correlation (Figure 5i and j). Thus, measuring the grandmother correlation with 

mouse embryonic fibroblasts (orange). (e) Posterior distributions of the oscillator period ‍T−1‍ in cyanobacteria (purple) and mouse embryonic fibroblasts 
(orange). Arbitrary units in (d) and (e) are used to compare histograms, the density values are not normalised in relation to each other in order to 
display both histograms clearly on the same plot. (f) Density plot of complex eigenvalues for human colorectal cancer. (g) Posterior distributions of the 
correlation oscillation period in human colorectal cancer (shaded area) and oscillator clusters corresponding to positive (cluster A, orange) and negative 
real parts (cluster B, blue). The bar chart shows the posterior mass of the clusters. (h) Posterior distributions of the oscillator periods ‍T−1‍ corresponding 
to (g). (i) Model fit and 95% credible intervals for human colorectal cancer (cf. legend of Figure 3). Red area indicates the grandmother granddaughter 
correlation explored in (j). (j) Posterior distribution of oscillator vs alternator clusters give grandmother correlations with opposite signs. (k) Lineage and 
cross-branch correlation functions of oscillator clusters A (orange) and B (blue) in human colorectal cancer. Red area indicates the great-grandmother 
great-granddaughter correlation explored in (l). (l) Posterior distributions of oscillator clusters A (orange) and B (blue) have great-grandmother 
correlations of opposite signs.

Figure 5 continued
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higher precision, for example, via increasing sample size, would tighten the confidence intervals of 
measured correlations (Figure 5i), and improve our ability to narrow down the true pattern. On the 
contrary, predicting the great-grandmother correlation allows us to distinguish between the 19.6 hr 
and 24.1 hr rhythms (Figure 5h). Posterior samples in cluster A predicted a positive interdivision time 
correlation between a cell and its great-grandmother, while cluster B predicted a negative correlation 
(Figure 5k and l). While the great-grandmother correlation could not be estimated using the present 
data, deeper lineage trees could be used to discriminate the period of the biological oscillator and 
help reveal whether the circadian period is altered in cancer cells, or not. In summary, our theory helps 
to predict the hidden periodicities of biological oscillators from lineage tree interdivision time data.

Discussion
We propose a Bayesian approach to predict hidden cell cycle factor dynamics from interdivision time 
correlation patterns. Our underlying model fits the lineage tree data for a range of bacterial and 
mammalian cell types and allows us to classify different correlation patterns. Our inference demon-
strates that these patterns are identifiable, but the individual inheritance parameters are not. This 
finding suggests that interdivision time correlations alone are insufficient to gain mechanistic insights 
into cell cycle control mechanisms. The identified correlation patterns, however, reveal the dynamics 
of the underlying cell cycle factors.

We focused on a data-driven approach without any prior assumptions of the division mecha-
nism, allowing the interdivision time data to speak for itself. Other studies used a model similar to 
the inheritance matrix model proposed here, and linked latent factors to the interplay between cell 
cycle progression and growth (Kuchen et al., 2020). Auto-regressive models have also been used 
in bacteria to discriminate between different mechanisms of cell size control (Kohram et al., 2021). 
Additionally, they have been used to combine growth and cell cycle reporters to explain interdivision 
time dynamics in fibroblasts (Mura et al., 2019). In principle, the inheritance matrix model can be 
used to model the inheritance dynamics of any factor affecting the interdivision time of a cell. In fact, 
it comprises many mechanistic models as special cases, such as those based on DNA replication, cell 
size control or cell cycle phases (Appendix 1 - Section A6 and Appendix 1—figures 5 and 6). In future 
work, it will be useful to improve the identifiability of the model parameters. This could be accom-
plished either through including knowledge of inheritance mechanisms through prior distributions, or 
by including additional data on measured cell cycle factor dynamics – such as cell cycle phases, cell 
size, protein expression etc. – in the inference.

Another limitation of our inference is that we computed the interdivision time variance ‍sτ ‍ in 
Equation M2 of the model assuming that trees have equal number of generations in each branch. 
The advantage of this estimator is that it does not assume any particular noise distribution but this 
may lead to a statistical bias compared to the sample variance of tree-structured data with branches 
of varying length (Powell, 1956; Hashimoto et al., 2016; Thomas, 2017; Jafarpour et al., 2018; 
Kuchen et al., 2020; Sandler et al., 2015). However, the approximation does not change the identi-
fied correlation patterns and the conclusion of this work, since any variance bias can be compensated 
by multiplying the noise matrices (‍S1,2‍ in Equation 5) with a constant, and, for the data analysed, the 
interdivision time variance estimators cannot be distinguished within the 95% confidence intervals 
(Appendix 1—table 3). Developing a theory correcting for such biases in lineage tree data will be the 
subject of future work.

An important result of the present analysis is that lineage tree correlation patterns of very different 
cell types – cyanobacteria, mouse embryonic fibroblasts and human colorectal cancer – can be 
explained through an underlying circadian oscillator coupled to cell division. While the coupling 
between the cell cycle and circadian clock is well established both in cyanobacteria and mouse embry-
onic fibroblasts, it is less well studied in cancer (Shostak, 2017; Kiessling et al., 2017). Our method 
robustly reconstructs the circadian rhythms from the interdivision time correlation patterns despite the 
lack of the cousin-mother inequality for fibroblasts, demonstrating the cousin-mother inequality is not 
required for complex correlation patterns (‘The cousin-mother inequality is not required togenerate 
complex correlation patterns’). It is interesting to observe the differences in the oscillatory correla-
tion patterns in these organisms. They are characterised by complex eigenvalues with negative real 
parts in cyanobacteria, but positive real parts in fibroblasts (Figure 5c), resulting in opposite mother-
daughter correlations for these datasets (Figure 3a and f).

https://doi.org/10.7554/eLife.80927
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It would be interesting to explore what mechanisms underlie these different patterns. While the 
circadian clock in fibroblasts relies on transcriptional mechanisms (Hughes et al., 2009; Menger et al., 
2007; Takahashi, 2017), the origin of the clock is non-transcriptional in cyanobacteria (Cohen and 
Golden, 2015; Tomita et al., 2005; Nakajima et al., 2005). The negative mother-daughter correlation 
in cyanobacteria likely stems from size control mechanisms that are modulated by the circadian clock 
(Martins et al., 2018). However, the mechanisms that generate positive mother-daughter correla-
tions in fibroblasts are still to be explored. Interestingly, in human colorectal cancer, two oscillatory 
correlation patterns divide the posterior distributions into two distinct clusters with positive and nega-
tive mother-daughter correlations. If the circadian clock was to generate a positive mother-daughter 
correlation, as it does in fibroblasts which have a structurally related clock, the period corresponds to a 
20 hr rhythm. This finding thus suggests that the circadian period is altered in cancerous cells. Indeed, 
several studies report similar periods of 18 hr and 20 hr for gene expressions in the human colorectal 
cancer core-clock (Fuhr et al., 2019; Parascandolo et al., 2020).

Our theory predicts that an oscillator’s period does not always match the period of the observed 
correlation oscillations. We describe a lower bound on the correlation period that is reminiscent of 
the Nyquist-Shannon sampling theorem. This theorem describes temporal aliasing in digital audio 
processing, where a high-frequency signal produces low-frequency oscillations when sampled at a 
frequency less than twice the sampling frequency. Similarly, spatial aliasing is observed in digital image 
processing as a moire pattern. In our analogy, the high-frequency signal is a biological oscillator that 
couples to cell division and is sampled at the cell division frequency (Figure  5a). Our result thus 
extends the Nyquist-Shannon sampling theorem to lineage trees. Our finding has fundamental impli-
cations for the reconstruction of oscillator periods from interdivision time data, revealing that there 
exists a number of oscillators that can all explain the same correlation pattern.

Here, we concentrated on the oscillator periods ‍T−1‍ that are closest to the correlation oscilla-
tion periods ‍T0‍. In principle, we cannot exclude that oscillators with shorter physiological periods 
are contributing to the observed lineage tree correlation patterns. For example, HES1 expression 
oscillates with a period of around 5 h in human colon cancer cells (William et al., 2007; Gao et al., 
2014). The stress response regulators NF-κB and p53, which are critical for tumour development, 
oscillate with periods of approximately 100 min and 5 hr, respectively (Harper et al., 2018; Stewart-
Ornstein et al., 2017). The posterior distributions for periods in this region are not well separated 
(Appendix  1—figure 7c), which makes it challenging to identify factors that oscillate significantly 
faster than the cell cycle using interdivision time data. It is, however, unknown whether such hypo-
thetical factors couple to cell division specifically in a manner to induce oscillatory interdivision time 
correlation patterns.

Going forward, there is a need to go beyond the Nyquist-Shannon limit and develop methods that 
have increased sensitivity to discriminate a broader range of oscillator periods. One way to circum-
vent the limitation would be to employ fluorescent reporters of the circadian clock that could be 
correlated directly with cell division timing. Another way, would be to provide parallel readouts of 
the underlying rhythm through events that sub-sample the cell cycle, such as DNA replication, or the 
timing of individual cell cycle phases. Not only would we be able to look at the correlation in inter-
division time between cells on a lineage tree, but we would also be able to analyse the correlations 
between individual phases and family members, to reveal specific phase control mechanisms. Our 
main findings result from the the inheritance matrix model with two cell cycle factors, as this was 
sufficient to explain the correlation patterns of the chosen data. In principle, increasing the number of 
interacting cell cycle factors can lead to more complex composite patterns that involve combinations 
of the three patterns discussed in this paper, such as the alternator-oscillator (Appendix 1—figure 6c 
and d), aperiodic-oscillator (Appendix 1—figure 6g and h), or birhythmic correlation patterns. Such 
composite patterns could also arise as the result of nonlinear fluctuations that, within our framework, 
can be described by adding complexes of cell cycle factors to the inheritance matrix model (Appendix 
1 - Section A2). The presence of such complexes induces higher-order harmonics in the correlation 
oscillations, similar to those observed in the cyanobacterial and mammalian circadian clock (Martins 
et al., 2016; Thomas et al., 2013), and detecting such complexes could provide an alternative route 
to increase the sensitivity of our inference method.

In summary, our findings highlight the predictive power of Bayesian inference on single-cell data 
and how it can be leveraged to draw testable hypotheses for the design of future experiments. This 
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was exemplified for human colorectal cancer cells, where various patterns were compatible with the 
data, something that non-probabilistic approaches cannot accomplish as they fit only a single correla-
tion pattern. In the future, it will be crucial to understand why different cell types have evolved specific 
lineage correlation patterns and how these patterns affect cell proliferation and disease. It would be 
interesting to understand whether specific correlation patterns give or reveal some fitness advantage 
and whether we can use them to predict cell survival. We anticipate that identifying hidden cell cycle 
factors and their rhythmicity using non-invasive methods such as interdivision time measurements will 
be instrumental in answering these questions and may benefit other fields where cell proliferation 
plays a pivotal role.

Code availability
Code available at https://github.com/pthomaslab/Lineage-tree-correlation-pattern-inference (copy 
archived at swh:1:rev:dc69bbce5ce909813d7d4356c9fd2da045e02c79; Hughes, 2022).

Materials and methods
Analytical solution of the inheritance matrix model
From Equation 2b and ‍IE[zp] = 0, for all p in N‍, we see that the vector of cell cycle factors has zero mean 

‍IE[xp] = 0‍. Its ‍N × N ‍ covariance matrix ‍Σ = Cov(xp, xp)‍ satisfies a discrete-time Lyapunov equation:

	﻿‍ S1 = Σ− θΣθ⊤.‍� (M1)

From the solution of Equation M1, we compute the variance of the interdivision time

	﻿‍ sτ = α⊤Σα,‍� (M2)

and the generalised tree correlation function ‍ρ(k, l)‍ (see Appendix 1 - Section A3 for a detailed deri-
vation) given by:

	﻿‍
ρ(k, l) = α⊤ω(k, l)α

α⊤Σα
,
‍�

(M3)

where 
‍
ω(k, l) = θkΣ

(
θl
)⊤

+ δk≥1δl≥1θ
k−1S2

(
θl−1

)⊤

‍
 with

	﻿‍

δi≥1 =





1 if i ≥ 1

0 otherwise
for i = k, l.

‍�

(M4)

To ensure that the lineage tree correlation pattern is stationary, we require ‍SR(θ) < 1‍ where 

‍SR(θ) = max(λ1,λ2, . . . ,λN)‍ is the spectral radius of ‍θ‍. This also ensures that the solutions to Equation 
M1; ‍Σ‍, ‍S1‍ and the function Equation M3 are unique and independent of the initial conditions.

Analysis of tree correlation patterns
The patterns of the generalised tree correlation function can be characterised through its eigende-
composition. The general decomposition proceeds through finding the matrix of eigenvectors ‍U ‍ of 
‍θ‍ such that

	﻿‍ UθU−1 = diag(λ1,λ2, . . . ,λN)‍� (M5)

is the diagonal matrix of eigenvalues. Defining ‍Ŝ1,2 = US1,2U⊤
‍ and ‍̂α = (U−1)⊤α‍, the solution to 

Equation M1 is given by

	﻿‍
Σij =

N∑
k,l=1

U−1
ik U−1

jl
(Ŝ1)kl

(1 − λkλl)
.
‍�

(M6)

This result can then be used to find an explicit expression for the generalised tree correlation function:
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	﻿‍
ρ(k, l) =

N∑
i,j=1

α̂iα̂j

α̂⊤Σ̂α̂
ω̂ij(k, l),

‍
 
�

(M7)

where

	﻿‍
ω̂ij(k, l) =

(Ŝ1)ijλ
k
i λ

l
j

(1 − λiλj)
+ δk≥1δl≥1(Ŝ2)ijλ

k−1
i λl−1

j .
‍�

(M8)

Equation M7 can be rewritten as a superposition of patterns Equation 4 with weights given by Equa-
tion 5.

The pattern of the tree correlation function is thus governed by the eigenvalues of the inher-
itance matrix ‍θ‍: (i) if one eigenvalue, say ‍λ1‍, is positive then the factor ‍̂ω11(k, 0) = ω̂11(0, k) ∝ λk

1‍ 
contributing to lineage correlation decays monotonically. The factor ‍̂ω11(k, k) ∝ λ2k

1 ‍ contributing 
to the cross-branch correlation decays twice as fast; (ii) if there is a negative eigenvalue, the factor 

‍̂ω11(k, 0) = ω̂11(0, k) ∝ (−1)k|λ1|k‍ alternates between negative and positive values with an envelope 
of ‍|λ1|k‍, while the corresponding contribution to the cross-branch correlation decays monotoni-
cally with rate as ‍|λ1|2k

‍. Finally, if we have a pair of complex eigenvalues ‍λ1 = λ∗2 = DeiΩ
‍ then the 

factors ‍̂ωi,j(k, 0) = ω̂i,j(0, k)‍ contributing to the lineage correlation function display damped oscilla-
tions with frequency ‍Ω‍ and envelope ‍Dk‍, while the factor ‍̂ω12(k, k) = ω̂∗

12(k, k) ∝ D2k
‍ and the factor 

‍̂ω11(k, k) = ω̂∗
22(k, k) ∝ D2kei2Ωk

‍ oscillate with frequency ‍2Ω‍.

Determining the period of correlation oscillations from the eigenvalues
We consider the case where the inheritance matrix ‍θ‍ has a pair of complex conjugate eigenvalues 
‍λ± = De±i2π/P‍. The lineage correlation function then oscillates whenever ‍D ̸= {0, 1}‍ and ‍P ̸= 2

k , k in Z‍. 
The period of correlation oscillations per generation is given by

	﻿‍

T0
τ̄

= 2π
| ln(ei2π/P)|

= 2

1 −
∣∣∣2( 1

P mod 1) − 1
∣∣∣
,

‍�
(M9)

where ‍Arg(λ) in (−π,π]‍ is the argument of the eigenvalue and ‍ln(·)‍ is the complex logarithm. The 
former is the angle made between the line joining the origin and the eigenvalue ‍λ‍ on the complex 
plane with the real axis. This means that ‍T0/τ̄ = P‍ if and only if ‍P > 2‍. Otherwise, ‍T0‍ is calculated in 
terms of ‍P‍ by Equation M9, (Appendix 1—figure 8).

Data analysis and Bayesian inference of the inheritance matrix model
We determined all pairs of cells in a lineage tree, sorted them by family relations ‍(k, l)‍ and calculated the 
sample correlation coefficient of interdivision times (Equation 3). To maximise the number of samples 
used to calculate these correlations, an individual cell can appear in more than one pair. For example, 
if a cell had two cousins, it would be counted in two separate cousin pairs in the cousin-cousin correla-
tion coefficient calculation. For training, we focus on the sample statistics ‍X̂ = (̂sτ , {ρ̂(k,l)}(k,l) in C)‍ with 

‍C = {(1, 0), (2, 0), (1, 1), (2, 2)}‍ comprised of the interdivision time sample variance and four interdivi-
sion time sample correlation coefficients given by the mother-daughter, grandmother-granddaughter, 
sister-sister and cousin-cousin relations (Figure  2a). Note that ‍̂sτ ‍ is computed across all interdivi-
sion times used to calculate the correlation coefficients in each dataset. Errors are estimated using 
bootstrapping by re-sampling cell pairs with replacement 10,000 times. The resulting variances and 
correlation coefficients are given in Appendix 1—table 1.

The vector of inferred model parameters for the two-dimensional model is ‍Θ = (θ, S1)‍, where we fix 

‍α = (1, 1)⊤‍ and ‍S2 = 0‍ for simplicity. A different choice of ‍α‍ did not affect our results (Appendix 1—
figure 4). Since ‍S1‍ is symmetric, it consists of the ‍N ‍ variances and ‍N(N − 1)/2‍ correlation coefficients 
between the components of ‍z‍. Thus for ‍N = 2‍ the inheritance matrix model has seven free parameters 
to be estimated. We assumed that the log-likelihood for these statistics is the sum of square errors:

	﻿‍
− lnL(Θ|X̂) =

(̂
sτ−sτ (Θ)

)2

σ̂2
ŝτ

+
∑

(k,l) in C

(
ρ̂(k,l)−ρ(k,l)(Θ)

)2

σ̂2
ρ̂(k,l)

,
‍�

(M10)
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which is equivalent to assuming that the sample variance and correlation coefficients are normally 
distributed for large sample sizes. We calculate the interdivision time variance ‍sτ ‍ and the generalised 
tree correlation function ‍ρ(k, l)‍ from Equation M2 and Equation M3. Note that Equation M2 is the 
interdivision time variance from a tree where all lineages have the same number of generations, which 
approximates the variance across all cells in the observed trees (Appendix 1—table 3). For simplicity, 
we neglected possible correlations between the sample statistics in ‍̂X‍ and used bootstrapped esti-
mates for the standard deviation of the sample statistics ‍̂σŝτ‍ and ‍̂σρ̂(k,l)‍ (Appendix 1—table 1). Note 
that the likelihood is independent of the mean since it is irrelevant for the correlation pattern. We 
assumed a flat prior with support restricted to ‍SR(θ) < 1‍ and ‍S1‍ positive semi-definite to guarantee 
the existence of a stationary correlation pattern.

The numerical implementation uses the adaptive Gibbs‐sampler implemented in the Julia library ​
Mamba.​jl (Smith, 2018). For each dataset, we sample 11 million parameter sets which include a 
burn-in transient of 1 million samples. These samples are removed before analysis of the output.

For model comparison we use the AIC (Akaike, 1974) given by

	﻿‍ AIC = 2k − 2 ln(L̂),‍� (M11)

where ‍k‍ is the number of model parameters and ‍ln(L̂)‍ is the maximum value of the log-likelihood func-
tion given by Equation M10. For ‍S2 ̸= 0‍, the inheritance matrix model has ‍k = d(1 + 2d)‍ parameters 
where ‍d‍ is the number of cell cycle factors in the model. For ‍S2 = 0‍ the number of parameters reduces 
to ‍k = 1

2 d(1 + 3d)‍.

Acknowledgements
We thank Bruno Martins, Dimitris Volteras and Paul Piho for their comments on the manuscript. This 
work has been supported by a scholarship to FAH provided by the EPSRC Centre for Mathematics 
of Precision Healthcare (EP/N014529/1) and MRC core funding to the London Institute of Medical 
Sciences (MC-A658-5TY60). ARB is funded by a CRUK Career Development Fellowship (C63833/
A25729). PT is funded by a UKRI Future Leaders Fellowship (MR/T018429/1).

Additional information

Funding

Funder Grant reference number Author

EPSRC Centre for 
Mathematics of Precision 
Healthcare

EP/N014529/1 Fern A Hughes

MRC London Institute of 
Medical Sciences

MC-A658-5TY60 Alexis R Barr

UKRI Future Leaders 
Fellowship

MR/T018429/1 Philipp Thomas

Cancer Research UK Career Development 
Fellowship C63833/A25729

Alexis R Barr

The funders had no role in study design, data collection and interpretation, or the 
decision to submit the work for publication.

Author contributions
Fern A Hughes, Conceptualization, Software, Formal analysis, Validation, Investigation, Visualization, 
Methodology, Writing – original draft, Writing – review and editing; Alexis R Barr, Philipp Thomas, 
Conceptualization, Supervision, Funding acquisition, Investigation, Methodology, Writing – original 
draft, Project administration, Writing – review and editing

Author ORCIDs
Fern A Hughes ‍ ‍ http://orcid.org/0000-0002-4599-5027
Alexis R Barr ‍ ‍ http://orcid.org/0000-0002-6684-8114

https://doi.org/10.7554/eLife.80927
http://orcid.org/0000-0002-4599-5027
http://orcid.org/0000-0002-6684-8114


 Research article﻿﻿﻿﻿﻿﻿ Cell Biology | Computational and Systems Biology

Hughes et al. eLife 2022;11:e80927. DOI: https://doi.org/10.7554/eLife.80927 � 19 of 41

Philipp Thomas ‍ ‍ http://orcid.org/0000-0003-4919-8452

Decision letter and Author response
Decision letter https://doi.org/10.7554/eLife.80927.sa1
Author response https://doi.org/10.7554/eLife.80927.sa2

Additional files
Supplementary files
•  Transparent reporting form 

Data availability
The current manuscript is a computational study, so no data have been generated for this manuscript. 
Modelling code is uploaded to GitHub https://github.com/fernhughes/Lineage-tree-correlation-pat-
tern-inference (copy archived at swh:1:rev:dc69bbce5ce909813d7d4356c9fd2da045e02c79).

The following previously published dataset was used:

Author(s) Year Dataset title Dataset URL Database and Identifier

Martins BMC, Tooke 
AK, Thomas P, Lock 
JCW

2018 Research data supporting 
Cell size control driven 
by the circadian clock 
and environment in 
cyanobacteria

https://​doi.​org/​10.​
17863/​CAM.​31834

Apollo - University of 
Cambridge Repository, 
10.17863/CAM.31834

References
Akaike H. 1974. A new look at the statistical model identification. IEEE Transactions on Automatic Control 

19:716–723. DOI: https://doi.org/10.1109/TAC.1974.1100705
Amir A. 2014. Cell size regulation in bacteria. Physical Review Letters 112:208102. DOI: https://doi.org/10.1103/​

PhysRevLett.112.208102
Arora M, Moser J, Phadke H, Basha AA, Spencer SL. 2017. Endogenous replication stress in mother cells leads 

to quiescence of daughter cells. Cell Reports 19:1351–1364. DOI: https://doi.org/10.1016/j.celrep.2017.04.​
055, PMID: 28514656

Barr AR, Cooper S, Heldt FS, Butera F, Stoy H, Mansfeld J, Novák B, Bakal C. 2017. Dna damage during S-phase 
mediates the proliferation-quiescence decision in the subsequent G1 via p21 expression. Nature 
Communications 8:14728. DOI: https://doi.org/10.1038/ncomms14728, PMID: 28317845

Chakrabarti S, Paek AL, Reyes J, Lasick KA, Lahav G, Michor F. 2018. Hidden heterogeneity and circadian-
controlled cell fate inferred from single cell lineages. Nature Communications 9:5372. DOI: https://doi.org/10.​
1038/s41467-018-07788-5, PMID: 30560953

Chakrabarti S, Michor F. 2020. Circadian clock effects on cellular proliferation: insights from theory and 
experiments. Current Opinion in Cell Biology 67:17–26. DOI: https://doi.org/10.1016/j.ceb.2020.07.003, PMID: 
32771864

Chaplain M, Singh G, McLachlan J (Eds). 1999. On Growth and Form: Spatio-Temporal Pattern Formation in 
Biology. Wiley.

Co AD, Lagomarsino MC, Caselle M, Osella M. 2017. Stochastic timing in gene expression for simple regulatory 
strategies. Nucleic Acids Research 45:1069–1078. DOI: https://doi.org/10.1093/nar/gkw1235, PMID: 28180313

Cohen SE, Golden SS. 2015. Circadian rhythms in cyanobacteria. Microbiology and Molecular Biology Reviews 
79:373–385. DOI: https://doi.org/10.1128/MMBR.00036-15, PMID: 26335718

Cooper S, Helmstetter CE. 1968. Chromosome replication and the division cycle of Escherichia coli B/r. 
Journal of Molecular Biology 31:519–540. DOI: https://doi.org/10.1016/0022-2836(68)90425-7, PMID: 
4866337

Cooper S. 1982. The continuum model: statistical implications. Journal of Theoretical Biology 94:783–800. DOI: 
https://doi.org/10.1016/0022-5193(82)90078-9, PMID: 7078225

Cooper S, Bakal C. 2017. Accelerating live single-cell signalling studies. Trends in Biotechnology 35:422–433. 
DOI: https://doi.org/10.1016/j.tibtech.2017.01.002, PMID: 28161141

Cowan R, Staudte R. 1986. The bifurcating autoregression model in cell lineage studies. Biometrics 42:769–783. 
DOI: https://doi.org/10.2307/2530692, PMID: 3814722

Darzynkiewicz Z, Crissman H, Traganos F, Steinkamp J. 1982. Cell heterogeneity during the cell cycle. Journal of 
Cellular Physiology 113:465–474. DOI: https://doi.org/10.1002/jcp.1041130316, PMID: 6184378

Elowitz MB, Levine AJ, Siggia ED, Swain PS. 2002. Stochastic gene expression in a single cell. Science 
297:1183–1186. DOI: https://doi.org/10.1126/science.1070919, PMID: 12183631

https://doi.org/10.7554/eLife.80927
http://orcid.org/0000-0003-4919-8452
https://doi.org/10.7554/eLife.80927.sa1
https://doi.org/10.7554/eLife.80927.sa2
https://github.com/pthomaslab/Lineage-tree-correlation-pattern-inference
https://github.com/pthomaslab/Lineage-tree-correlation-pattern-inference
https://archive.softwareheritage.org/swh:1:dir:9431a8eabccb4ad1368220e5bf9f005402e890ff;origin=https://github.com/pthomaslab/Lineage-tree-correlation-pattern-inference;visit=swh:1:snp:1afb0bc170c6a378ce4b53703737da2d0d9e097e;anchor=swh:1:rev:dc69bbce5ce909813d7d4356c9fd2da045e02c79
https://doi.org/10.17863/CAM.31834
https://doi.org/10.17863/CAM.31834
https://doi.org/10.1109/TAC.1974.1100705
https://doi.org/10.1103/PhysRevLett.112.208102
https://doi.org/10.1103/PhysRevLett.112.208102
https://doi.org/10.1016/j.celrep.2017.04.055
https://doi.org/10.1016/j.celrep.2017.04.055
http://www.ncbi.nlm.nih.gov/pubmed/28514656
https://doi.org/10.1038/ncomms14728
http://www.ncbi.nlm.nih.gov/pubmed/28317845
https://doi.org/10.1038/s41467-018-07788-5
https://doi.org/10.1038/s41467-018-07788-5
http://www.ncbi.nlm.nih.gov/pubmed/30560953
https://doi.org/10.1016/j.ceb.2020.07.003
http://www.ncbi.nlm.nih.gov/pubmed/32771864
https://doi.org/10.1093/nar/gkw1235
http://www.ncbi.nlm.nih.gov/pubmed/28180313
https://doi.org/10.1128/MMBR.00036-15
http://www.ncbi.nlm.nih.gov/pubmed/26335718
https://doi.org/10.1016/0022-2836(68)90425-7
http://www.ncbi.nlm.nih.gov/pubmed/4866337
https://doi.org/10.1016/0022-5193(82)90078-9
http://www.ncbi.nlm.nih.gov/pubmed/7078225
https://doi.org/10.1016/j.tibtech.2017.01.002
http://www.ncbi.nlm.nih.gov/pubmed/28161141
https://doi.org/10.2307/2530692
http://www.ncbi.nlm.nih.gov/pubmed/3814722
https://doi.org/10.1002/jcp.1041130316
http://www.ncbi.nlm.nih.gov/pubmed/6184378
https://doi.org/10.1126/science.1070919
http://www.ncbi.nlm.nih.gov/pubmed/12183631


 Research article﻿﻿﻿﻿﻿﻿ Cell Biology | Computational and Systems Biology

Hughes et al. eLife 2022;11:e80927. DOI: https://doi.org/10.7554/eLife.80927 � 20 of 41

Errington RJ, Chappell SC, Khan IA, Marquez N, Wiltshire M, Griesdoorn VD, Smith PJ. 2013. Time-Lapse 
microscopy approaches to track cell cycle and lineage progression at the single-cell level. Current Protocols in 
Cytometry Chapter 12:Unit12.. DOI: https://doi.org/10.1002/0471142956.cy1204s64, PMID: 23546776

Fuhr L, Abreu M, Carbone A, El-Athman R, Bianchi F, Laukkanen MO, Mazzoccoli G, Relógio A. 2019. The 
interplay between colon cancer cells and tumour-associated stromal cells impacts the biological clock and 
enhances malignant phenotypes. Cancers 11:E988. DOI: https://doi.org/10.3390/cancers11070988, PMID: 
31311174

Gao F, Zhang Y, Wang S, Liu Y, Zheng L, Yang J, Huang W, Ye Y, Luo W, Xiao D. 2014. Hes1 is involved in the 
self-renewal and tumourigenicity of stem-like cancer cells in colon cancer. Scientific Reports 4:3963. DOI: 
https://doi.org/10.1038/srep03963, PMID: 24492635

Ghusinga KR, Vargas-Garcia CA, Singh A. 2016. A mechanistic stochastic framework for regulating bacterial cell 
division. Scientific Reports 6:30229. DOI: https://doi.org/10.1038/srep30229, PMID: 27456660

Harper CV, Woodcock DJ, Lam C, Garcia-Albornoz M, Adamson A, Ashall L, Rowe W, Downton P, Schmidt L, 
West S, Spiller DG, Rand DA, White MRH. 2018. Temperature regulates NF-κB dynamics and function through 
timing of A20 transcription. PNAS 115:E5243–E5249. DOI: https://doi.org/10.1073/pnas.1803609115, PMID: 
29760065

Hashimoto M, Nozoe T, Nakaoka H, Okura R, Akiyoshi S, Kaneko K, Kussell E, Wakamoto Y. 2016. Noise-driven 
growth rate gain in clonal cellular populations. PNAS 113:3251–3256. DOI: https://doi.org/10.1073/pnas.​
1519412113, PMID: 26951676

Ho PY, Lin J, Amir A. 2018. Modeling cell size regulation: from single-cell-level statistics to molecular 
mechanisms and population-level effects. Annual Review of Biophysics 47:251–271. DOI: https://doi.org/10.​
1146/annurev-biophys-070317-032955, PMID: 29517919

Hughes ME, DiTacchio L, Hayes KR, Vollmers C, Pulivarthy S, Baggs JE, Panda S, Hogenesch JB. 2009. 
Harmonics of circadian gene transcription in mammals. PLOS Genetics 5:e1000442. DOI: https://doi.org/10.​
1371/journal.pgen.1000442, PMID: 19343201

Hughes F. 2022. Lineage-tree-correlation-pattern-inference. 
swh:1:rev:dc69bbce5ce909813d7d4356c9fd2da045e02c79. Software Heritage. https://archive.​
softwareheritage.org/swh:1:dir:9431a8eabccb4ad1368220e5bf9f005402e890ff;origin=https://github.com/​
pthomaslab/Lineage-tree-correlation-pattern-inference;visit=swh:1:snp:1afb0bc170c6a378ce4b53703737da2d​
0d9e097e;anchor=swh:1:rev:dc69bbce5ce909813d7d4356c9fd2da045e02c79

Jafarpour F, Wright CS, Gudjonson H, Riebling J, Dawson E, Lo K, Fiebig A, Crosson S, Dinner AR, Iyer-Biswas S. 
2018. Bridging the timescales of single-cell and population dynamics. Physical Review X 8:021007. DOI: 
https://doi.org/10.1103/PhysRevX.8.021007

Kaj I, Gaigalas R. 2022. Random trees. 1.0. MATLAB Central File Exchange. https://uk.mathworks.com/​
matlabcentral/fileexchange/2516-random-trees

Kiessling S, Beaulieu-Laroche L, Blum ID, Landgraf D, Welsh DK, Storch KF, Labrecque N, Cermakian N. 2017. 
Enhancing circadian clock function in cancer cells inhibits tumor growth. BMC Biology 15:13. DOI: https://doi.​
org/10.1186/s12915-017-0349-7, PMID: 28196531

Kiviet DJ, Nghe P, Walker N, Boulineau S, Sunderlikova V, Tans SJ. 2014. Stochasticity of metabolism and growth 
at the single-cell level. Nature 514:376–379. DOI: https://doi.org/10.1038/nature13582, PMID: 25186725

Kohram M, Vashistha H, Leibler S, Xue B, Salman H. 2021. Bacterial growth control mechanisms inferred from 
multivariate statistical analysis of single-cell measurements. Current Biology 31:955–964.. DOI: https://doi.org/​
10.1016/j.cub.2020.11.063, PMID: 33357764

Kuchen EE, Becker NB, Claudino N, Höfer T. 2020. Hidden long-range memories of growth and cycle speed 
correlate cell cycles in lineage trees. eLife 9:e51002. DOI: https://doi.org/10.7554/eLife.51002

Locke JCW, Elowitz MB. 2009. Using movies to analyse gene circuit dynamics in single cells. Nature Reviews. 
Microbiology 7:383–392. DOI: https://doi.org/10.1038/nrmicro2056, PMID: 19369953

Martins BMC, Locke JCW. 2015. Microbial individuality: how single-cell heterogeneity enables population level 
strategies. Current Opinion in Microbiology 24:104–112. DOI: https://doi.org/10.1016/j.mib.2015.01.003, 
PMID: 25662921

Martins BM, Das AK, Antunes L, Locke JC. 2016. Frequency doubling in the cyanobacterial circadian clock. 
Molecular Systems Biology 12:896. DOI: https://doi.org/10.15252/msb.20167087, PMID: 28007935

Martins BMC, Tooke AK, Thomas P, Locke JCW. 2018. Cell size control driven by the circadian clock and 
environment in cyanobacteria. PNAS 115:E11415–E11424. DOI: https://doi.org/10.1073/pnas.1811309115, 
PMID: 30409801

Matson JP, Cook JG. 2017. Cell cycle proliferation decisions: the impact of single cell analyses. The FEBS 
Journal 284:362–375. DOI: https://doi.org/10.1111/febs.13898, PMID: 27634578

Menger GJ, Allen GC, Neuendorff N, Nahm SS, Thomas TL, Cassone VM, Earnest DJ. 2007. Circadian profiling 
of the transcriptome in NIH/3T3 fibroblasts: comparison with rhythmic gene expression in SCN2.2 cells and the 
rat SCN. Physiological Genomics 29:280–289. DOI: https://doi.org/10.1152/physiolgenomics.00199.2006

Mohammadi F, Visagan S, Gross SM, Karginov L, Lagarde JC, Heiser LM, Meyer AS. 2021. A Lineage Tree-Based 
Hidden Markov Model to Quantify Cellular Heterogeneity and Plasticity. [bioRxiv]. DOI: https://doi.org/10.​
1101/2021.06.25.449922

Mosheiff N, Martins BMC, Pearl-Mizrahi S, Grünberger A, Helfrich S, Mihalcescu I, Kohlheyer D, Locke JCW, 
Glass L, Balaban NQ. 2018. Inheritance of cell-cycle duration in the presence of periodic forcing. Physical 
Review X 8:021035. DOI: https://doi.org/10.1103/PhysRevX.8.021035

https://doi.org/10.7554/eLife.80927
https://doi.org/10.1002/0471142956.cy1204s64
http://www.ncbi.nlm.nih.gov/pubmed/23546776
https://doi.org/10.3390/cancers11070988
http://www.ncbi.nlm.nih.gov/pubmed/31311174
https://doi.org/10.1038/srep03963
http://www.ncbi.nlm.nih.gov/pubmed/24492635
https://doi.org/10.1038/srep30229
http://www.ncbi.nlm.nih.gov/pubmed/27456660
https://doi.org/10.1073/pnas.1803609115
http://www.ncbi.nlm.nih.gov/pubmed/29760065
https://doi.org/10.1073/pnas.1519412113
https://doi.org/10.1073/pnas.1519412113
http://www.ncbi.nlm.nih.gov/pubmed/26951676
https://doi.org/10.1146/annurev-biophys-070317-032955
https://doi.org/10.1146/annurev-biophys-070317-032955
http://www.ncbi.nlm.nih.gov/pubmed/29517919
https://doi.org/10.1371/journal.pgen.1000442
https://doi.org/10.1371/journal.pgen.1000442
http://www.ncbi.nlm.nih.gov/pubmed/19343201
https://archive.softwareheritage.org/swh:1:dir:9431a8eabccb4ad1368220e5bf9f005402e890ff;origin=https://github.com/pthomaslab/Lineage-tree-correlation-pattern-inference;visit=swh:1:snp:1afb0bc170c6a378ce4b53703737da2d0d9e097e;anchor=swh:1:rev:dc69bbce5ce909813d7d4356c9fd2da045e02c79
https://archive.softwareheritage.org/swh:1:dir:9431a8eabccb4ad1368220e5bf9f005402e890ff;origin=https://github.com/pthomaslab/Lineage-tree-correlation-pattern-inference;visit=swh:1:snp:1afb0bc170c6a378ce4b53703737da2d0d9e097e;anchor=swh:1:rev:dc69bbce5ce909813d7d4356c9fd2da045e02c79
https://archive.softwareheritage.org/swh:1:dir:9431a8eabccb4ad1368220e5bf9f005402e890ff;origin=https://github.com/pthomaslab/Lineage-tree-correlation-pattern-inference;visit=swh:1:snp:1afb0bc170c6a378ce4b53703737da2d0d9e097e;anchor=swh:1:rev:dc69bbce5ce909813d7d4356c9fd2da045e02c79
https://archive.softwareheritage.org/swh:1:dir:9431a8eabccb4ad1368220e5bf9f005402e890ff;origin=https://github.com/pthomaslab/Lineage-tree-correlation-pattern-inference;visit=swh:1:snp:1afb0bc170c6a378ce4b53703737da2d0d9e097e;anchor=swh:1:rev:dc69bbce5ce909813d7d4356c9fd2da045e02c79
https://doi.org/10.1103/PhysRevX.8.021007
https://uk.mathworks.com/matlabcentral/fileexchange/2516-random-trees
https://uk.mathworks.com/matlabcentral/fileexchange/2516-random-trees
https://doi.org/10.1186/s12915-017-0349-7
https://doi.org/10.1186/s12915-017-0349-7
http://www.ncbi.nlm.nih.gov/pubmed/28196531
https://doi.org/10.1038/nature13582
http://www.ncbi.nlm.nih.gov/pubmed/25186725
https://doi.org/10.1016/j.cub.2020.11.063
https://doi.org/10.1016/j.cub.2020.11.063
http://www.ncbi.nlm.nih.gov/pubmed/33357764
https://doi.org/10.7554/eLife.51002
https://doi.org/10.1038/nrmicro2056
http://www.ncbi.nlm.nih.gov/pubmed/19369953
https://doi.org/10.1016/j.mib.2015.01.003
http://www.ncbi.nlm.nih.gov/pubmed/25662921
https://doi.org/10.15252/msb.20167087
http://www.ncbi.nlm.nih.gov/pubmed/28007935
https://doi.org/10.1073/pnas.1811309115
http://www.ncbi.nlm.nih.gov/pubmed/30409801
https://doi.org/10.1111/febs.13898
http://www.ncbi.nlm.nih.gov/pubmed/27634578
https://doi.org/10.1152/physiolgenomics.00199.2006
https://doi.org/10.1101/2021.06.25.449922
https://doi.org/10.1101/2021.06.25.449922
https://doi.org/10.1103/PhysRevX.8.021035


 Research article﻿﻿﻿﻿﻿﻿ Cell Biology | Computational and Systems Biology

Hughes et al. eLife 2022;11:e80927. DOI: https://doi.org/10.7554/eLife.80927 � 21 of 41

Mura M, Feillet C, Bertolusso R, Delaunay F, Kimmel M. 2019. Mathematical modelling reveals unexpected 
inheritance and variability patterns of cell cycle parameters in mammalian cells. PLOS Computational Biology 
15:e1007054. DOI: https://doi.org/10.1371/journal.pcbi.1007054, PMID: 31158226

Nagoshi E, Saini C, Bauer C, Laroche T, Naef F, Schibler U. 2004. Circadian gene expression in individual 
fibroblasts: cell-autonomous and self-sustained oscillators pass time to daughter cells. Cell 119:693–705. DOI: 
https://doi.org/10.1016/j.cell.2004.11.015, PMID: 15550250

Nagoshi E, Brown SA, Dibner C, Kornmann B, Schibler U. 2005. Circadian gene expression in cultured cells. 
Methods in Enzymology 393:543–557. DOI: https://doi.org/10.1016/S0076-6879(05)93028-0, PMID: 15817311

Nakajima M, Imai K, Ito H, Nishiwaki T, Murayama Y, Iwasaki H, Oyama T, Kondo T. 2005. Reconstitution of 
circadian oscillation of cyanobacterial KaiC phosphorylation in vitro. Science 308:414–415. DOI: https://doi.​
org/10.1126/science.1108451, PMID: 15831759

Nakashima S, Sughiyama Y, Kobayashi TJ. 2020. Lineage em algorithm for inferring latent states from cellular 
lineage trees. Bioinformatics 36:2829–2838. DOI: https://doi.org/10.1093/bioinformatics/btaa040, PMID: 
31971568

Nozoe T, Kussell E, Wakamoto Y. 2017. Inferring fitness landscapes and selection on phenotypic states from 
single-cell genealogical data. PLOS Genetics 13:e1006653. DOI: https://doi.org/10.1371/journal.pgen.​
1006653, PMID: 28267748

Parascandolo A, Bonavita R, Astaburuaga R, Sciuto A, Reggio S, Barra E, Corcione F, Salvatore M, Mazzoccoli G, 
Relógio A, Laukkanen MO. 2020. Effect of naive and cancer-educated fibroblasts on colon cancer cell circadian 
growth rhythm. Cell Death & Disease 11:289. DOI: https://doi.org/10.1038/s41419-020-2468-2, PMID: 
32341349

Powell EO. 1956. Growth rate and generation time of bacteria, with special reference to continuous culture. 
Journal of General Microbiology 15:492–511. DOI: https://doi.org/10.1099/00221287-15-3-492, PMID: 
13385433

Priestman M, Thomas P, Robertson BD, Shahrezaei V. 2017. Mycobacteria modify their cell size control under 
sub-optimal carbon sources. Frontiers in Cell and Developmental Biology 5:64. DOI: https://doi.org/10.3389/​
fcell.2017.00064, PMID: 28748182

Rannala B. 2002. Identifiability of parameters in MCMC Bayesian inference of phylogeny. Systematic Biology 
51:754–760. DOI: https://doi.org/10.1080/10635150290102429, PMID: 12396589

Raser JM, O’Shea EK. 2005. Noise in gene expression: origins, consequences, and control. Science 309:2010–
2013. DOI: https://doi.org/10.1126/science.1105891, PMID: 16179466

Raue A, Kreutz C, Theis FJ, Timmer J. 2013. Joining forces of Bayesian and frequentist methodology: a study for 
inference in the presence of non-identifiability. Philosophical Transactions. Series A, Mathematical, Physical, 
and Engineering Sciences 371:20110544. DOI: https://doi.org/10.1098/rsta.2011.0544, PMID: 23277602

Ryl T, Kuchen EE, Bell E, Shao C, Flórez AF, Mönke G, Gogolin S, Friedrich M, Lamprecht F, Westermann F, 
Höfer T. 2017. Cell-Cycle position of single myc-driven cancer cells dictates their susceptibility to a 
chemotherapeutic drug. Cell Systems 5:237–250.. DOI: https://doi.org/10.1016/j.cels.2017.07.005, PMID: 
28843484

Sandler O, Mizrahi SP, Weiss N, Agam O, Simon I, Balaban NQ. 2015. Lineage correlations of single cell division 
time as a probe of cell-cycle dynamics. Nature 519:468–471. DOI: https://doi.org/10.1038/nature14318, PMID: 
25762143

Sauls JT, Li D, Jun S. 2016. Adder and a coarse-grained approach to cell size homeostasis in bacteria. Current 
Opinion in Cell Biology 38:38–44. DOI: https://doi.org/10.1016/j.ceb.2016.02.004

Shostak A. 2017. Circadian clock, cell division, and cancer: from molecules to organism. International Journal of 
Molecular Sciences 18:E873. DOI: https://doi.org/10.3390/ijms18040873, PMID: 28425940

Smith B. 2018. ​Mamba.​jl: markov chain monte carlo (MCMC) for bayesian analysis in julia. https://mambajl.​
readthedocs.io/en/latest/ [Accessed October 20, 2018].

Staudte RG, Guiguet M, d’Hooghe MC. 1984. Additive models for dependent cell populations. Journal of 
Theoretical Biology 109:127–146. DOI: https://doi.org/10.1016/s0022-5193(84)80115-0, PMID: 6471866

Staudte RG. 1992. A bifurcating autoregression model for cell lineages with variable generation means. Journal 
of Theoretical Biology 156:183–195. DOI: https://doi.org/10.1016/s0022-5193(05)80672-1, PMID: 1640722

Staudte RG, Huggins RM, Zhang J, Axelrod DE, Kimmel M. 1997. Estimating clonal heterogeneity and 
interexperiment variability with the bifurcating autoregressive model for cell lineage data. Mathematical 
Biosciences 143:103–121. DOI: https://doi.org/10.1016/s0025-5564(97)00006-0, PMID: 9212596

Stewart-Ornstein J, Cheng HWJ, Lahav G. 2017. Conservation and divergence of p53 oscillation dynamics 
across species. Cell Systems 5:410–417.. DOI: https://doi.org/10.1016/j.cels.2017.09.012, PMID: 29055670

Taheri-Araghi S, Bradde S, Sauls JT, Hill NS, Levin PA, Paulsson J, Vergassola M, Jun S. 2015. Cell-Size control 
and homeostasis in bacteria. Current Biology 25:385–391. DOI: https://doi.org/10.1016/j.cub.2014.12.009, 
PMID: 25544609

Takahashi JS. 2017. Transcriptional architecture of the mammalian circadian clock. Nature Reviews. Genetics 
18:164–179. DOI: https://doi.org/10.1038/nrg.2016.150, PMID: 27990019

Tanouchi Y, Pai A, Park H, Huang S, Stamatov R, Buchler NE, You L. 2015. A noisy linear map underlies 
oscillations in cell size and gene expression in bacteria. Nature 523:357–360. DOI: https://doi.org/10.1038/​
nature14562, PMID: 26040722

Thomas P, Straube AV, Timmer J, Fleck C, Grima R. 2013. Signatures of nonlinearity in single cell noise-induced 
oscillations. Journal of Theoretical Biology 335:222–234. DOI: https://doi.org/10.1016/j.jtbi.2013.06.021, 
PMID: 23831270

https://doi.org/10.7554/eLife.80927
https://doi.org/10.1371/journal.pcbi.1007054
http://www.ncbi.nlm.nih.gov/pubmed/31158226
https://doi.org/10.1016/j.cell.2004.11.015
http://www.ncbi.nlm.nih.gov/pubmed/15550250
https://doi.org/10.1016/S0076-6879(05)93028-0
http://www.ncbi.nlm.nih.gov/pubmed/15817311
https://doi.org/10.1126/science.1108451
https://doi.org/10.1126/science.1108451
http://www.ncbi.nlm.nih.gov/pubmed/15831759
https://doi.org/10.1093/bioinformatics/btaa040
http://www.ncbi.nlm.nih.gov/pubmed/31971568
https://doi.org/10.1371/journal.pgen.1006653
https://doi.org/10.1371/journal.pgen.1006653
http://www.ncbi.nlm.nih.gov/pubmed/28267748
https://doi.org/10.1038/s41419-020-2468-2
http://www.ncbi.nlm.nih.gov/pubmed/32341349
https://doi.org/10.1099/00221287-15-3-492
http://www.ncbi.nlm.nih.gov/pubmed/13385433
https://doi.org/10.3389/fcell.2017.00064
https://doi.org/10.3389/fcell.2017.00064
http://www.ncbi.nlm.nih.gov/pubmed/28748182
https://doi.org/10.1080/10635150290102429
http://www.ncbi.nlm.nih.gov/pubmed/12396589
https://doi.org/10.1126/science.1105891
http://www.ncbi.nlm.nih.gov/pubmed/16179466
https://doi.org/10.1098/rsta.2011.0544
http://www.ncbi.nlm.nih.gov/pubmed/23277602
https://doi.org/10.1016/j.cels.2017.07.005
http://www.ncbi.nlm.nih.gov/pubmed/28843484
https://doi.org/10.1038/nature14318
http://www.ncbi.nlm.nih.gov/pubmed/25762143
https://doi.org/10.1016/j.ceb.2016.02.004
https://doi.org/10.3390/ijms18040873
http://www.ncbi.nlm.nih.gov/pubmed/28425940
https://mambajl.readthedocs.io/en/latest/
https://mambajl.readthedocs.io/en/latest/
https://doi.org/10.1016/s0022-5193(84)80115-0
http://www.ncbi.nlm.nih.gov/pubmed/6471866
https://doi.org/10.1016/s0022-5193(05)80672-1
http://www.ncbi.nlm.nih.gov/pubmed/1640722
https://doi.org/10.1016/s0025-5564(97)00006-0
http://www.ncbi.nlm.nih.gov/pubmed/9212596
https://doi.org/10.1016/j.cels.2017.09.012
http://www.ncbi.nlm.nih.gov/pubmed/29055670
https://doi.org/10.1016/j.cub.2014.12.009
http://www.ncbi.nlm.nih.gov/pubmed/25544609
https://doi.org/10.1038/nrg.2016.150
http://www.ncbi.nlm.nih.gov/pubmed/27990019
https://doi.org/10.1038/nature14562
https://doi.org/10.1038/nature14562
http://www.ncbi.nlm.nih.gov/pubmed/26040722
https://doi.org/10.1016/j.jtbi.2013.06.021
http://www.ncbi.nlm.nih.gov/pubmed/23831270


 Research article﻿﻿﻿﻿﻿﻿ Cell Biology | Computational and Systems Biology

Hughes et al. eLife 2022;11:e80927. DOI: https://doi.org/10.7554/eLife.80927 � 22 of 41

Thomas P. 2017. Making sense of snapshot data: ergodic principle for clonal cell populations. Journal of the 
Royal Society, Interface 14:20170467. DOI: https://doi.org/10.1098/rsif.2017.0467, PMID: 29187636

Thomas P, Terradot G, Danos V, Weiße AY. 2018. Sources, propagation and consequences of stochasticity in 
cellular growth. Nature Communications 9:4528. DOI: https://doi.org/10.1038/s41467-018-06912-9, PMID: 
30375377

Tomita J, Nakajima M, Kondo T, Iwasaki H. 2005. No transcription-translation feedback in circadian rhythm of 
KaiC phosphorylation. Science 307:251–254. DOI: https://doi.org/10.1126/science.1102540, PMID: 15550625

Turing AM. 1990. The chemical basis of morphogenesis. Bulletin of Mathematical Biology 52:153–197. DOI: 
https://doi.org/10.1016/S0092-8240(05)80008-4

Ulicna K, Vallardi G, Charras G, Lowe AR. 2021. Automated deep lineage tree analysis using a bayesian single 
cell tracking approach. Frontiers in Computer Science 3:734559. DOI: https://doi.org/10.3389/fcomp.2021.​
734559

Whitfield ML, Sherlock G, Saldanha AJ, Murray JI, Ball CA, Alexander KE, Matese JC, Perou CM, Hurt MM, 
Brown PO, Botstein D, Solomon MJ. 2002. Identification of genes periodically expressed in the human cell 
cycle and their expression in tumors. Molecular Biology of the Cell 13:1977–2000. DOI: https://doi.org/10.​
1091/mbc.02-02-0030

William DA, Saitta B, Gibson JD, Traas J, Markov V, Gonzalez DM, Sewell W, Anderson DM, Pratt SC, 
Rappaport EF, Kusumi K. 2007. Identification of oscillatory genes in somitogenesis from functional genomic 
analysis of a human mesenchymal stem cell model. Developmental Biology 305:172–186. DOI: https://doi.org/​
10.1016/j.ydbio.2007.02.007, PMID: 17362910

Yang Q, Pando BF, Dong G, Golden SS, van Oudenaarden A. 2010. Circadian gating of the cell cycle revealed in 
single cyanobacterial cells. Science 327:1522–1526. DOI: https://doi.org/10.1126/science.1181759, PMID: 
20299597

https://doi.org/10.7554/eLife.80927
https://doi.org/10.1098/rsif.2017.0467
http://www.ncbi.nlm.nih.gov/pubmed/29187636
https://doi.org/10.1038/s41467-018-06912-9
http://www.ncbi.nlm.nih.gov/pubmed/30375377
https://doi.org/10.1126/science.1102540
http://www.ncbi.nlm.nih.gov/pubmed/15550625
https://doi.org/10.1016/S0092-8240(05)80008-4
https://doi.org/10.3389/fcomp.2021.734559
https://doi.org/10.3389/fcomp.2021.734559
https://doi.org/10.1091/mbc.02-02-0030
https://doi.org/10.1091/mbc.02-02-0030
https://doi.org/10.1016/j.ydbio.2007.02.007
https://doi.org/10.1016/j.ydbio.2007.02.007
http://www.ncbi.nlm.nih.gov/pubmed/17362910
https://doi.org/10.1126/science.1181759
http://www.ncbi.nlm.nih.gov/pubmed/20299597


 Research article﻿﻿﻿﻿﻿﻿ Cell Biology | Computational and Systems Biology

Hughes et al. eLife 2022;11:e80927. DOI: https://doi.org/10.7554/eLife.80927 � 23 of 41

Appendix 1
A1. Small noise approximation
Here, we will derive the inheritance matrix model given by Equation 2a, and b in the main text. 
We assume that the fluctuations in the hidden cell factor dynamics are small, which leads to a 
computationally efficient approximation.

Firstly, in the limit of zero fluctuations, all cells must be identical. Hence, all cell cycle factors 
are equal to their means ‍µ = (µ1,µ2, · · · ,µN)⊤ = E(yp)‍ and similarly for the noise vectors 

‍β = (β1,β2, · · · ,βN)⊤ = E(e2m) = E(e2m+1)‍ in Equation 1b. From Equation 1a, and b we then find 
that

	﻿‍ τ̄ = f(µ), µ = g(µ) + β‍� (A1)

which can be efficiently solved for ‍̄τ ‍ and ‍µ‍ using standard numerical methods.
Secondly, we can decompose the interdivision time and the cell cycle factor vector into their 

respective mean and fluctuating components by

	﻿‍ τ = τ̂ + τ
′
p , yp = µ + x̄p.‍� (A2)

Denoting the index of the present cell by p and the one of its mother by m, we can expand f and g 
around the limit of zero fluctuations and we obtain to leading order

	﻿‍

f(yp) = f(µ) + α⊺(yp − µ) + · · ·

g(ym) = g(µ) + θ(ym − µ) + · · ·‍�
(A3)

	﻿‍
α̃i = ∂f(y)

∂yi

∣∣∣
y=µ

, θ̃ij = ∂gi(y)
∂yj

∣∣∣
y=µ

.
‍�

(A4)

where

	﻿‍

τ̄ + τ
′
p = f(µ) + α⊤x̃p + · · · ,

µ + x̃p =
(
g(µ) + θx̃m + · · ·

)
+ β + z̃p,‍�

(A5)

Using this expansion and Equation A2 in Equation 1a and b of the main text we arrive at

	﻿‍ τ̄ + τ ′p = f(µ) + α̃⊤x̃p + · · · ,‍� (A6)

	﻿‍
µ + x̃p =

(
g(µ) + θ̃x̃m + . . .

)
+ β + z̃p,

‍� (A7)

where we have set ‍ep = β + z̃p‍ and ‍̃zp = (̃zp,1, z̃p,2, · · · , z̃p,N)⊤‍ giving the fluctuations around the mean 
for the noise vectors. Comparing Equation A7 with Equation A1 and collecting terms to leading 
order, we obtain the linearised system:

	﻿‍ τ ′p = α̃⊤x̃p‍� (A8)

	﻿‍ x̃p = θ̃x̃m + z̃p.‍� (A9)

Next, we define the diagonal scaling matrix ‍Γ‍ with non-zero elements as

	﻿‍

Γii =





1 if α̃i = 0,

α̃i otherwise,
,

‍� (A10)

for ‍i = 1, 2, . . . , N ‍. Using the rescaled noise sources ‍z = Γz̃‍, we find the rescaled inheritance matrix ‍θ‍ 
and ‍α‍-coefficients

https://doi.org/10.7554/eLife.80927
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	﻿‍

αi =





0 if α̃i = 0,

1 otherwise,
, i = 1, 2, . . . , N,

‍�

(A11)

	﻿‍ θ = Γθ̃Γ−1.‍� (A12)

The rescaled cell cycle factor fluctuations ‍xm = Γx̃m‍ follow Equation 2 of the main text and we reach 
rescaled variance-covariance matrices ‍S1‍ and ‍S2‍ as follows

	﻿‍ S1 = ΓS̃1Γ
⊤, S2 = ΓS̃2Γ

⊤.‍� (A13)

A2. Beyond the small noise approximation: cell cycle factor complexes 
account for nonlinear fluctuations
Here we analyse the effect of nonlinearity on the interdivision time correlation patterns. For simplicity 
we consider a single cell cycle factor and follow the same lines as in Appendix 1 - Section A1, 
Equation A9, while including terms of order ‍x2‍. This leads to the expansion interdivision time and 
factor fluctuations

	﻿‍ τ ′p = α̃⊤x̃p + β̃⊤x̃2
p + O(x3),‍� (A14)

	﻿‍ x̃p = θ̃x̃m + H̃x̃2
m + z̃p + O(x3),‍� (A15)

where ‍̃θ‍ is the Jacobian of the cell cycle factor dynamics, as before, and ‍̃H = g′′(µx)‍ is the Hessian. 
From the second equation we obtain

	﻿‍ x̃2
p = θ̃2x̃2

m + 2θ̃z̃px̃m + z̃2
p + O(x3).‍� (A16)

Defining ‍X̃p = (x̃p, x̃2
p)‍ and ‍Z̃p = (̃zp, z̃2

p)‍, combining Equation A14 and Equation A16 and rescaling 
variables as in Equation A12 and Equation A13, we find the extended inheritance matrix model

	﻿‍

τ = µ + A⊤Xp,

X2m = ΘXm + B(Xm)Z2m,

X2m+1 = ΘXm + B(Xm)Z2m+1‍�

(A17)

where

	﻿‍

Θ =


 θ H

0 θ2


 , B(Xm) =


 1 0

2xm 1


 , A =


 α

β


 .

‍�
(A18)

Here ‍H = H̃α̃/β̃‍ and ‍β = 1‍ if ‍̃β ̸= 0‍, and analogously, ‍H = H̃α̃‍ and ‍β = 0‍ if ‍̃β = 0‍. Hence, the 
interdivision time correlation patterns with small to moderate fluctuations can be described through 
an extended linear system (Equation A7) that includes nonlinear terms ‍x

2
p‍. These additional terms 

can be interpreted as cell cycle factors forming binary complexes. The presence of these complexes 
increases the number of cell cycle factors and extends the eigenvalue spectrum of the effective 
inheritance matrix ‍Θ‍ by ‍θ2‍. Hence, the presence of complexes leads to mixed correlation patterns. 
For example, for a single cell cycle factor, the eigenvalues of ‍Θ‍ are ‍(θ, θ2)‍, which corresponds to an 
alternator pattern for ‍θ < 0‍. More generally, we may expect that nonlinear patterns can be described 
through mixtures of aperiodic, alternator, and oscillatory patterns. For example, the complex 
eigenvalue spectrum of an oscillator pattern (‍e±i2π/P‍) will include powers of complex eigenvalues 
(‍e±i4π/P‍) resulting in harmonics of the fundamental correlation oscillation frequency similar to higher 
order harmonics observed in single-cell time-series of the circadian clock (Martins et  al., 2016; 
Thomas et al., 2013).

A3. Derivation of the generalised tree correlation function
In this section we derive an analytical expression for the generalised tree correlation function. This 
gives the Pearson correlation coefficient in interdivision time for any pair of related cells. We start 
with the equation for the Pearson correlation coefficient, and from there derive a formula for the 

https://doi.org/10.7554/eLife.80927
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interdivision time covariance using the known properties of the cell cycle factors ‍x‍. From this, we can 
derive the general formula for the correlation coefficient between any related cell pair.

We associate a cell pair with an index ‍(k, l)‍ which measures the distance to the nearest common 
ancestor as given in ‘The inheritance matrix model reveals threedistinct interdivision time correlation 
patterns’ (Figure  2a). From this, we denote their interdivision time fluctuations as ‍τ

′
k‍ and ‍τ

′
l ‍ 

respectively. The Pearson correlation coefficient between these fluctuations is given by

	﻿‍ ρ(k, l) = Cov(τ ′
k ,τ ′

l )
sτ′

,‍� (A19)

where ‍sτ ′‍ is the variance of the interdivision time fluctuations.
The interdivision time fluctuations ‍τ

′
k‍ and ‍τ

′
l ‍ are calculated from the vector of rescaled cell cycle 

factor fluctuations ‍xk‍ as given in ‘A general inheritance matrix model provides a unified framework 
for lineage tree correlation patterns’, giving the equations

	﻿‍ τ ′k = α⊤xk and τ ′l = α⊤xl.‍� (A20)

Substituting Equation A20 into Equation A19, we obtain a formula for in terms of the cell cycle 
factor fluctuations and the coefficients alone

	﻿‍
ρ(k, l) = Cov(α⊤xk,α⊤xl)√

Var(α⊤xk)
√

Var(α⊤xl)
,
‍�

(A21)

	﻿‍
= α⊤Cov(xk,xl)α√

α⊤Var(xk)α
√

α⊤Var(xl)α
.
‍�

(A22)

Since ‍xk‍ and ‍xl‍ are identically distributed in steady state, we have that ‍Var(xk) = Var(xl) = Cov(x, x) = Σ‍ 
as specified in Materials and methods - ‘Analytical solution of the inheritance matrix model’‘. We can 
write ‍ρ(k, l)‍ now as

	﻿‍
ρ(k, l) = α⊤Cov(xk, xl)α

α⊤Σα
,
‍�

(A23)

where ‍α⊤Σα‍ gives the variance of the interdivision time fluctuations ‍τ ′‍.
Using the model Equation 2 we can write the formula for the ‍x‍ vectors for the two cells in the 

cell pair ‍(k, l)‍ as

	﻿‍ xk = θxk−1 + zk,‍� (A24)

	﻿‍ xl = θxl−1 + zl,‍� (A25)

where cells ‍k‍ and ‍l‍ have mother cells ‍k − 1‍ and ‍l − 1‍ respectively. The two cells are sisters if and only 
if their subscripts are both equal to 1, meaning they share a mother cell. Using recurrence of the 
model, we can write these equations as

	﻿‍

xk = θkx0 +
∑k

i=1 θ
k−izi,

xl = θlx0 +
∑l

j=1 θ
l−jzj, ‍�

(A26)

where ‍x0‍ is the vector of cell cycle factors for the most recent common ancestor for a cell pair given 
by ‍(k, l)‍.

All that remains is to derive a function for ‍Cov(xk, xl)‍ which we will denote ‍ω(k, l)‍. We calculate 

‍ω(k, l)‍ as follows using expectations:

	﻿‍
ω(k, l) = Cov(xk, xl) = IE

[(
xk − µxk

) (
xl − µxl

)⊤]
,
‍� (A27)

	﻿‍
= IE

[
xkx⊤l

]
− µxkµ

⊤
xl ,

‍� (A28)

where ‍µxk‍ and ‍µxl‍ are the mean vectors of ‍xk‍ and ‍xl‍ respectively which are both equal to 0, giving

	﻿‍
ω(k, l) = IE

[
xkx⊤l

]
.
‍� (A29)

https://doi.org/10.7554/eLife.80927
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To find 
‍
IE
[
xkx⊤l

]
‍
 in terms of the model parameters, we substitute in Equation A26 for ‍xk‍ and ‍xl‍ and 

get

	﻿‍

IE
[
xkx⊤l

]
= IE


(θkx0

)(
θlx0

)⊤
+

(
k∑

i=1
θk−izk

)(
l∑

j=1
θl−jzj

)⊤

 .

‍�
(A30)

The noise term fluctuations ‍z‍ are only correlated if the cells are sisters, which only occurs when the 
distance we have ‍(k, l) = (1, 1)‍. So for the summations above, we exclude all terms except where 
‍i = j = 1‍. Doing this and expanding we get

	﻿‍
IE
[
xkx⊤l

]
= θkIE

[
x0x⊤0

] (
θl
)⊤

+ δk≥1δl≥1θ
k−1IE

[
z1z⊤1

] (
θl−1

)⊤
,
‍�

(A31)

where ‍δk≥1‍ and ‍δl≥1‍ are given in Equation M4. We also have that

	﻿‍
Cov(x0, x0) = IE

[
x0x⊤0

]
.
‍� (A32)

The matrix ‍Cov(x0, x0)‍ is equivalent to the covariance matrix for any ‍x‍, giving ‍Cov(x0, x0) = Σ‍. This 
gives

	﻿‍
IE
[
x0x⊤0

]
= Cov(x0, x0),

‍� (A33)

	﻿‍ = Σ.‍� (A34)

Similarly we have,

	﻿‍
Cov(z2m, z2m+1) = IE

[
z1z⊤1

]
.
‍� (A35)

As ‍IE(z) = 0‍, and ‍Cov(z2m, z2m+1) = S2‍ as stated in Materials and methods - ‘Analytical solution of the 
inheritance matrix model’, we obtain,

	﻿‍
IE
[
z1z⊤1

]
= S2.

‍� (A36)

Equation A31 therefore becomes:

	﻿‍
IE
[
xkx⊤l

]
= θkΣ

(
θl
)⊤

+ δk≥1δl≥1θ
k−1S2

(
θl−1

)⊤
.
‍�

(A37)

Substituting Equation A37 back into Equation A29 we get

	﻿‍
ω(k, l) = θkΣ

(
θl
)⊤

+ δk≥1δl≥1θ
k−1S2

(
θl−1

)⊤
,
‍�

(A38)

giving us the final equation for ‍ω(k, l)‍. Using the above equation in Equation A23, we obtain 
Equation M3 of the Methods.

A4. Derivation of the formula for the oscillator periods, ‍Tn‍
The period of correlation oscillation as observed in the lineage correlation functions is given by 
Thomas et al., 2018. We can reveal the underlying oscillator periods by shifting the inferred period 
‍T0‍ to obtain a smaller period ‍Tn‍. This means that shorter periods would produce the same inferred 
period in the lineage correlation function when sampled at the original frequency of once per cell 
cycle (Figure 5a).

The oscillator periods are obtained by adding or subtracting multiples of ‍2π‍ to the argument of 
the eigenvalue which results in the new argument being in the same position in the complex plane. 
The oscillator period ‍Tn‍ with shift ‍n in Z‍ is therefore given by

	﻿‍ Tn = τ̄ 2π
|Arg(λ)+2πn| .‍� (A39)

Taking Equation A40 and substituting in Equation 6, we obtain ‍Tn‍ in terms of ‍T0‍ as Equation 7.

https://doi.org/10.7554/eLife.80927
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A5. Solution of the tree correlation function and parameter 
identifiability for simple inheritance rules
We consider the limiting case of a single cell cycle factor (‍N = 1‍) resulting in simple inheritance rules. 
This situation could model a growth factor that can either increase or decrease interdivision times of 
cells depending on the monotonicity of ‍f ‍ in Equation 1. The analytical solution (Equation M7) of 
the inheritance matrix model then reduces to

	﻿‍ ρ(k, l) = wθk+l, sτ = S1
1−θ2 ,‍� (A40)

where ‍w = 1 + δk≥1δl≥1
S2
S1

(1−θ2)
θ2 ‍. First, we observe that, given single cell measurements of the mother-

daughter correlation coefficient ‍ρ(0, 1)‍, the daughter-daughter correlation coefficient ‍ρ(1, 1)‍ and the 
variance ‍sτ ‍, the parameters ‍θ‍, S1 and S2 are uniquely identifiable:

	﻿‍ θ = ρ(1, 0), S1 = sτ (1 − ρ2(1, 0)), S2 = ρ(1,1)−ρ2(1,0)
1−ρ2(1,0) .‍� (A41)

Thus measurements of the variance, lineage- and cross-branch correlations fully determine the 
parameters. The tree correlation function is, however, independent of ‍f ‍, which means that the 
interdivision time correlation pattern carries no information whether the growth factor increases 
or decreases growth. The reason for this indifference is that cell cycle factors are identified only 
by their fluctuation pattern, i.e., for each cell cycle factor whose fluctuations increase interdivision 
time ‍x‍, we could define another cell cycle factor fluctuation that decrease interdivision time ‍−x‍. We 
accounted for this unidentifiability issue trough a similarity transformation using the scaling matrix 
‍Γ‍ in Equation A12 and Equation A13 that transforms all cell cycle factor fluctuations to increase 
interdivision time. Of course, this unidentifiabiliy could be removed through explicitly measuring the 
involved cell cycle factors.

A6. Mapping mechanistic cell cycle and cell size control models to the 
inheritance matrix model
To further investigate the output of the inheritance matrix model, we propose multiple models of 
known cell cycle control mechanisms, and map them to our inheritance matrix model framework. All 
cell size models assume symmetric division.

A6.1 Cell size control model with correlated growth
Considering the influence of cell size control on interdivision time (Taheri-Araghi et  al., 2015; 
Kohram et al., 2021; Ho et al., 2018), here we propose a cell size control model where we have 
some mother to daughter inheritance of both the added size ‍∆‍ and the growth rate ‍κ‍ (Appendix 1—
figure 5g). The model equations are given by:

	﻿‍

sb,2m = 1
2
(
asb,m + ∆m

)
, ∆2m = b∆m + ξ2m, κ2m = cκm + ϕ2m,

sb,2m+1 = 1
2
(
asb,m + ∆m

)
, ∆2m+1 = b∆m + ξ2m+1, κ2m+1 = cκm + ϕ2m+1.‍�

(A42)

The noise terms ‍ξ‍ and ‍ϕ‍ are independent between sisters such that ‍Cov(ξ2m, ξ2m+1) = Cov(ϕ2m,ϕ2m+1) = 0‍. 
Assuming exponential growth the formula for the interdivision time is given by

	﻿‍ τp =
ln
∣∣∣a+ ∆p

sb,p

∣∣∣
κp

,‍�
(A43)

where ‍p‍ represents the index of a given cell. Taking the vector of cell cycle factors for the mother 
cell to be ‍ym = (ym,1, ym,2, ym,3)⊤ = (∆m, sb,m,κm)⊤‍ and comparing Equation 1a and b with Equation 
A43 and Equation A44, we obtain

	﻿‍ f(y) =
ln
∣∣∣a+ y1

y2

∣∣∣
y3

, g(y) = (by1, 1
2
(
ay2 + y1), cy3

)⊤ , β = (IE[ξ], 0, IE[ϕ])⊤.‍�
(A44)

Then we can calculate the means from Equation A1,

	﻿‍ µ1 = IE[ξ]
b−1 , µ2 = IE[ξ]

(a−2)(b−1) , µ3 = − IE[ϕ]
c−1 .‍� (A45)

https://doi.org/10.7554/eLife.80927
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Then using Equation A45 in Equation A5 and Equation A12, we find

	﻿‍

α =




1

1

1


 , θ =




b 0 0
1
2
(
a − 2

) a
2 0

0 0 c


 .

‍�

(A46)

Assuming ‍̃S2 = 0‍ and using Equation A13, we find

	﻿‍

S1 =




(a − 2)2(b − 1)2(c − 1)2Var[ξ2m]
4IE[ξ]2IE[ϕ]2 0

(a − 2)(b − 1)(c − 1)3 ln |2|Var[ϕ2m]Var[ξ2m]
2IE[ξ]IE[ϕ]3

0 0 0
(a − 2)(b − 1)(c − 1)3 ln |2| Var[ϕ2m]Var[ξ2m]

2IE[ξ]IE[ϕ]3 0
(c − 1)4 ln |2|2 Var[ϕ2

2m]
IE[ϕ]4




.

‍
� (A47)

The ‍θ‍ matrix has eigenvalues ‍λ = ( a
2 , b, c)‍ which give an aperiodic pattern for ‍a, b, c > 0‍ and an 

alternator pattern otherwise (Appendix 1—figure 5i and j). These same patterns arise for all real 
eigenvalues in the 3D model in the same was as in the two-dimensional system. Only a single negative 
eigenvalue is needed for the lineage correlation function to display an alternator pattern. We are 
restricted to ‍a in (−2, 2)‍ and ‍b, c in (−1, 1)‍ to ensure ‍SR(θ) < 1‍. The cousin-mother inequality for this 
system is too complex to be looked at analytically, so we use numerical methods to visualise the 
parameter region in which the cousin-mother inequality can be satisfied (Appendix 1—figure 5h).

For the case of the aperiodic pattern, we observe positive same factor mother-daughter 
correlation and negative alternate factor mother-daughter correlation (Appendix 1—figure 5k). In 
contrast, for an alternator pattern, the mother daughter same factor correlation is negative, but the 
alternate factor correlations vary between positive and negative values (Appendix 1—figure 5I).

A6.2 Simple cell size control model
For the special case of ‍b = Var[ϕ] = 0‍ and ‍c = 1‍, the model reduces to a simple cell size control model 
with fluctuating added size (Appendix 1—figure 5a). The inheritance matrix ‍θ‍ then has eigenvalues 

‍λ = (0, a
2 )‍. Thus depending on the choice of ‍a‍, this model can produce both an alternator and 

aperiodic pattern (Appendix  1—figure 5c and d). In this case, using Equation M3 the cousin-
mother inequality becomes

	﻿‍ a2(a − 2) + 4|a − 2| < 0,‍� (A48)

which cannot be satisfied for ‍|a| < 2‍, which implies ‍SR(θ) = a
2 < 1‍. Hence the cousin-mother inequality 

cannot be satisfied for any reasonable choice of ‍a‍ in this simple model (Appendix 1—figure 5b).
For an aperiodic pattern, this simplified model exhibits positive same factor mother-daughter 

correlation and negative alternate factor mother-daughter correlation (Appendix 1—figure 5e). In 
the alternator case, this model exhibits negative same factor mother-daughter correlation and also 
negative alternate factor mother-daughter correlation (Appendix 1—figure 5f).

A6.3 Abstract cell cycle phase model
We propose a model of two abstract cell cycle phases that have no integrated dependence on cell 
size (Appendix 1—figure 5m). The model equations are given by

	﻿‍

y2m,1 = aym,1 + bym,2 + ξ2m, and y2m,2 = cym,2 + ϕ2m,

y2m+1,1 = aym,1 + bym,2 + ξ2m+1, and y2m+1,2 = cym,2 + ϕ2m+1.‍�
(A49)

The noise terms ‍ξ‍ and ‍ϕ‍ are independent between sister cells such that 
‍Cov(ξ2m, ξ2m+1) = Cov(ϕ2m,ϕ2m+1) = 0.‍ In this case we have that the two factors make up the length 
of the cell cycle, so we simply have ‍τp = yp,1 + yp,2‍.

Therefore using Equation 1a and b, we obtain

	﻿‍ f(y) = y1 + y2, g(y) = (ay1 + by2, cy2)⊤, β = (IE[ξ], IE[ϕ])⊤‍� (A50)

We calculate the means from Equation A1,

https://doi.org/10.7554/eLife.80927
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	﻿‍ µ1 = bIE[ϕ]+(1−c)IE[ξ]
(1−a)(1−c) , and µ2 = IE[ϕ]

1−c .‍� (A51)

Then using Equation A51 in Equation A5 and Equation A12, we find

	﻿‍

α=


1

1


, θ=


a b

0 c


.

‍�
(A52)

As the noise terms are independent between sisters we have ‍̃S2 = 0‍ and using Equation A13 we 
obtain

	﻿‍

S1 =


 Var[ξ2

2m] Var[ξ2m]Var[ϕ2m]

Var[ξ2m]Var[ϕ2m] Var[ϕ2
2m]


 .

‍�
(A53)

The inheritance matrix ‍θ‍ has eigenvalues ‍λ = (a, c)‍ which gives an aperiodic pattern for ‍a‍ and ‍c > 0‍ 
and an alternator pattern otherwise (Appendix 1—figure 5o, p).

The analytical form of the cousin-mother inequality is complex so we use numerical methods to 
visualise the parameter region in which the cousin-mother inequality can be satisfied (Appendix 1—
figure 5n).

We calculate individual factor mother-daughter correlations and find that for an aperiodic 
pattern, the model exhibits a range of correlation patterns (Appendix 1—figure 5q). However, for 
an alternator pattern, we obtain positive same factor mother-daughter correlation and negative 
alternate factor mother-daughter correlation (Appendix 1—figure 5r)

A7. Models of circadian-clock-driven correlation patterns
A7.1 Kicked cell cycle model
Here we analyse the kicked cell cycle model (Mosheiff et al., 2018) with our framework (Appendix 1—
figure 6a). We will propose an inheritance matrix and then show that it reduces to the kicked cell 
cycle model for certain parameter choices. Consider the ‍3 × 3‍ inheritance matrix ‍θ‍ and noise vector 
‍zn‍ given by

	﻿‍

θ =




β 1 1

0 D cos 2π
P

D sin 2π
P

0 −D sin 2π
P

D cos 2π
P




and zn =



ξn,τ

ξn,1

ξn,2


 ,

‍�

(A54)

for ‍n ∈ {2m, 2m + 1}‍. We have that ‍S1‍ is given by ‍Cov(z2m, z2m)‍, however we assume that the noise 
terms ‍ξn‍ are independent between sisters such that ‍S2 = Cov(z2m, z2m+1) = 0‍. Assuming ‍α = (1, 0, 0)⊤‍, 
the interdivision times are governed by

	﻿‍

τ2m = βτm + x̂m,1 + x̂m,2 + z2m,

τ2m+1 = βτm + x̂m,1 + x̂m,2 + z2m+1.‍�
(A55)

The oscillator is represented by the cell cycle factors ‍̂x‍ that evolve according to

	﻿‍

x̂2m = θ̂x̂m + ẑ2m,

x̂2m+1 = θ̂x̂m + ẑ2m+1,‍�
(A56)

with oscillator inheritance matrix

	﻿‍

θ̂=




D cos 2π
P

D sin 2π
P

−D sin 2π
P

D cos 2π
P


 .

‍�

(A57)

We can solve Equation A56 along an ancestral lineage of ‍n‍ generations

https://doi.org/10.7554/eLife.80927
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	﻿‍
x̂n = θ̂

n
x̂0 +

n∑
i=1

θ̂
n−i

ẑi,
‍�

(A58)

where ‍̂x0‍ is the state of the ancestral cell. Substituting Equation A58 into Equation A55 and 
assuming ‍̂zi = 0‍, i.e., the cell cycle oscillator ‍̂x‍ is deterministic, the interdivision time of the mother 
determines the interdivision time of the daughter cell via

	﻿‍
τn = βτn−1 + Dn

(
x̂+

0 cos 2π(n − 1)
P

+ x̂−0 sin 2π(n − 1)
P

)
+ zn,

‍�
(A59)

where ‍̂x
+
0 = (x̂0,1 + x̂0,2)‍ and ‍̂x

−
0 = (x̂0,1 − x̂0,2)‍ which represent initial conditions. Assuming 

‍tn =
∑n

i=1 τn ≈ nτ̄ ‍ approximates the time at birth for ‍n ≫ 1‍, this leads to

	﻿‍
τn = βτn−1 + Dn

(
x̂+

0 cos 2πtnτ̄
P

+ x̂−0 sin 2πtnτ̄
P

)
+ zn,

‍�
(A60)

Comparing Equation A60 to Equations 1 and 2 in Mosheiff et al., 2018, we see that our IMM 
agrees with the kicked cell cycle model when ‍D = 1‍, ‍̂x

+
0 = 0‍, ‍ξn,1 = ξn,2 = 0‍, and large ‍n‍.

A7.2 Circadian-clock-driven cell size control model
Here we analyse the model of cell size control driven by the circadian clock proposed in Martins 
et al., 2018 within the inheritance matrix model framework (Appendix 1—figure 6e). The division 
rate, ‍Γ(s, sb, ∂s

∂t , t)‍ in Equation 1 of Martins et al., 2018 is given by

	﻿‍ Γ(s, sb, ∂s
∂t , t) = G(t)S(s, sb)∂s

∂t ‍� (A61)

where ‍s‍ is the cell size with sb being the size at birth. ‍G(t)‍ is a function of time ‍t‍ that couples the size 
control to the circadian clock, and ‍S(s, sb)‍ is the division rate per unit volume of the cell. Assuming 
cells grow exponentially with growth rate ‍α‍, we have

	﻿‍
s(τ ) = sbeατ and t(s, tb) = tb + 1

α
ln s

sb
,
‍�

(A62)

and the division size follows

	﻿‍
P(sd|tb, sb) = G(t(sd, tb))S(sd, sb) exp[−

ˆ sd

sb

dsG(t(s, tb))S(s, sb)]
‍�

(A63)

where ‍sb‍ is the size at birth and ‍tb‍ is the time at birth.
To map these to our inheritance matrix model, we observe that samples from Equation A63 

follow

	﻿‍ sd,m = g̃(tb,m, sb,m) + η̃m(tb,m, sb,m)‍� (A64)

where ‍̃g(tb,m, sb,m) = EP[sd|tb, sb]‍ is a drift term and ‍̃ηm‍ is a zero-mean noise term that depends both 
on time of day and birth size. Note that both ‍̃g(tb,m)‍ and ‍̃ηm(tb,m, sb,m)‍ are periodic functions of time 
at birth ‍tb,m‍. Since the latter is not explicitly modelled in our framework, here, we replace it with the 
state ‍x0,m‍ of the circadian clock, such that the update equations in Equation A64 now appear as

	﻿‍ sd,m = g(x0,m, sb,m) + ηm(x0,m, sb,m).‍� (A65)

To gain intuition into the shape of the unknown functions ‍g‍ and ‍h‍, we linearise the equations 
around some basal level ‍x = δ‍ of a clock-less mutant, which gives

	﻿‍ sd,m = g(δ, sb,m) + g′(δ, sb,m)x0 + ηm(δ, sb,m) + x0η
′
m(δ, sb,m),‍� (A66)

For simplicity assume ‍η
′
m(δ, sb,m) = 0‍ and that the clock-less mutant follows a linear cell size control 

model with gamma-distributed size increments ‍ϕA,m ∼ Gamma‍ with mean ‍∆‍ as in Martins et al., 
2018. These assumptions lead to the relations,

	﻿‍ g(δ, sb,m) = ∆ + asb,m, ηm(δ, sb,m) = ϕA,m −∆.‍� (A67)

https://doi.org/10.7554/eLife.80927
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Using ‍sb,2m = sb,2m+1 = sd,m/2‍, we can obtain the linearised inheritance matrix model equations for 
the circadian cell size control model (Appendix 1—figure 6e):

	﻿‍

sb,2m = 1
2 (asb,m + bx0,m + ξm), ξ2m = ϕA,m,

sb,2m+1 = 1
2 (asb,m + bx0,m + ξm) ξ2m+1 = ϕA,m‍�

(A68)

where now ‍ξm‍ is the added size and ‍x0,m‍ is the output ‍x0,m = x1,m + x2,m‍ of a circadian oscillator 
governed by

	﻿‍


x1,n+1

x2,n+1


=x0,n+1 = θ̂x0,n + ϕn+1,

‍�
(A69)

for cell generation ‍n‍, where ‍ϕ = (ϕ1,ϕ2)⊤‍ are noise terms added to the elements of ‍x0‍ and ‍̂θ‍ is some 
complex eigenvalued ‍2 × 2‍ inheritance matrix given by

	﻿‍

θ̂=




D cos 2π
P

D sin 2π
P

−D sin 2π
P

D cos 2π
P


 .

‍�

(A70)

Following this, we see that the circadian clock is incorporated into this cell size control system in the 
same way as the kicked cell cycle model outlined in the previous section (Appendix 1 - Section A7.1). 
Using Equation A62 we can write the interdivision time of a cell with index ‍p‍ as

	﻿‍
τp =

ln(
asb,p + bx0,p + ξp

sb,p
)

α
.
‍�

(A71)

Then taking the vector of cell cycle factors for the mother cell to be 

‍ym = (ym,1, ym,2, ym,3, ym,4)⊤ = (sb,m, x1,m, x2,m, ξm)⊤‍ and comparing Equation 1a and b with 
Equation A68 and Equation A71 we obtain

	﻿‍

f(y) =
ln( ay1+b(y2+y3)+y4

y1
)

α

g(y) = ( 1
2 (ay1 + b(y2 + y3) + y4), D cos 2π

P
y2 + D sin 2π

P
y3, −D sin 2π

P
y2 + D cos 2π

P
y3, cy4)⊤

β = (0, IE[ϕ̂1], IE[ϕ̂2], IE[ϕ̂A])⊤. ‍ 
� (A72)

Computing the means using Equation A1 we get

	﻿‍ µ1 = −µϕ

a−2 , µ2 = 0, µ3 = 0, µ4 = µϕ.‍� (A73)

Then using Equation A72 in Equation A5 and Equation A12, we can solve for the means

	﻿‍

α =




1

1

1

1




and θ =




a
2

1
2

(a − 2) 1
2

(a − 2) 1
2

(a − 2)

0 D cos( 2π
P

) D sin( 2π
P

) 0

0 −D sin( 2π
P

) D cos( 2π
P

) 0

0 0 0 0




.

‍�

(A74)

Then taking ‍̃S2 = 0‍ and using Equation A13, we obtain the following for ‍S1‍:

	﻿‍

S1 = (a − 2)2

4α2




0 0 0 0

0 b2η2
1 b2cor12η1η2 bcorA1η1η2

0 b2cor12η1η2 b2η2
2 bcorA2η2ηA

0 bcorA1η1ηA bcorA2η2ηA η2
A




‍� (A75)
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where ‍corij‍ indicates the correlation between a pair of noise terms ‍ϕi‍ and ‍ϕj‍, and 
‍
η2

i = Var(ϕi)
µ2
ϕ ‍

 for 

‍i, j ∈ {1, 2, A}‍.

A7.3 Model comparison
We notice that the kicked cell cycle model has three cell cycle factors, while the circadian-clock-
driven cell size control model has four cell cycle factors. The eigenvalues of the inheritance matrix ‍θ‍ 
determining the correlation patterns are

	﻿‍ λ = (β, De+ 2πi
P , De−

2πi
P )⊤‍� (A76)

for the kicked cell cycle model and

	﻿‍ λ = (0, a
2 , De+ 2π

P , De−i 2π
P )⊤‍� (A77)

and for the cell size control model. In both models, either the complex pair of eigenvalues ‍De±
2πi

P ‍ 
produces oscillatory behaviour. The overall correlation patterns are of mixed type, depending on the 
parameters ‍β‍ and ‍a‍.

To compare the models quantitatively, we match their mother-daughter interdivision time 
correlation coefficient in the absence of clock coupling. For the kicked cell cycle model, we notice 
that ‍ρ(1,0) = β‍ in the absence of clock coupling. The cell size control model reduces to the model 
in Appendix 1 - Section A6.1 in the absence of clock coupling, which satisfies ‍ρ(1,0) = a−2

4 ‍. Since 
realistic cell size control mechanisms (Taheri-Araghi et al., 2015; Amir, 2014; Tanouchi et al., 2015; 
Sauls et al., 2016) (‍a ∈ [0, 2)‍) ranging from sizers (‍a = 0‍) to adders (‍a = 1‍) to timers (‍a = 2‍) imply 

‍β ≤ 0‍, we find that the kicked cell cycle obeys a mixed correlation pattern of the alternator/oscillator 
type while the cell size control model obeys a aperiodic/oscillator pattern.

Focusing on the common adder size control (‍a = 1‍), we find that the regions where the cousin-
mother inequality is satisfied is remarkably similar in both models when ‍β‍ is matched accordingly 
(Appendix 1—figure 6b and f). The lineage correlation function (red line) oscillates but the cross-
branch correlation functions (blue line) alternates for the kicked cell cycle (Appendix  1—figure 
6c–d) but not for the cell size control model (Appendix 1—figure 6g–h).

A8. Inference validation using simulated data
To validate the inference results discussed in the main text we simulate interdivision time data using 
the maximum posterior parameters from the inference on two of the original live imaging datasets, 
and compare the output and model fit to our original inference.

We take the maximum posterior parameter sets from the original inference on two datasets 
(Appendix 1—table 2), cyanobacteria and mouse embryonic fibroblasts, and produce simulated 
interdivision time lineage data in MATLAB using custom scripts and Random Trees (Kaj and Gaigalas, 
2022). We chose to look at these two datasets in order to analyse the posterior distribution of the 
inferred underlying period ‍T−1‍ to compare to the approximately 24 hr results seen in the main text.

Appendix 1—table 1 Continued on next page

Appendix 1—table 1. Lineage tree statistics obtained from each dataset used in this work.
Mean interdivision time,‍τ ‍ tree variance,‍̂sτ ‍ CVs and all correlation coefficients ± standard deviation of the bootstrap distributions from 
10,000 re-samplings with replacement. Statistics were calculated on all available cells that could be put in the required family pair 
(Materials and methods - ‘Data analysis and Bayesian inference of the inheritance matrix model’). Shaded datasets exhibit the cousin-
mother inequality.

Cell type Mean ‍̄τ ‍ (hours) Variance ‍̂sτ ‍ (hours2) CV ‍̂ρmd‍ ‍̂ρgg‍ ‍̂ρss‍ ‍̂ρcc‍ 1D AiC 2D AiC ref.

Cyanobacteria (S. elongatus) 15.47±3.27 10.67±0.36 0.21±0.004 −0.25±0.024 −0.16±0.028 0.63±0.028 0.40±0.019 408.13 14.01 Martins et al., 2018

Clock deleted cyanobacteria
(S. elongatus ΔkaiBC)

14.43±1.89 3.57±0.15 0.13±0.003 −0.02±0.027 0.12±0.032 0.48±0.025 0.26±0.021 172.47 14.00 Martins et al., 2018

Mycobacteria (M. smegmatis) 2.52±0.65 0.42±0.03 0.26±0.010 −0.16±0.041 −0.05±0.051 0.55±0.033 0.05±0.040 8.69 14.01 Priestman et al., 2017

https://doi.org/10.7554/eLife.80927
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Cell type Mean ‍̄τ ‍ (hours) Variance ‍̂sτ ‍ (hours2) CV ‍̂ρmd‍ ‍̂ρgg‍ ‍̂ρss‍ ‍̂ρcc‍ 1D AiC 2D AiC ref.

Human colorectal cancer (HCT116) 16.39±2.55 6.49±1.10 0.15±0.012 0.07±0.141 −0.08±0.227 0.73±0.047 0.34±0.070 22.20 14.23 Chakrabarti et al., 
2018

Neuroblastoma (TET21N) 17.12±3.13 9.79±0.68 0.18±0.006 0.35±0.027 0.15±0.022 0.69±0.021 0.40±0.018 196.79 14.00 Kuchen et al., 2020

Mouse embryonic fibroblasts 
(NIH3T3)

20.40±6.09 37.03±4.31 0.30±0.015 0.39±0.040 −0.01±0.057 0.59±0.029 0.22±0.047 21.64 14.01 Mura et al., 2019

Appendix 1—table 1 Continued

Appendix 1—table 2. Maximum posterior matrices from the original inference, used to simulate 
interdivision time trees used for analysis in Appendix 1 - Section A8 Appendix 1—figure 9.

Matrix
Cyanobacteria
(S.elongatus)

Mouse embryonic
fibroblasts (NIH3T3)

‍θ‍
‍




−0.561848009 −0.144058395

1.534655933 −0.255834609




‍ 
‍




−0.417019954 −1.401854729

0.544365633 1.127838871




‍

‍S1‍
‍




2.373007424 0.097863327

0.097863327 1.410419383




‍ 
‍




103.123125667 −83.980021238

−83.980021238 80.112064942




‍

‍S2‍ ‍




0 0

0 0




‍ ‍




0 0

0 0




‍

‍α‍ ‍




1

1




‍ ‍




1

1




‍

From this simulated data, the correlation coefficients are calculated using the methods outlined 
in Materials and methods - ‘Data analysis and Bayesian inference of the inheritance matrix model’, 
and then we look at the model inference on these new, simulated correlations, to compare to the 
original. These simulations produce correlation patterns that reproduce the experimentally measured 
correlations (comparing Appendix 1—figure 9a–b with Figure 3a and f).

The posterior distribution of the simulated patterns are the same for the cyanobacteria, exhibiting 
an 100% oscillator pattern (Appendix 1—figure 9a), matching the fitting to the original dataset 
(Figure 3a). Mouse embryonic fibroblasts (Appendix 1—figure 9b) loses some of it’s original 100% 
oscillator pattern (Figure 3f) in favour of an alternator pattern. However, an oscillator pattern is still 
dominant.

We see that for cyanobacteria (Appendix  1—figure 9c) and mouse embryonic fibroblasts 
(Appendix 1—figure 9d), the posterior distribution for the inference on the simulated data for the 
correlation function oscillatory period, ‍T−1‍ (Appendix 1—figure 9c and d), exhibits a large overlap 
with the original posterior distribution discussed in Circadian oscillations in cyanobacteria and 
fibroblastssupport coupling of the circadian clock and the cell cycle (Figure 5e). The difference in the 
median for these posterior distributions is 0.42 hr for mouse embryonic fibroblasts (Appendix 1—
figure 9d) and just 0.11 h for cyanobacteria (Appendix 1—figure 9c). This result validates our analysis 
of these posterior distributions showing that the period that we reconstruct from the simulated 
correlation patterns is consistent with the original data.

https://doi.org/10.7554/eLife.80927
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Appendix 1—figure 1. One-dimensional model with simple inheritance rules results in a poor fit for datasets 
displaying the cousin-mother inequality. (a–f) Plots showing data (open markers) against model predictions 
(solid black) for the one-dimensional model Cowan and Staudte, 1986 for (a) cyanobacteria, (b) clock-deleted 
cyanobacteria, (c) mycobacteria, (d) human colorectal cancer, (e) neuroblastoma and (f) mouse embryonic 
fibroblasts. We fit the model using the same likelihood function (Equation M10) and methods (Materials and 
methods - ‘Data analysis and Bayesian inference of the inheritance matrix model‘) as in the main text. Points (black) 
give the median model output for each correlation and error bars give the 95% bootstrapped confidence intervals 
from 10,000 re-samplings with replacement. Circular points show the model fitted correlations (mother-daughter, 
grandmother-granddaughter, sister-sister and cousin-cousin) whereas triangular points demonstrate model 
predictions. For this fitting we used 100,000 samples (in contrast to 10 million used in the main text).

https://doi.org/10.7554/eLife.80927
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Appendix 1—figure 2. Bayesian inference demonstrates that multiple correlation patterns can explain the 
experimental data. (a-f.i) Plots of model fits and predictions (solid markers) against the data (open markers) for 
the family pair correlation coefficients for (a) cyanobacteria, (b) clock-deleted cyanobacteria, (c) mycobacteria, 
(d) human colorectal cancer, (e) neuroblastoma and (f) mouse embryonic fibroblasts. Colours of the solid markers 
represent the fits and predictions for parameter samples clustered by correlation pattern. Inset for each panel 
is a bar chart giving the distribution of the three patterns for each dataset. (​a-​f.​ii) Plots of model output against 
the data for the interdivision time covariance. In this figure, the error bars for the data (unfilled black points) are 
calculated via bootstrapping of 10,000 samples with replacement to give the 95% confidence interval. For the 
model, error bars represent the 95% credible interval, computed by taking the 2.5th and 97.5th percentile of the 
sampled values. For all plots, circles indicate fitted correlations and triangles show predicted correlations. We can 
see that the model fit is good for all datasets as the error bars overlap with that of the data, and this is reflected in 
the low AIC given in Appendix 1—table 1.

Appendix 1—figure 3. The log-likelihood converges during the parameter inference. (a) Trace of the log-
likelihood from four initialisations of the inference on the clock-deleted cyanobacteria dataset (different colours). 
(b) Histogram of the posterior distribution of the log-likelihood for the inference samples on the clock-deleted 
cyanobacteria dataset. The histogram for each average aligns demonstrating convergence of the log-likelihood.

https://doi.org/10.7554/eLife.80927
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Appendix 1—figure 4. Two-dimensional inheritance matrix model gives a good fit for ‍α = (1, 0)⊤.‍ Same panels 
as in Figure 3 but with ‍α = (1, 0)⊤‍ and showing only one sample. We show the calculated family correlations with 
95% bootstrapped confidence intervals (open markers) and a single sample of the model fit for (a) cyanobacteria, 
(b) clock-deleted cyanobacteria, (c) mycobacteria, (d) human colorectal cancer, (e) neuroblastoma and (f). Posterior 
parameter sets are clustered by correlation patterns (bar charts.) For this fitting we used 100,000 samples (in 
contrast to 10 million used in the main text). We see a similar fit and pattern distributions for all cell types except 
for mycobacteria (c), which here displays a dominant oscillator pattern.

https://doi.org/10.7554/eLife.80927
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Appendix 1—figure 5. Mapping mechanistic models to the inheritance matrix model framework. (a–f) Simple 
cell size control model. (a) Model schematic. (b) The cousin-mother inequality cannot be satisfied for any choice 
of parameter ‍a‍. (c–d) Generalised tree correlation function plots (c) for ‍a = 1‍ and (d)‍a = −1.5‍ resulting in 
aperiodic and an alternator pattern respectively. (e–f) Same vs alternate factor mother-daughter correlation 
plots for (e)‍a = 1‍ and (f)‍a = −1.5‍. In panels (b–f) we fix ‍IE[ξ] = 1, Var(ξ) = 0.1,κ = 1‍. (g–l) Cell size control 
model with correlated growth rate. (g) Model schematic. (h) Region plot with fixed parameter ‍a = 1‍ showing 
the parameter space ‍b, c in (−1, 1)‍ that satisfies the cousin-mother inequality (blue). Example parameter 
choices are also plotted for an aperiodic (yellow) and an alternator (red) pattern. (i–j) Generalised tree correlation 
function plots for (i)‍(b, c) = (0.2, 0.7)‍ and (j)‍(b, c) = (−0.81, 0.88)‍ resulting in aperiodic and an alternator 
pattern respectively. (k,l) Same vs alternate factor mother-daughter correlation plots for (k)‍(b, c) = (0.2, 0.7)‍ and 
(l)‍(b, c) = (−0.81, 0.88)‍. In panels (h–l) we fix ‍IE[ξ] = IE[ϕ] = 1, Var(ξ) = Var(ϕ) = 1,κ = 1‍. (m–r) Two cell cycle 
phase model (m) Model schematic. (n) Region plot with fixed parameter ‍b = −0.75‍ showing the parameter space 

‍a, c in (−1, 1)‍ that satisfies the cousin-mother inequality (blue). Example parameter choices are also plotted 
for an aperiodic (yellow) and an alternator (red) pattern. (o–p) Generalised tree correlation function plots (o) for 

‍(a, c) = (0.3, 0.4)‍ and (p)‍(a, c) = (−0.25, 0.9)‍ resulting in aperiodic and an alternator pattern respectively. (q–
r) Same vs alternate factor mother-daughter correlation plots for (q)‍(a, c) = (0.3, 0.4)‍ and (r)‍(a, c) = (−0.25, 0.9)‍. 
In panels (n–r) we fix ‍Var(ξ) = Var(ϕ) = 1‍.

https://doi.org/10.7554/eLife.80927
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Appendix 1—figure 6. Models of circadian-clock-driven correlation patterns (a–d) Kicked cell cycle model. 
(a) Model schematic. The mother to daughter IDT inheritance is given by ‍β = (a−2)

4 ‍ where ‍a‍ is the size control 
parameter. The ‘kick’ to the cell cycle us produced by a two-dimensional complex eigenvalued inheritance matrix 
model system with oscillator behaviour. (b) Region plot for ‍β = −0.25‍ (blue) and ‍β = 0.25‍ (grey), demonstrating 
the region for this model where the cousin inequality is satisfied. Here we fix the variances of the noise terms ‍ξ1, ξ2‍ 
and ‍ξτ ‍ all equal to 0.1. (c–d) Plot of the generalised tree correlation function for (c) ‍(D, P) = (0.85, 2.5)‍ and (d) 

‍(D, P) = (0.85, 5)‍. In both these plots we take ‍β = −0.25‍, meaning the model has a mixture of alternator and 
oscillator behaviours. The cousin inequality is satisfied for both these parameter choices. (e–h) Circadian cell size 
control model (e) Model schematic. The parameter ‍a‍ gives how the daughter’s birth size depends on the mother’s 
birth size; and ‍b‍ gives the coupling of the circadian oscillator to the size control. (f) Region plot demonstrating 
where the cousin inequality is satisfied. We fix ‍a = 1, b = 1‍. Correlations between noise terms are fixed equal to 
0 and we set ‍ηi = 0.1‍ for ‍i ∈ {1, 2, A}‍. (g–h) Plots of the generalised tree correlation function for the same fixed 
parameters specified in panel (f), with (g) ‍(D, P) = (0.85, 2.5)‍, and (h) ‍(D, P) = (0.85, 5)‍. As we fix ‍a = 1‍, these 
plots show a combination of aperiodic and oscillator behaviour. We note that for ‍(D, P) = (0.85, 2.5)‍, the cousin 
inequality is not satisfied. This demonstrate that oscillatory behaviour is not a necessary condition for the cousin 
inequality to be satisfied.

https://doi.org/10.7554/eLife.80927
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Appendix 1—figure 7. A range of oscillator periods can explain oscillatory interdivision time patterns. Histogram 
of the posteriors of the possible periods underlying the lineage correlation function for (a) cyanobacteria, 
(b) mouse embryonic fibroblasts and (c) human colorectal cancer, calculated using Equation 7. Numerical values 
give medians of the posterior distributions for each ‍Tn‍. For (c) human colorectal cancer, we take the median period 
of each cluster where the clusters are allocated through the sign of the real part of the eigenvalue (see Figure 5f). 
For all panels the correlation oscillation period ‍T0‍ is given in green and the oscillator periods in different colours. 
The period analysed in ‘The inheritance matrix model predicts the hidden dynamical correlations of cell cycle 
factors’ corresponds to the histograms of ‍T−1‍ (blue).

https://doi.org/10.7554/eLife.80927
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Appendix 1—figure 8. Observed period ‍T0‍ against chosen period parameter ‍P‍ for a forced oscillator pattern. 
Plot of the function for ‍P‍ against the observed lineage correlation function period ‍T0‍ given in Equation M9 
(blue line), for an oscillator pattern given in ‘The inheritance matrix model reveals three distinct interdivision time 
correlation patterns’. We see that ‍T0 = P‍ for ‍P > 2‍. For chosen ‍T0 = 3‍ with ‍τ = 1‍ and various ‍n‍ we see how the 
parameters ‍P‍ that produce the corresponding ‍T0‍s are directly equal to the possible ‍Tn‍ we can derive from the 
chosen ‍T0‍ (black points), using Equation 7.

Appendix 1—figure 9. Validation of the Bayesian inference method using simulated data. Model fits and 
distribution of patterns for data simulated using the maximum posterior parameter set (Appendix 1—table 2) 
for (a) cyanobacteria, and (b) mouse embryonic fibroblasts. To simulate interdivision time lineage trees, we take 
the maximum posterior parameter sets from the original inference on the two datasets. These trees are simulated 
using Equation 2a in MATLAB using custom scripts which utilise ‘Random trees’ branching process (Kaj and 
Gaigalas, 2022). For each dataset, we first simulate a complete tree of 11 generations (2047 cells) and take the last 
1000 cells to sample stationary initial conditions. For the final simulated data, we simulated a number of smaller 
trees of 6 generations (63 cells each) to better represent live imaging experiments. We divide the number of cells 
in the original dataset by 63 and simulate this number of trees, with each tree having initial condition sampled 
from the last 1000 cells of the original large tree. We then randomly sample 85% of the simulated cells without 
replacement to imitate loss of cells from imaging mid experiment. The calculation of the family interdivision 
time correlation coefficients and the parameter inference was done in the same way as with the original datasets 
as outlined in Materials and methods - ‘Data analysis and Bayesian inference of theinheritance matrix model’. 
Pearson correlation coefficients (white dots) and 95% bootstrapped confidence intervals (error bars) were obtained 
through re-sampling with replacement (10,000 samples) of the simulated data. Posterior samples were clustered 
into aperiodic, alternator, and oscillator patterns (bar charts). We show several representative samples (solid and 
shaded lines) of the model fit drawn from the posterior distribution. We assume ‍α = (1, 1)⊤‍. (c–d) Histograms of 
the inferred oscillator period ‍T−1‍ for the original inference (blue) and inference on the simulated data (orange) 
for cyanobacteria (c) and mouse embryonic fibroblasts (d), demonstrating significant overlap of the oscillator 
period of the simulated parameter set (black dashed line) and the posterior distribution from Bayesian inference. 
Note that the posterior distributions of the real (red) and simulated datasets (blue) also overlap. Dashed lines give 
the median period of these posterior distributions for original inference (blue) and inference on simulated data 
(orange). Maximum posterior parameters used in the simulations are given in Appendix 1—table 2.

https://doi.org/10.7554/eLife.80927
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Appendix 1—table 3. Comparison of different variance estimators.
Mean and 95% confidence intervals calculated from bootstrap distributions of 10,000 re-samplings 
with replacement for each dataset used in this work. The estimators are obtained as follows: bare 
variance is computed using all available cells that could be put in the required family pair (Materials 
and methods - ‘Data analysis and Bayesian inference of theinheritance matrix model’). The lineage 
variance is calculated through the weighted variance with weights ‍wi = 2−Di /Ntrees‍ following 
arguments similar to Priestman et al., 2017; Nozoe et al., 2017. Here ‍Di‍ is the number of divisions 
in the lineage that came before cell ‍i‍ and ‍Ntrees‍ is the total number of trees in the whole dataset. The 
censored variance is calculated after pruning trees such that each tree contains lineages of the same 
length as in Kuchen et al., 2020; Sandler et al., 2015.

Cell type Bare variance (hours2) Lineage variance (hours2) Censored variance (hours2)

Cyanobacteria (S. elongatus) 10.674 [9.966, 11.396] 11.543 [10.420, 12.776] 10.612 [9.850, 11.391]

Clock deleted cyanobacteria 
(S. elongatus ∆kaiBC )

3.573 [3.288, 3.865] 4.015 [3.529, 4.512]
3.485 [3.176, 3.805]

Mycobacteria (M. smegmatis) 0.427 [0.366, 0.494] 0.601 [0.490, 0.716] 0.609 [0.492, 0.738]

Human colorectal cancer (HCT116) 6.489 [4.540, 8.809] 7.357 [4.898, 10.262] 6.741 [4.695, 9.124]

Neuroblastoma (TET21N) 9.794 [8.539, 11.213] 13.986 [10.735, 17.775] 10.502 [8.554, 12.621]

Mouse embryonic fibroblasts (NIH3T3) 37.032 [29.260, 46.162] 46.378 [34.494, 60.090] 39.418 [29.947, 50.219]

https://doi.org/10.7554/eLife.80927
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