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Abstract: Quercetin, a flavonoid that is present in vegetables and fruits, has been found to have anti-
inflammatory effects. However, the mechanism by which it inhibits colitis is uncertain. This study
aimed to explore the effect and pharmacological mechanism of quercetin on dextran sodium sulfate
(DSS)-induced ulcerative colitis (UC). Mice were given a 4% (w/v) DSS solution to drink for 7 days,
followed by regular water for the following 5 days. Pharmacological mechanisms were predicted by
network pharmacology. High-throughput 16S rDNA sequencing was performed to detect changes in
the intestinal microbiota composition. Enzyme-linked immunosorbent assay and western blotting
were performed to examine the anti-inflammatory role of quercetin in the colon. Quercetin attenuated
DSS-induced body weight loss, colon length shortening, and pathological damage to the colon.
Quercetin administration modulated the composition of the intestinal microbiota in DSS-induced mice
and inhibited the growth of harmful bacteria. Network pharmacology revealed that quercetin target
genes were enriched in inflammatory and neoplastic processes. Quercetin dramatically inhibited
the expression of phosphorylated protein kinase B (AKT) and phosphatidylinositol 3-kinase (PI3K).
Quercetin has a role in the treatment of UC, with pharmacological mechanisms that involve regulation
of the intestinal microbiota, re-establishment of healthy microbiomes that favor mucosal healing, and
the inhibition of PI3K/AKT signaling.

Keywords: quercetin; ulcerative colitis; PI3K/AKT signaling; network pharmacology; molecular
docking analysis

1. Introduction

Ulcerative colitis (UC) is an inflammatory bowel disease (IBD) with unclear pathogene-
sis. Its clinical symptoms include abdominal pain, diarrhea, and mucinous purulent bloody
stool. Long disease duration and a high recurrence rate substantially impact the quality of
life of patients [1]. Currently, salicylic acid and glucocorticoids are the most commonly used
medications to treat UC, but they are associated with many adverse reactions, which restrict
their long-term use [2]. Animal models of colitis frequently involve the administration of
dextran sodium sulfate (DSS), which causes clinical and histological reactions resembling
those seen in people with IBD [3–6].

Phosphatidylinositol 3-kinase (PI3K), a member of the intracellular lipid kinase family,
can be divided into type I, II and III isoforms, of which type I plays a very important role in
tumors [7]. Protein kinase B (PKB, as known as Akt), a serine/threonine kinase associated
with protein kinase C, is a direct downstream target of PI3K [8,9]. The PI3K/AKT signaling
pathway is critical for controlling the development and progression of inflammation [10],
and it participates in the regulation and release of pro-inflammatory cytokines in the
intestinal mucosa of UC patients [11]. Blocking the PI3K/Akt signaling pathway can reduce
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the release of cytokines, attenuate the inflammatory response, and achieve therapeutic
outcomes in UC patients [10,12–14]. Further targeting of this pathway could lead to the
creation of new UC medications.

Network pharmacology is a research method that combines pharmacology with
information technology based on system biology, bioinformatics and high-throughput
histology [15]. Because it utilizes a large amount of data to mine the targets of drugs
and explore the interaction mechanism between the drugs and diseases, it is often used to
explore the basic pharmacological effects of drugs on diseases and their mechanisms [16,17].
On the one hand, the multi-component characteristics of traditional Chinese medicine
prescription have the advantages of multi-links and multi-targets; on the other hand, its
material basis and mechanism of action are difficult to determine. Combining network
pharmacology with traditional Chinese medicine prescription can give full play to the
advantages of traditional Chinese medicine more effectively [18,19].

The pathogenesis of inflammatory bowel disease (IBD) is still unclear, but it is generally
believed that the occurrence of IBD may be related to the imbalance of intestinal flora
in individuals [20,21]. Short-chain fatty acids (SCFAs), such as acetate, propionate and
butyrate, are important metabolites of the gut microbiome. SCFAs producing bacteria or
SCFAs itself act on host cells by affecting intestinal immune response, gene expression, cell
proliferation and host metabolism, thus maintaining intestinal homeostasis and inhibiting
intestinal inflammation. Gut dysbiosis often decreases SCFA levels and may lead to
inflammatory bowel diseases. The imbalance of intestinal flora, especially the decrease of
butyric acid production bacteria caused the decrease of butyric acid concentration, leading
to abnormal immune response, resulting in mucosal damage, and thus the submucosal
non-specific inflammatory response [22–28]. Therefore, reconstructing intestinal microflora
homeostasis and increasing SCFA levels are promising therapeutic approaches.

Quercetin (3,5,7,3′,4′-pentahydroxyflavone) is a flavonoid found in vegetables and
fruits such as apples, onions, berries, green tea and black tea. It is reported that quercetin has
antiulcer, antitumor, antioxidant and antihypertensive properties [29]. Indeed, quercetin
alleviated the decreased body weight and histological destruction of colon tissue in a colitis
model induced by DSS [30]. Quercetin increases the number of Treg cells while decreasing
the activity of macrophages, neutrophils, and Th17 cells [31]. However, the mechanism
of action of quercetin is complex, and many aspects of its efficacy to treat colitis are still
unknown. In the present study, we explored the potential therapeutic effect of quercetin on
DSS-induced UC using network pharmacology combined with 16S rDNA sequencing and
examined the influence and pharmacological mechanism of quercetin on mice in vivo and
in vitro.

2. Materials and Methods
2.1. Ethics Statement

All procedures and assays were approved by the Institutional Animal Care and Use
Committee of Jining Medical University (2021-DW-ZR-019).

2.2. Reagents

DSS (molecular weight 36–50 kDa) was purchased from MP Biomedicals Inc. (Irvine,
CA, USA). The 5-aminosalicylic acid (5-ASA) was purchased from Sigma-Aldrich (St. Louis,
MO, USA). Quercetin was purchased from Shanghai Yuanye Bio-Technology Co., Ltd.
(Shanghai, China). Enzyme-linked immunosorbent assay (ELISA) kits for mouse inter-
leukin (IL)-6, IL-1β, and tumor necrosis factor (TNF)-αwere purchased from BioLegend
(San Diego, CA, USA). Hematoxylin and eosin (H&E) were purchased from Solarbio Science
& Technology Co., Ltd. (Beijing, China). The supplier of diaminobenzidine was Solarbio
Science & Technology Co., Ltd. (Beijing, China). The bicinchoninic acid protein assay kit
was purchased from Thermo Fisher Scientific (Waltham, MA, USA). Antibodies against
PI3K p85, IL-6 and β-actin were obtained from Affinity Biosciences (Cincinnati, OH, USA).
Antibodies against IL-1β and TNF-α were purchased from Bioworld Technology (St. Louis
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Park, MN, USA). Antibodies against phospho-Akt (Ser473) and Akt (C67E7) were obtained
from Cell Signaling Technology (Danvers, MA, USA). The anti-occludin antibody was
obtained from Proteintech Group (Wuhan, China). Transwell inserts (pore size of 0.4 µm)
were purchased from Corning Inc. (Kennebunk, ME, USA).

2.3. Cell Culture

Mouse colon epithelial cells (MCECs) were cultured in high-glucose Dulbecco’s modi-
fied Eagle’s medium (DMEM), supplemented with 10% fetal bovine serum (FBS), and 1%
penicillin and streptomycin (P/S) in a humidified incubator of 5% CO2 at 37 ◦C.

2.4. Screening of Cellular Drug Delivery Concentrations

At the logarithmic growth stage, mouse colon epithelial cells (MCECs) were uniformly
spread in 96-well plates at a growth density of 30%, and after 24 h of incubation, a blank
group (no cells were inoculated), a control group, and quercetin administration groups
with different concentrations (500, 250, 125, 62.5, 31.25, and 15.625 µM) were set up, with
6 replicate wells in each group. After 24 h of drug administration, each well was continued
to incubate for 1 h after adding 10 µL of CCK-8 reagent. The absorbance (A) values of
each group were measured at 450 nm by an enzyme marker, and the cell survival rate
was calculated. Cell survival rate (%) = (A spiked − A blank)/(A control − A blank)
* 100%, and the experiments described above were repeated three times. The effect of
different concentrations of quercetin on the survival rate of MCEC cells varied greatly. It
was found that 62.5, 31.25, and 15.625 µM of quercetin had no significant effect on the
survival rate of MCEC cells for 24 h. Therefore, 62.5 µM was chosen as the quercetin
administration condition.

2.5. Animals and Experimental Protocols

Jinan Pengyue Experimental Animal Breeding Co. Ltd. (Jinan, China) provided
female BALB/c mice, which were 35–40 days old and 18–22 g in weight. An appropriate
temperature and humidity were maintained in the rearing room, and a normal circadian
rhythm was established to maintain the normal physiological activities of the mice. Through
the Jining Medical University’s Animal Care Committees, the animal care and protocols
were authorized. A total of 40 BALB/c mice were randomly allocated into four groups
(n = 10/group): untreated control, DSS model, DSS + 5-ASA, and DSS + quercetin. Except
for the control group, mice were given a 4% (w/v) DSS solution to drink for 7 days before
being given regular water for the next 5 days [3]. From day 1 to day 12, mice in the two
treatment groups were administered 5-ASA (40 mg/kg) or quercetin (100 mg/kg) daily
by gavage, while mice in the blank control and DSS model groups were administered
normal saline. All mice were sacrificed on day 13, and their organs and feces were collected.
Colon tissues from mice were fixed in 4% paraformaldehyde for H&E staining. The
remaining colon tissues were stored in liquid nitrogen for western blot analysis. Feces
samples obtained from the intestinal sections were transferred to a sterile tube using sterile
forceps, then quickly placed into liquid nitrogen and stored at −80 ◦C immediately for
microbiota analysis.

2.6. Evaluation of Colitis

During the experiment, body weight changes, bloody stool, fecal character and mental
status were observed daily [3]. The disease activity index (DAI) scoring criteria are shown
in Table 1.
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Table 1. Scoring method of the disease activity index in the four study groups.

Score Weight Loss (%) Stool Consistency Occult Blood

0 0 Normal Normal
1 1–5 - +
2 5–10 Loose Stool ++
3 10–15 Pasty stool +++
4 >15 Diarrhea +++

2.7. Macroscopic Assessment and Histological Analysis

Colons were removed, opened longitudinally, washed with phosphate-buffered saline,
then fixed in 4% paraformaldehyde and embedded in paraffin. Embedded tissues were
sliced into sections of 4 mm thickness using a microtome, and then stained with H&E using
a conventional protocol [3,32]. The histological change scoring criteria are shown in Table 2.

Table 2. Scoring criteria for histological changes.

Score Number of Ulcers Epithelial Cell Changes Inflammatory Infiltration

0 0 Normal Normal
1 1 Goblet cell deletion Pericrypt infiltration

2 2 Goblet cell large area deletion Mucosal muscularis
infiltration

3 3 Crypt absence Mucosal muscularis Large
area infiltration

4 >3
Crypt Large area

absence/polypoid
regeneration

Submucosal infiltration

2.8. ELISA

ELISA kits were used to assess the secretion of IL-1β, TNF-α and IL-6 from colon
tissues and supernatants of mouse colon epithelial cell (MCEC) cultures following the
manufacturer’s recommendations, as previously described [33]. Each experiment was
performed three times. Cytokine levels are shown in pg·mL−1.

2.9. 16S rDNA Sequencing and Microbiota Analysis

Sequencing of 16S rDNA was performed using the following primer pair: forward
(5′-AGRGTTTGATYNTGGCTCAG-3′) and reverse (5′-TASGGHTACCTTGTTAS GACTT-
3′). Third-generation microbial diversity was based on the PacBio sequencing platform, and
the marker gene was sequenced by single molecule real-time sequencing (SMRT Cell). The
species composition of each sample was revealed by filtering, clustering or denoising the
circular consensus sequence, and species annotation and abundance analysis as previously
described [34]. The following analyses were carried out: annotation and taxonomy analysis
of species, significant difference analysis, and diversity analysis (alpha and beta diversity).
The names of the repository/repositories and accession number(s) can be found at: https:
//www.ncbi.nlm.nih.gov/ (accessed on 23 September 2022), PRJNA881733.

2.10. Network Pharmacology

Targets of quercetin were gathered in TCMSP [35] (https://old.tcmsp-e.com/tcmsp.
php, accessed on 15 March 2022), PharmMapper [36] (http://www.lilab-ecust.cn/pharmma
pper/, accessed on 15 March 2022), and Swiss Target Prediction System [37] (http://www.
swisstargetprediction.ch/, accessed on 15 March 2022). Duplicates were removed, and the
remainder were imported into the Universal Protein (Uniprot) database [38] to standardize
the target names and ultimately obtain drug-related targets. Similarly, the targets of UC
found by searching the Gene Cards database [39] (https://www.genecards.org/, accessed
on 15 March 2022) and OMIM database [40] (http://www.omim.org, accessed on 15

https://www.ncbi.nlm.nih.gov/
https://www.ncbi.nlm.nih.gov/
https://old.tcmsp-e.com/tcmsp.php
https://old.tcmsp-e.com/tcmsp.php
http://www.lilab-ecust.cn/pharmma
pper/
http://www.swisstargetprediction.ch/
http://www.swisstargetprediction.ch/
https://www.genecards.org/
http://www.omim.org
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March 2022) using the keyword “ulcerative colitis” were overlapped, de-duplicated, and
imported into the Uniprot database to standardize the target names and obtain the final
UC disease targets.

Quercetin-related and UC disease targets were imported into the Venny 2.1 online
mapping tool platform (https://bioinfogp.cnb.csic.es/tools/venny/index.html, accessed
on 15 March 2022) to obtain “drug-disease” common targets. Protein-protein interaction
(PPI) data were obtained from the STRING v. 11.5 database [41] (http://cn.string-db.org,
accessed on 15 March 2022), with the species limited to “Homo sapiens” and the cutoff
confidence score set at >0.4. PPI networks were established and visualized using Cytoscape
software [42] (http://cytoscape.org/ver.3.9.1, accessed on 16 March 2022). Following that,
enrichment analyses were carried out using Metascape [43] (https//metascape.org/gp/
index.html, accessed on 16 March 2022).

2.11. Molecular Docking

We downloaded the 3D structure of quercetin in structure data file format from
the Pubchem database (https://pubchem.ncbi.nlm.nih.gov, accessed on 25 May 2022),
converted it to “mol2” format by Open Babel 3.1.1 software, used AutoDockTools to
add hydrogen, set as ligand, determine the torque center and select the torsion key, and
exported to PDBQT format. The target protein name was then entered into the Protein Data
Bank (PDB) database (https://www.rcsb.org/, accessed on 25 May 2022), from which a
human protein with one or more co-crystalline ligands and a low “resolution” value crystal
structure was selected, saved in PDB format, dehydrogenated using AutoDockTools, set
as a receptor and exported to PDBQT format. We adjusted the GridBox parameters by
AutoDock 4.2.6 software [44] until the box wrapped all the receptor molecules, used the
blind docking method to find the active site, exported the grid point parameter file (GPF),
ran Autogrid 4, set the docking parameters and algorithm for docking, ran Autodock4,
and checked the results. The docking results were visualized using PyMOL 2.4.0 software.
Finally, to obtain the docking scores, the proteins and compounds were uploaded to
DockThor [45] (https://www.dockthor.lncc.br/v2/, accessed on 25 May 2022) for online
molecular docking.

2.12. Co-Culture and Scratch Assay

Mice induced with 4% DSS solution for 5 days were sacrificed on day 6. Peritoneal
macrophages (Mϕs) were collected and cultured in Dulbecco’s modified Eagle’s medium.
MCECs were plated in 6-well culture plates and incubated at 37 ◦C in a 5% CO2 incubator.
Peritoneal macrophage cell suspensions were added to the upper chamber of a Transwell
insert (pore size of 0.4 µm), transferred to the 6-well culture plates and co-cultured. The
co-culture system was treated with quercetin (62.5 µM). Monolayers of the MCECs were
scratched and observed at 0 and 24 h following treatment. The percentage of coverage
was calculated.

2.13. Western Blotting

Protein expression of Akt, p-Akt, PI3K p85, IL-6, TNF-α, IL-1β, β-actin and occludin
were examined in colon tissues and MCECs, using the previously described western
blotting method [46].

2.14. Statistical Analysis

Using GraphPad Prism software (GraphPad Software Inc., Avenida, CA, USA). All
results are presented as means ± standard deviation from triplicate experiments. Group
means were compared using Student’s t-test (for normal distribution). The p values < 0.05
were recognized as statistically significant. Details of each type of statistical analysis are
provided in the figure captions.

https://bioinfogp.cnb.csic.es/tools/venny/index.html
http://cn.string-db.org
http://cytoscape.org/ver.3.9.1
https//metascape.org/gp/index.html
https//metascape.org/gp/index.html
https://pubchem.ncbi.nlm.nih.gov
https://www.rcsb.org/
https://www.dockthor.lncc.br/v2/
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3. Results
3.1. Quercetin Attenuated DSS-Induced Colitis in Mice

To investigate the effects of quercetin on colitis, we added DSS to the drinking water
of BALB/c mice for 7 days, followed by water treatment for 5 days. All animal procedures
and assays are shown in Figure 1a. Mice in the DSS group showed substantial weight
reduction compared with untreated control mice, which was improved after administration
of quercetin (Figure 1b). The total DAI of DSS-induced mice was decreased by quercetin
treatment, as evaluated by weight loss, and loose and bloody stools in the DSS + quercetin
group (Figure 1c). In the process of modeling and administration, we observed the mental
state of mice by naked eye, and found that the mental state of mice in the DSS group was
poor and flagging, while the mental state of mice in the administration group was relatively
good (data not shown). We also found that quercetin reversed the DSS-induced colon
shortening (p < 0.01) (Figure 1d,e). Histopathological staining with H&E revealed that DSS
treatment caused severe mucosal necrosis with submucosal congestion and edema, along
with significant inflammatory cell infiltration. As compared with the 5-ASA treatment,
this colonic damage and inflammatory cell infiltration were significantly attenuated by
quercetin treatment (Figure 1f,g), which was consistent with the amelioration of colon
edema and shortening.

3.2. Quercetin Inhibited the Secretion of Inflammatory Factors in Colonic Tissues of DSS-Induced
UC Mice

DSS + quercetin-treated mice showed significantly reduced secretion of IL-6, IL-1β and
TNF-α in colon tissues compared with DSS-treated mice (Figure 2a–c). Western blotting
results in DSS + quercetin mice showed that quercetin inhibited the expression of TNF-α,
IL-6 and IL-1β protein in colonic tissues compared with DSS-treated mice (Figure 2d–g).

3.3. The Herb-Ingredient-Target Network of Quercetin

Using the TCMSP, PharmMapper and Swiss Target Prediction databases, we identified
247 action targets of quercetin, including AKT, IL-6, TNF-α and IL-1β. Construction of
a quercetin-related target interaction network with Cytoscape 3.9.1 software is shown in
Figure 3a. The order is based on the degree value of importance of each action target. The
degree value of the target increases with darker color and greater area.

Using “ulcerative colitis” as the keyword, searches of the GeneCards and OMIM
databases yielded 4825 and seven potential targets of UC, respectively. After removing
the duplicate targets, the remaining potential targets were standardized for gene names in
UniProt, from which a total of 2504 potential UC targets were obtained. Using Venny 2.1,
the 247 quercetin action targets were mapped with the 2504 UC disease targets on a Venn
diagram, which revealed 157 common drug-disease targets (Figure 3b).

Next, the 157 common drug-disease targets were uploaded to the STRING database to
build a PPI network, which included 157 nodes and 3157 edges. The topological properties
of intersection target proteins were analyzed by Cytoscape software (Figure 3c), which
found that the average degree of the network was about 40.2, the average betweenness
was about 129.2, and the average closeness was about 0.00358. We found that there were
33 nodes, including betweenness and closeness, combined with the network diagram and
topological attribute table, that were important targets of quercetin in UC (Table S1).

The 157 common drug-disease targets were also introduced into the Metascape plat-
form for Gene Ontology (GO) biological function analysis and Kyoto Encyclopedia of Genes
and Genomes (KEGG) pathway enrichment analysis. Taking p < 0.01 as the main screening
standard, 2107 GO biological function entries were retrieved, including 1854 biological
processes (BPs), 81 cellular components (CCs) and 172 molecular functions (MFs). A total
of 202 signal pathways were obtained by KEGG pathway enrichment analysis (Figure 3d,e,
and Table S2).
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Figure 1. Quercetin reduces colon inflammation and damage induced by dextran sodium sul-
fate (DSS). (a) Flow chart of the experimental design. (b) Body weights of mice in the control,
DSS, DSS + quercetin, and DSS + 5-aminosalicylic acid (5-ASA) groups. (c) Disease activity index.
(d,e) Macroscopic appearance and the length of colons from each mouse group. (f) Histological
changes. ** p < 0.01 compared with the control group; # p < 0.05, ## p < 0.01 compared with the DSS
group. (g) Hematoxylin and eosin staining of colonic sections. Infiltration of inflammatory cells in
the mucosa or submucosa is indicated by black and red arrows, respectively.
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Figure 2. Quercetin reduces levels of inflammatory mediators in the colon of mice with dextran
sodium sulfate (DSS)-induced colitis. Enzyme-linked immunosorbent assay analysis of interleukin
(IL)-6 (a), IL-1β (b), and tumor necrosis factor (TNF)-α (c) concentrations in colonic tissue super-
natants. (d–g) Western blotting analysis of TNF-α, IL-6 and IL-1β in colonic tissue extracts. * p < 0.05,
** p < 0.01 compared with the control group; # p < 0.05, ## p < 0.01 compared with the DSS group.



Molecules 2023, 28, 146 9 of 21
Molecules 2023, 28, x FOR PEER REVIEW 9 of 21 
 

 

 
Figure 3. Network analysis of quercetin. (a) Protein-protein interaction (PPI) network diagram of 
quercetin-related proteins. (b) Venn diagram showing the intersection between ulcerative colitis 
(UC) and quercetin. (c) PPI interaction network of quercetin and UC intersection targets. Gene on-
tology (d) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment (e) analy-
sis. 

Using “ulcerative colitis” as the keyword, searches of the GeneCards and OMIM da-
tabases yielded 4825 and seven potential targets of UC, respectively. After removing the 
duplicate targets, the remaining potential targets were standardized for gene names in 
UniProt, from which a total of 2504 potential UC targets were obtained. Using Venny 2.1, 
the 247 quercetin action targets were mapped with the 2504 UC disease targets on a Venn 
diagram, which revealed 157 common drug-disease targets (Figure 3b). 
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(d) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment (e) analysis.

3.4. Quercetin Molecular Docking with the Top 10 Core Target Proteins in the PPI Network

The affinity score in the molecular docking results reflects the level of binding between
quercetin and the top ten core target proteins (Table S3). In general, the lower the affinity
score, the more stable the binding conformation for ligand and receptor. Using AutoDock
4.2.6 software for molecular docking, we downloaded the results and related documents
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for quercetin and the following target proteins, taking the minimum binding energy as
the reference index: AKT1 (PDB ID: 2uzs), TP53 (6ggb), TNF-α (2az5), IL-6 (1alu), VEGFA
(5hhc), CASP3 (3deh), IL-1β (5r88), EGFR (2itv), MYC (6e16), and ESR1 (2qxs). The docking
results indicated good binding ability between each of the ten target proteins and quercetin,
with high potential biological activity (Figure 4a–j).
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Figure 4. Partial diagram of molecular docking of quercetin with the following targets. (a) IL-6-
quercetin; (b) IL-β-quercetin; (c) TNF-α-quercetin; (d) TP53-quercetin; (e) AKT1-quercetin; (f) VEGFA-
quercetin; (g) CASP3-quercetin; (h) EGFR-quercetin; (i) MYC-quercetin; (j) ESR1-quercetin.
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3.5. Fecal Microbiota Analysis

As the network pharmacological analysis revealed that quercetin had an antibacterial
impact, we looked for changes in the microbiota composition. To determine the effect
of quercetin on gut microbial composition, we performed 16S rDNA sequencing, which
was evident from alpha and beta diversity estimation. Alpha diversity was evaluated
using abundance indices (Chao1 and ACE) and diversity indices (Shannon and Simp-
son). The Chao1 and ACE estimates represent bacterial richness and species abundance,
whereas Shannon and Simpson indices characterize the diversity of microorganisms. All
sample libraries used in this study had coverage rates above 99%, indicating that the size
of the library was adequate to include the vast majority of microorganisms. In all groups,
the number of operational taxonomic units (OTU) reached saturation and appropriately
represented the majority of species, and curve analysis including rarefaction curves and
Shannon-Wiener curves was used to reflect the rationality of sample size (Figure 5a,b). The
results showed that the Chao1 and ACE indexes in the quercetin group decreased compared
with the model group, which indicated that the richness of species were decreased after
drug administration. The Shannon and Simpson indexes were decreased by quercetin,
indicating that the species diversity was decreased after drug administration (Figure 5c).
Beta-diversity reflecting between-habitat diversity was calculated by unweighted unifrac.
Principal Co-ordinates Analysis (PCoA) showed that the microflora of the groups were
relatively in different areas, indicating that there were differences in the structure of in-
testinal microflora between the groups. The results suggested that the intestinal flora of
mice was disturbed after modeling, and quercetin treatment could improve the intestinal
flora disorder (Figure 5d). The non-parametric analysis of similarities (ANOSIM) analyses
detected that the inter-group differences in community composition and abundance of
the three groups were more pronounced than those within group (Figure 5e). In order
to identify the bacterial groups with significant differences between the groups, linear
discriminant analysis coupled with effect size measures (LEFSe) was performed. We found
that compared with other groups, the abundance of bacteria including Clostridiales, Ru-
minococcaceae and Ruminococcus flavefaciens was the higher in control group (Figure 5f).
The bacteria, including Bacteroides acidifaciens, Muribaculaceae, Blautia and the genus Lach-
nospiraceae_NK4A136_group, were markedly increased in DSS-treated group, which were
Bacteroidaceae, Erysipelotrichia, Oscillospirales, and Ruminococcaceae in the quercetin-treated
group (Figure 5f).

3.6. Quercetin Affected the PI3K-AKT Signaling Pathway in DSS-Induced Colitis

Western blot analysis showed that treatment with quercetin halted the increased
expression of PI3K and dramatically reduced the phosphorylation of AKT induced by
DSS (Figure 6a–c). These results indicated that quercetin inhibited the activation of the
PI3K-AKT signaling pathway to exert its anti-colitis effect.

3.7. Quercetin Suppressed Inflammation and Contributed to Mucosal Healing

To replicate the inflammatory microenvironment, we created a co-culture system using
MCECs and Mϕs. Peritoneal Mϕs were extracted from DSS group mice and co-cultured
with MCECs for 24 h. The concentrations of IL-6, TNF-α and IL-1β in the cell supernatants
of the MCECs, as detected by ELISA assay, further suggested that quercetin significantly
reduced the secretion of these inflammatory factors (Figure 7a–c).
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bacterial community in mice. (f) LEfSe analysis.
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Figure 6. The anti-colitis effects of quercetin are mediated by inhibition of the dextran sodium sulfate
(DSS)-induced phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) signaling pathway
and the expression of inflammatory mediators. (a–c) Western blotting analysis of PI3K, AKT and
phosphorylated (P)-AKT in colonic tissue extracts. * p < 0.05, ** p < 0.01 compared with the control
group; # p < 0.05 compared with the DSS group.

In scratch experiments on the co-culture system, the capacity of MCECs to migrate was
decreased in the presence of Mϕs from DSS mice, in contrast to the promotion of MCEC
migration by Mϕs with quercetin-treated cells (Figure 7d–f). Western blot analysis showed
that quercetin treatment significantly increased occludin expression, which was reduced in
the DSS-Mϕs group compared with that in the DSS-Mϕs+Quercetin group (Figure 7g,h).
These results indicated that quercetin attenuated DSS-induced downregulation of occludin
to restore intestinal barrier function.

The western blot analysis of extracts of the MCECs also showed that, in the DSS-Mϕs
+ Quercetin group, the overexpression of PI3K was halted and the phosphorylation of AKT
induced by DSS was dramatically reduced (Figure 8a–d). These results further verified that
quercetin inhibited the activation of the PI3K-AKT signaling pathway to exert an anti-colitis
effect in vitro.
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Figure 7. Quercetin suppressed inflammation and contributed to mucosal healing. Analysis of the
concentrations of interleukin (IL)-6 (a), tumor necrosis factor (TNF)-α (b), and IL-1β (c) using an
enzyme-linked immunosorbent assay. (d–f) Scratch assay showing the migration capacity of mouse
colon epithelial cells (MCECs) co-cultured in vitro with macrophages under quercetin treatment.
(g,h) Western blotting analysis of occludin expression in extracts of MCECs. * p < 0.05, ** p < 0.01
compared with the control group; # p < 0.05, ## p < 0.01 compared with the DSS group.
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Figure 8. Quercetin inhibited the activation of the PI3K-AKT signaling pathway to exert an anti-colitis
effect in vitro. (a–d) Western blotting analysis of phosphorylated (P)-AKT and PI3K expression in
extracts of mouse colon epithelial cells. * p < 0.05, ** p < 0.01 compared with the control group;
## p < 0.01 compared with the DSS group.

4. Discussion

In this study, we found that DSS-induced mice had serious inflammation and injury
to colon tissues, with concomitant weight loss, bloody stools, loose stools and diarrhea,
proving that the UC model was successful. All of these symptoms were improved by treat-
ment with quercetin. Histopathological analysis indicated that DSS caused severe mucosal
necrosis and submucosal edema, as well as significant inflammatory cell infiltration, all of
which were significantly improved by quercetin, consistent with reduced inflammatory
cell infiltration and secretion of inflammatory factors (IL-1β, TNF-α, IL-6).

Reportedly, the common flavonoid compound quercetin is the most effective scav-
enger of reactive oxygen species and prevents the synthesis of several pro-inflammatory
substances, such as nitric oxide and TNF-α [47]. Prior to this study, the therapeutic effect
of quercetin in UC had not yet been clarified, prompting us to perform a network phar-
macological analysis of quercetin. A PPI topological analysis of 157 intersection genes
revealed 33 strongly associated proteins. The results of molecular docking also verified
that quercetin has superior affinities for the target genes ESR1, IL-1β, TNF-α, IL-6, TP-53,
VEGFA, CASP3, EGFR, MYC and AKT1, and quercetin may exert powerful anticancer and
anti-inflammatory effects via regulation of these targets.

The KEGG enrichment analysis of the quercetin-UC targets indicated several
inflammation-related pathways: the IL-17, Toll-like receptor, PI3K/Akt, TNF, MAPK,
NF-kappa B, NOD-like receptor, and JAK-STAT signaling pathways, T helper cell 17 differ-
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entiation, and inflammatory mediator regulation of transient receptor potential channels.
The PI3K/AKT signaling pathway is recognized to be crucially important in inflamma-
tory illnesses, especially IBD [10]. Quercetin has a role to play in the treatment of UC
via inhibition of the PI3K/AKT signaling pathway, and its mechanism of action is shown
in Figure 9. Upon activation of PI3K by multiple upstream cell surface receptors, type
I PI3K catalyzes phosphatidylinositol 4,5-bisphosphate phosphorylation at the D3 po-
sition of the inositol ring to generate the second messenger phosphatidylinositol 3,4,5-
trisphosphate (PIP3), which in turn activates PKB/AKT [7,48]. AKT and the upstream
3-phosphatidylinositol-dependent protein kinase-1 (PDK1) interacts with PIP3 through
the pleckstrin-homology structural domain in PI3K and activates internal Thr308 site
phosphorylation via PDK1 [49–51]. Upon activation of the PI3K/AKT pathway, IκBα is
phosphorylated by IκB kinases (IKK) and then degraded by ubiquitin-mediated proteolysis,
which promoted the phosphorylation and nuclear translocation of NF-κB p65 and further
activated the expression of downstream inflammatory mediators [52–55]. In healthy colon
tissues, IL-1β, TNF-α and IL-6 are expressed at low levels, but they are activated and upreg-
ulated during inflammation. Our western blotting results showed that quercetin inhibited
the PI3K/AKT signaling pathway to exert anti-inflammatory effects, which validated the
KEGG enrichment results. Meanwhile, it effectively enhanced the expression of occludin
and lowered the expression of IL-1β, TNF-α and IL-6. Our in vitro experiments further
demonstrated that quercetin could promote mucosal healing and inhibit the secretion of
inflammatory factors as well as the PI3K/AKT signaling pathway.
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The composition of the human gut microbiota is linked to health and disease. Dysbio-
sis reflects a change in the balance of the makeup of the gut microbiota, and increases the
risk of developing IBDs including Crohn’s disease and UC [56]. Bacteroidete, the dominant
flora in the colon, has attracted considerable attention [57]. It is reported that the relative
abundance of Bacteroides in IBD patients is markedly lower than that in healthy partici-
pants [58,59]. A number of studies have shown that the abundant species of the common
Bacteroidetes, including Bacteroides vulgatus and other key bacteroidetes, are beneficial to the
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recovery of intestinal health in patients with IBD, showing potential therapeutic poten-
tial [60,61]. In addition, Erysipelotrichia, Erysipelotrichales, Erysipelotrichaceae, Oscillospirales
and Ruminococcaceae can produce SCFAs to protect the gut from damage and reduce the
degree of colonic inflammatory injury, and the decrease in their relative abundance can lead
to gastrointestinal disorders [62–67]. The results showed that the relative abundance of Bac-
teroidaceae, Erysipelotrichia, Oscillospirales, and Ruminococcaceae were significantly increased
in the quercetin-treated group. Previous studies suggested that the relative abundance of
Lachnospiraceae and Lachnospiraceae_NK4A136_group was significantly increased in colitis
mice [68–71], which was consistent with our results. The results taken together indicated
that quercetin effectively prevented the development and progression of experimental coli-
tis by altering the composition of gut microbiota by increasing the abundance of beneficial
bacteria and reducing the abundance of harmful bacteria.

The immune dysfunction of macrophage-driven intestinal microenvironment plays a
crucial role in the pathological mechanism of UC; Mϕs are highly plastic antigen-presenting
cells that link the innate and adaptive immune systems, and macrophages can polarize
into M1 type and M2 type with different functions in specific microenvironment. M1
type is an inflammatory type that releases ILs to stimulate inflammatory response, M2
type plays an anti-inflammatory role and can promote wound healing [72,73]. Animal
lifeforms depend heavily on epithelial and/or endothelial barriers. An essential part of
these barriers is the tight junction, of which occludin is a critical component [74]. To
simulate the inflammatory environment surrounding epithelial cells, we established a co-
culture system of MCECs and peritoneal Mϕs extracted from DSS group mice for scratch
assays. Peritoneal Mϕs were extracted from DSS group mice and co-cultured with MCECs
for 24 h. The DSS-Mϕs + quercetin group was treated with quercetin (62.5 µM) on the basis
of the DSS-Mϕs group, and a blank control group of MCECs was not co-cultured with Mϕs.
While the DSS-Mϕs group inhibited the migration of MCECs, no such effect was seen in
the DSS-Mϕs + quercetin group. It has been proved that quercetin can inhibit inflammatory
reaction and promote wound healing by promoting the transformation of macrophages
from M1 phenotype to M2 phenotype [75]. Therefore, we speculate that quercetin may
promote M1 Mϕs to M2 or impede the transition to M1 Mϕs, thereby reducing the level of
proinflammatory ILs in DSS induced colitis mice and promoting mucosal healing.

5. Conclusions

The unclear etiology and pathogenesis of UC have created urgency in the search for
new and effective treatments. Our study substantiates a role for quercetin in the treatment
of UC via inhibition of PI3K/AKT signaling, restoration of the intestinal barrier, and
regulation of the gut microbiota, with no obvious tissue damage or side effects in mice. We
propose that quercetin might be a feasible treatment option for UC and could be developed
as a new therapeutic agent.
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