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Abstract: Anthocyanins have been shown to be effective in chronic diseases because of their antiox-
idant and anti-inflammatory effects together with changes in the gut microbiota and modulation
of neuropeptides such as insulin-like growth factor-1. This review will examine whether these
mechanisms may be effective to moderate the symptoms of disorders of the central nervous system
in humans, including schizophrenia, Parkinson’s disease, Alzheimer’s disease, autism spectrum
disorder, depression, anxiety, attention-deficit hyperactivity disorder and epilepsy. Thus, antho-
cyanins from fruits and berries should be considered as complementary interventions to improve
these chronic disorders.
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1. Introduction

The Global Burden of Diseases, Injuries and Risk Factors Study 2019 presented the
global, regional and national prevalence of depressive disorders, anxiety disorders, bipolar
disorder, schizophrenia, autism spectrum disorders, conduct disorder, attention-deficit
hyperactivity disorder, eating disorders, idiopathic developmental intellectual disability
and a residual category of other central nervous system disorders from 1990 to 2019 [1].
This extensive study showed that central nervous system disorders remained among the
top ten causes of disease burden with the proportion of disability-related life years from
central nervous system disorders increasing from 3.1 to 4.9%. The study recommends that
the delivery of effective prevention and treatment programmes is imperative.

This review will present information indicating that treatment with anthocyanins could
be an effective programme to improve the health of people with central nervous system
disorders. We have previously reviewed the benefits of anthocyanins as treatments for a
wide range of chronic human diseases [2]. We showed that health benefits included reduced
cognitive decline; protection of organs such as the liver, as well as the cardiovascular system,
gastrointestinal tract and kidneys; improvements in bone health and obesity; and regulation
of glucose and lipid metabolism. We also reviewed the most likely mechanisms of these
improvements as alterations in gut microbiota, reduced oxidative stress and inflammation,
and modulation of neuropeptides such as insulin-like growth factor-1 (Figure 1) [2]. This
review focusses on the applications of these mechanisms to chronic diseases of the central
nervous system.
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Figure 1. Potential mechanisms for anthocyanins in the central nervous system disorders.

2. Anthocyanins and Pharmacokinetics

Anthocyanins are secondary plant metabolites distributed in many fruits and veg-
etables as purple, blue, pink and red-coloured compounds with important nutritional
value and health effects [3]. Recently, we highlighted dietary sources of anthocyanins and
some of the advanced methods to obtain anthocyanins from agri-waste [2]. We discussed
important mechanisms of actions of anthocyanins in improving chronic diseases includ-
ing modulating the gut microbiota, decreasing oxidative stress and inflammation, and
increasing insulin-like growth factor 1, and then summarised the therapeutic responses
to anthocyanins in chronic human diseases [2]. Our current aim is to examine whether
there are commonalities between the mechanisms of action of the anthocyanins and the
known physiological and biochemical changes in central nervous system disorders. If so,
the inference should be considered as plausible that anthocyanins have the potential to
improve the chronic symptoms of the central nervous system disorders.

While anthocyanins are usually consumed as part of the diet, therapeutic studies
will require high-purity compounds. Improved extraction and purification methods are
being developed to meet these needs [4]. Strategies include efficient green extraction with
ultrasound, pulsed electric fields, supercritical carbon dioxide and high pressure extraction
as well as the semi-synthesis or de novo synthesis by microorganisms [5].

The pharmacokinetics of anthocyanins from food are complex, leading to a broad
range of metabolites which may have biological activity [6]. After ingestion, anthocyanins
from fruits and vegetables are partially absorbed (~35%) in the upper gastrointestinal tract
while most of the anthocyanins (~65%) pass into the colon [7]. After absorption, dietary
anthocyanins are metabolised to glucuronides, sulphates and methylates in the intestinal
epithelium, liver and kidneys [7]. The major site of degradation of anthocyanins is the colon
where the gut microbiota hydrolyse the glycosylated forms and cleave the anthocyanin het-
erocycle forming benzoic acids and phloroglucinol derivatives [8] which may be absorbed
contributing to the bioavailable anthocyanin metabolites [6]. Gut microbiota-derived
metabolites of anthocyanins include phloroglucinol derivatives, 4-hydroxybenzoic acid,
protocatechuic acid, gallic acid, vanillic acid, syringic acid, catechol, pyrogallol, resorcinol,
tyrosol, 3-(3′-hydroxyphenyl) propionic acid, dihydrocaffeic acid, 3-(4′-hydroxyphenyl)
lactic acid, ferulic acid and hippuric acid [7].

A study using 13C-labelled anthocyanins in humans identified pharmacokinetic pro-
files of 17 metabolites in the circulation, 31 metabolites in the urine and 28 metabolites
in faeces [9]. Parent anthocyanin represented only ~2% of the total metabolites in the
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circulation suggesting that responses to anthocyanins are likely mediated by its intermedi-
ates [9]. Anthocyanin metabolism is expected to differ among populations based on inter-
or intra-individual variability; factors responsible for this variation include food matrix,
food processing, genetic factors determining enzymatic levels, diet, age, sex and gut micro-
biota functionality [10]. Tryptophan and kynurenic acid were modulated by anthocyanins
from blackberry in high fat diet-fed rats suggesting their roles in anti-neuroinflammatory
pathways without affecting kynurenine [11].

The complex pharmacokinetics of anthocyanins makes it difficult to predict if the
physiological responses are due to original compounds or their metabolites. Further, it
is not known what the optimal doses would be for the anthocyanins due to their lower
absorption and increased metabolism.

3. Anthocyanins in Central Nervous System Disorders

Since anthocyanins alter the gut microbiota, show anti-inflammatory and anti-oxidative
responses and modify some brain neuropeptides, this section will examine how these mech-
anisms could provide therapeutic actions to prevent or attenuate brain disorders in humans.

Ageing is a remarkably complex process but some molecular pathways may influence
health span in humans [12]. While calorie restriction increases lifespan in some species and
overeating and obesity shortens lifespan, optimal eating may increase life expectancy, as
in the “blue zones”, with an impact of health and behavioural factors as well as possible
genetic indicators [13]. Ageing-related changes in the gut microbiota may increase chronic
inflammation and immune responses leading to degenerative changes and unhealthy
ageing [14]. Increased dietary intakes of polyphenols, including anthocyanins, may alter
metabolism, chronic syndromes and cell proliferation, possibly related to their antioxidant
and anti-inflammatory properties [15]. However, the effectiveness of polyphenols as part
of anti-ageing nutrition outside of the “blue zones” has not been proven. The “green diet”
emphasising plant foods with minimal amounts of meat such as the Mediterranean diet
may increase healthy ageing and also decrease cognitive decline; further, these diets should
be more environmentally friendly [16]. Targeted epidemiological studies are important in
the design of future clinical trials to evaluate the strategy of healthy diets to extend healthy
ageing [17] before these interventions are needed to attenuate the symptoms of the central
nervous systems disorders.

The gut microbiota contains more than 10 times the number of cells in the human
body. Characterisation of the human microbiota is becoming an important tool for di-
agnosis, prognosis, risk profiling and precision therapy in humans [18]. The complexity
of the healthy microbiota and its relationships to the emergence of disease is related to
many factors including patient’s age, lifestyle, ethnicity and diet [18]. Further, molecular
characterisation of the microbiota, including viruses and fungi, defines the presence of
these microorganisms but does not define their biological activities or their metabolic
products. These bioactive metabolites are clearly important in the regulation of the activ-
ity of cells throughout the body. A review of 195 meta-analyses with 990 unique health
outcomes concluded that the gut microbiota is related to many disease states, including
gastrointestinal disease, immune and metabolic outcomes, neurological and psychiatric
outcomes, and maternal and infant outcomes [19]. Health interventions that rely on the gut
microbiota include prebiotics, probiotics and synbiotics. The potential of these interven-
tions, for example from vegetables and fruit, to modulate host immunity and manage local
gastrointestinal and systemic diseases to improve human health has been demonstrated
in many clinical trials [20,21]. The bidirectional links between the gut and the brain, the
microbiota-gut–brain axis, are modulated by bacterial metabolites, such as tryptophan
derivatives, short-chain fatty acids, branched-chain amino acids and peptidoglycans [22].
The gut microbiota has been linked to many chronic conditions of the central nervous
system, including autism, anxiety, schizophrenia, Parkinson’s disease and Alzheimer’s
disease as further discussed in later sections. In addition, disturbances in the gut microbiota
can initiate chronic low-grade inflammation leading to unhealthy ageing [14]. Thus, the
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central nervous system is a particular focus for new interventions in chronic conditions
that leverage the microbiota–gut–brain axis [23].

Nutrition plays an important role in the development of the gut microbiota. Maternal
health pre-conception and during pregnancy influences the microbial and cognitive devel-
opment of the offspring especially during the first 1000 days [24,25]. The Barker hypothesis
postulates the foetal origin of adult diseases; recent data propose an important role of
PPARs in this process as these receptors are important in the transition of foetus to embryo
in mammals [26]. Neuropsychiatric diseases in the adult may be a result of viral or bacterial
infections subtly changing foetal brain development [27]. Thus, prevention of adult-onset
neuronal disorders may have a component in the prevention of infection and improved
nutrition during pregnancy and the first 1000 days.

Another factor in the pathophysiology of major psychiatric disorders such as bipolar
disorder, depression, anxiety disorder and schizophrenia is oxidative stress which may
be linked to these diseases by activation of a class of calcium channels, thus linking
oxidative stress to calcium influx; this could explain the responses to some antioxidants [28].
Inflammation has also been linked to neuronal diseases such as Alzheimer’s disease [29].
The signalling of inflammation across the gut–brain axis is important in the maintenance or
normal physiology as well as in the pathology of inflammation-related neuronal damage
and disease [30].

Insulin-like growth factor 1 (IGF-1) has been a key player in brain development in
younger children [31]. Role of IGF-1 in autism development and suppressing neurologic
defects has been observed [31–33]. Reduced IGF-1 activity has also been associated with
age-related changes such as cognitive decline [34]. The metabolite of IGF-1, cyclic glycine-
proline, was found in blackberry anthocyanins; administration increased cyclic glycine-
proline in the cerebrospinal fluid of patients with Parkinson’s disease, a condition with
IGF-1 deficiency, but no clinical measurements were reported [35]. Thus, IGF-1 could be an
important target for improving brain-related disorders.

Anthocyanins or their metabolites may target multiple causes of neuronal disorders,
thus an evaluation of their therapeutic potential is warranted. As an example, anthocyanin
intake was inversely associated with depressive symptoms in a dose-response manner [36].
Evidence from animal models suggested that these responses of anthocyanins could re-
sult from their inhibition of monoamine oxidases and mitochondrial enzymes catalysing
oxidation of monoamines [37]. Further, anthocyanins modify the gut microbiota thus
providing possible alternative mechanisms for disease management and prevention in the
increased cardiovascular and neurodegenerative diseases, cancers and bone loss of the
ageing population [38]. However, recommendations for clinical use of anthocyanins are
restricted by the low number of clinical trials showing efficacy, their neuroprotective rather
than neurorestorative actions, their low oral bioavailability especially to the brain, and
possible differences between anthocyanins [39]. Despite these potential limitations, antho-
cyanins may have therapeutic effectiveness for the disorders of central nervous systems.
The following sections will present relevant studies with anthocyanins on central nervous
system disorders, highlighting their therapeutic potential.

3.1. Autism Spectrum Disorder

Autism spectrum disorders (ASD) include social communication difficulties and repet-
itive sensory-motor behaviours [40]. This neurodevelopmental disorder is heterogeneous
but may involve a range of causes including changes in the gut microbiota, inflammation
and oxidative stress. There is limited evidence for the association of environmental factors
such as heavy metals, especially inorganic mercury and lead, and vitamin D deficiency
with ASD; possible mechanisms include oxidative stress, inflammation, neurotransmitter
alterations and changes in signalling pathways [41]. Many factors such as medication
exposures and gastrointestinal co-morbidities that change the gut microbiota are present in
ASD [42]. Further, transplantation of gut microbiota from humans with ASD into germ-
free mice initiated autistic behaviours by production of neuroactive metabolites [43]. In
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autistic children with constipation, gut microbiota changes have been identified leading
to decreased faecal acetate and butyrate but increased valerate concentrations [44]. The
importance of the gut microbiota is shown by Microbiota Transfer Treatment as a potential
therapy for ASD; in 18 children, follow-up after 2 years showed that improvements in
gastro-intestinal symptoms were maintained while further improvements in autism-related
symptoms were measured [45]. Prebiotics and synbiotics may produce improvements
for some behavioural and gastrointestinal symptoms in ASD but the evidence should be
expanded [46,47]. Further, there is evidence for benefits of probiotics in children with ASD
showing behavioural and gastrointestinal improvements [48].

Enteroendocrine cells (EC) in the gut produce 95% of the body’s 5-hydroxytryptamine
(5-HT, serotonin); chronic exposure to the gut microbiota increases 5-HT synthesis by an
increased EC proliferation [49]. Dietary tryptophan is metabolised by the kynurenine
pathway (95%) and 5-HT [50]. However, the role of 5-HT in autism is unclear as selective
serotonin reuptake inhibitors have modest effects on some repetitive behaviours but do not
ameliorate core autism symptoms [51]. The kynurenine pathway may be more relevant
with ASD children showing increased concentrations of toxic kynurenine metabolites
either causative or resultant from acute and chronic inflammation together with increased
anti-inflammatory cytokines [52]. Kynurenine pathway overexpression may be a part
of aberrant neurodevelopment in ASD leading to increased neurotoxic metabolites and
excitotoxicity [53]. Intestinal-derived vitamins such as the B group vitamins may play a
significant role in the function and pathophysiology of the central nervous system including
regulation of the tryptophan-kynurenine pathways [54]. Further, dl-leucovorin, a reduced
folate, improved some symptoms in children with ASD [55].

Eating disorders are common in children with ASD with dietary changes hard to
implement because of tantrums and behavioural problems [56]. Their strong food selectiv-
ity alters their gut microbiota with increased short-chain fatty acids and 5-HT-producing
bacteria which can then change gastrointestinal function [57]. The maternal diet during
gestation as well as the diet of children with ASD may be modifiable risk factors for both the
improvement and worsening of symptoms [58]. Prenatal micronutrient supplementation
has been proposed as a preventative measure for the development of central nervous sys-
tem issues including ASD [59]. Vitamin D deficiency during pregnancy and early childhood
could impact the developing brain to increase the risk of ASD in children; vitamin D sup-
plementation improved symptoms in children with ASD but the mechanism is unclear [60].
Further nutritional interventions could include the ketogenic diet, defined as a high-fat,
appropriate-protein and low-carbohydrate diet, to influence human health [61]. Improve-
ments in autistic behaviour have been reported following intervention with a ketogenic
diet, with possible mechanisms including modulation of oxidative stress, neurotransmitters
and the gut microbiota [62].

Increased oxidative stress has been proposed as crucially important to the neuroinflam-
mation in ASD suggesting that treatments to decrease concentrations of reactive oxygen
species may have therapeutic benefits [63]. Children with ASD may be more vulnerable to
oxidative stress and redox imbalance from imbalances in glutathione concentrations and
decreased glutathione reserve capacity [64]. Proposed therapies of ASD such as omega-3
fatty acids may lower neuroinflammation by targeting oxidative stress to improve intestinal
homeostasis but randomised clinical trials have been inconclusive [65,66].

Although anthocyanins alter the gut microbiota and decrease both inflammation
and oxidative stress, no study has reported therapeutic benefits with anthocyanins in
people with ASD. However, treatment with an anthocyanin-containing extract from blue-
berries decreased neuroinflammation and gut inflammation, modulated the gut microbiota
and improved serotonin concentrations in the gut and prefrontal cortex to ameliorate
autism-like behaviours in a valproic acid mouse model of autism [67]. There are many
changes that could improve life outcomes for autistic people [68] and further research on
chronic interventions with anthocyanins during pregnancy and in childhood would seem to
be justified.
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3.2. Major Depressive Disorder

Recurrent depressive episodes characterise major depressive disorder, predicted to
become the major cause of burden of disease worldwide by 2030 [69]. The proposed
mechanisms of the disorders have included the monoamine hypothesis, changes in the
hypothalamus–pituitary–adrenal axis, neuroinflammation, neuroplasticity, neurogene-
sis, changes in brain structure and function, genes and epigenetics, and the role of life
events [69]. Neuroinflammation [70] as well as oxidative and nitrosative stress [71] may
be key targets for future therapeutic advances for major depressive disorder. Further, the
changed gut microbiota-derived short-chain fatty acids and metabolites in major depressive
disorders may be a realistic target for interventions such as faecal microbiota transfer and
improved dietary health including probiotics [72].

Susceptibility to disease in adults has been linked to changes in intrauterine devel-
opment. This suggests that optimal nutrition during placental development can min-
imise adult disease such as metabolic syndrome [73]. This concept has been extended
to mental illness where maternal infections producing inflammation could alter foetal
brain development leading to neuropsychiatric conditions later in life [27,74]. However,
a study using Mendelian randomisation has shown no causal effects between low birth
weight and neuropsychiatric conditions including schizophrenia, major depressive disorder
and attention-deficit hyperactivity disorder [75]. Further research may indicate whether
changes in nutrition for pre-pregnant and pregnant mothers can decrease these neuropsy-
chiatric disorders in their children, in a similar way that treatment with folic acid starting
5–6 months before conception decreased the risk of neural tube defects [76].

3.3. Anxiety Disorders and Depression

Anxiety and depressive disorders belong to the internalising disorders and are highly
co-morbid [77]. Anxiety disorders, the most common type of mental illness, show excessive
fear and anxiety or avoidance of perceived threats [78]. The global prevalence of anxiety
disorders increased by 25.6% and of major depressive disorder by 27.6% due to the COVID-
19 pandemic in 2020 [79]. Depression describes sad or irritable mood disorders that decrease
quality of life. Obesity defined as an increased body mass index predicts chronic anxiety
and depression symptoms likely related to prolonged inflammation due to poor dietary
lifestyle and inactivity [80]. The high co-morbidity and the role of obesity in human anxiety
and depression suggest that changes in the gut microbiota are relevant such as reported
higher abundance of pro-inflammatory bacteria and lower abundance of short-chain fatty
acid-producing bacteria [81]. Dietary changes associated with changed risk of developing
anxiety and depression such as increased omega-3 fatty acid, prebiotic and micronutrient
intakes also alter the gut microbiota [82]. Further, gut dysbiosis in rodents caused by
stress, high-fat diet or antibiotics caused anxiety- and depression-like behaviours which
can be reversed by probiotics; the link between gut dysbiosis, anxiety and depression in
rodents is possibly neuroinflammation [83] following dysregulation of microRNAs in the
gut and brain [84]. In a mouse model of lipopolysaccharide-induced inflammation, altered
neurotransmission in the basal lateral amygdala may produce neuroinflammation-induced
anxiety and depressive behaviours [85]. Prebiotics promote anxiolytic and anti-depressive
effects in rodent models with plausible mechanisms, but the limitation is that human
studies showing clear improvements are scarce [86]. One of the few studies in adult humans
showed a link between probiotic-induced changes in the gut microbiota and reduction of
stress and anxiety [87]. There is clear evidence of foetal influence as anxiety in 20-year-old
offspring has been associated with both maternal and paternal mental health problems [88].
Further, preconception anxiety was related to anxiety-related maternal–infant bonding
problems at 12 months after birth which was predicted by anxiety symptoms occurring
in young adulthood [89]. These links suggest that extending preconception and prenatal
healthcare interventions for the mother for at least the first 12 months after birth will
decrease the risk of anxiety disorders in early adulthood of the offspring. Although clinical
trials are not available, traditional knowledge attributing anxiolytic and anti-depressive
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responses to foods containing polyphenols such as anthocyanins may provide treatments
for anxiety disorders by improving the gut microbiota [90].

3.4. Attention-Deficit Hyperactivity Disorder (ADHD)

ADHD is a lifetime neurodevelopmental condition with diagnosis requiring the presence
of six or more symptoms in either the inattentive or hyperactive and impulsive domains, or
both, with first-line treatment being psychostimulants such as methylphenidate [91]. The
pathophysiology of ADHD is uncertain but the catecholaminergic neurotransmission sys-
tem may be the major factor, leading to neuronal oxidative stress and inflammation [92].
Recent research has proposed that ADHD patients have a different gut microbial com-
position which could increase neuronal damage; evidence suggests that omega-3 fatty
acids and probiotics may have some therapeutic usefulness in paediatric patients by chang-
ing the gut microbiota [92]. In preadolescent children with ADHD defined at age of
10 years, bacterial diversity and composition at age 6 months was associated with symptom
development [93]. In children aged 6–16 years with ADHD, decreased plasma TNF-α
concentrations negatively correlated with ADHD symptoms may be related to changes in
the gut microbiota [94]. Gut microbiota changes in ADHD have been confirmed by meta-
analysis [95]. Maternal immune activation triggered by chronic non-resolving inflammation
during pregnancy has been proposed as a cause of neurodevelopmental disorders such as
ADHD [96]. Micronutrient supplementation, for example with iron and zinc, may possibly
provide limited improvements in some parameters [97]. Despite the potential involvement
of the gut microbiota, neuronal oxidative stress and inflammation in the pathology of
ADHD, there are no studies using anthocyanins to mitigate the condition.

3.5. Schizophrenia

Schizophrenia is a severe psychiatric condition showing reality distortion, cognitive
impairment, disorganisation and the clinical poverty syndrome with the neurodevelopmen-
tal hypothesis from birth cohort studies suggesting that events in utero, at birth or in early
life are causes of the adult disease [98]. Perinatal complications such as infections have
been strongly implicated as a risk factor for schizophrenia in the offspring but variability
in study design and subjects has made interpretation difficult [27]. The complexity of
schizophrenia suggests that many biological pathways may be involved, including changes
in gene expression, possibly leading to an increased oxidative stress as many signalling
and metabolic pathways in the brain increase reactive oxygen species formation and redox
imbalance in schizophrenia [99]. Together with oxidative stress, neuroinflammation is a
plausible hypothesis for schizophrenia, including cytokines inducing peripheral inflam-
mation interacting with central dopaminergic pathways, microglial activation of central
inflammation, neurogenesis as a consequence of neuroinflammation, and the role of acute
phase reactants such as C-reactive protein [100]. Dysregulation of inflammatory media-
tors with increased pro-inflammatory and decreased anti-inflammatory cytokines may
increase symptom severity in schizophrenia, possibly related to early childhood trauma
and gut microbiota changes [101]. Alterations in the gut microbiota have been linked to
the pathogenesis, development, severity and prognosis of schizophrenia with dysbiosis
altering the kynurenine–tryptophan pathway to increase the kynurenine pathway and
decrease the serotonin pathway of catabolism [102]. However, causality between gut mi-
crobiota alterations and psychosis has not been established. The potential role of the gut
microbiota in schizophrenia, in particular increased cytokine concentrations, decreased
gut membrane and blood–brain barrier integrity, altered neurotransmitters and decreased
short-chain fatty acid synthesis, suggests the therapeutic potential of prebiotic/probiotic
combinations, in particular to reduce the metabolic alterations during antipsychotic ther-
apy [103]. Further, targeting the gut–microbiota axis with probiotics, prebiotics, antibiotics,
or faecal microbiota transplantation may decrease the cognitive impairment as a predictor
of negative outcomes in schizophrenia [104]. Despite anthocyanins having antioxidant and
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anti-inflammatory effects and changing the gut microbiota, no studies on anthocyanins in
schizophrenic patients were found.

3.6. Alzheimer’s Disease

Alzheimer’s disease is the main cause of dementia, usually in the elderly and asso-
ciated with increasing amyloid-β inducing the spread of tau pathology [105]. Modifiable
risk factors include pre-existing diseases, unhealthy lifestyles and environmental expo-
sures, while active involvement in cognitive activities reduced risk [106]. Physical exercise
improves cognitive health in brain ageing and Alzheimer’s disease, possibly by reducing
reactive oxygen species and promoting the low concentrations required for optimal cellular
function [107]. Oxidative stress is an early clinical feature of Alzheimer’s disease with
oxidative modification of macromolecules leading to alterations in function, especially of
the mitochondria [108]. Changes in the gut microbiota could increase amyloid-β aggrega-
tion, neuroinflammation, oxidative stress and insulin resistance in the brain, suggesting a
relationship between gut dysbiosis and the development of Alzheimer’s disease [109]. Gut
dysbiosis may lead to the development of local and systemic inflammation since dysbiosis
may increase gut permeability to infectious agents such as bacteria and viruses, leading
to neuroinflammation and neuronal damage [110]. Microglia as innate immune cells in
the brain may be the key players in neuroinflammation in Alzheimer’s disease; potential
treatments targeting the microglial priming and responses may be disease-modifying [29].
This role of gut dysbiosis in causing neuroinflammation also suggests that interventions
such as prebiotics to stimulate the production of short-chain fatty acids, probiotics and
faecal microbial transplantation to improve the gut microbiota may be useful in amelio-
rating symptoms and the progressive worsening of Alzheimer’s disease [111]. There are
strong suggestions that these interventions can become new treatment options to reduce
the risk or delay the onset in patients at high risk for Alzheimer’s disease [112]. Trials in
humans have been reported but large-scale clinical trials are still essential to understand the
potential benefits of alteration of the gut microbiota. Initial clinical studies include the pre-
biotic, fructan, which reduced the risk of Alzheimer’s disease development [113]. Further,
clinical trials with probiotic mixtures in Alzheimer’s disease or mild cognitive impairment
showed improvements in cognition with decreased markers for oxidative stress and in-
flammation [114]. No studies were found investigating faecal microbial transplantation in
Alzheimer’s disease patients. While there are no published studies on anthocyanin treat-
ment in Alzheimer’s disease, anthocyanin supplementation with cherry juice or blueberries
improved mild cognitive impairment in older patients with mild memory decline [115,116]
suggesting that chronic studies with anthocyanins on cognition in schizophrenic patients
should be considered.

3.7. Parkinson’s Disease

Parkinson’s disease is a neurodegenerative condition usually with a long prodromal
period and defined by bradykinesia combined with rest tremor or rigidity or both; no
current treatment has been shown to slow or stop progression of the disease [117]. The
pathophysiology is complex, but the earliest event of Parkinson’s disease pathogenesis
could be a change in the gut microbiota [117]. This altered microbiota may produce toxins
that increase production of α-synuclein in the enteric nervous system which may then
propagate in a prion-like way to the central nervous system to accelerate Parkinson’s dis-
ease pathogenesis [118]. Further, gut dysbiosis could increase gut permeability and general
systemic inflammation altering the function of microglia, astrocytes and endothelial cells in
the brain to increase neuronal damage and death leading to progression of the disease [119].
In addition, neurotoxins that inhibit mitochondrial complex 1 activity produce neuroin-
flammation and induce Parkinson’s disease [120]. Oxidative stress is important in the
progressive neurodegeneration in Parkinson’s disease. Excessive reactive oxygen species
promote cell death pathways such as apoptosis, and cytoplasmic and autophagic cell death
suggesting that new therapeutic options should include targeting oxidative stress [121].
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Preclinical studies with anthocyanins and their phenolic acid metabolites such as pro-
tocatechuic acid have demonstrated antioxidant, anti-inflammatory and anti-apoptotic
effects together with prevention of protein polymerisation into plaques and stimulating
autophagy that could be effective in treating Parkinson’s disease [122]. However, these
promising leads have not yet been translated into therapeutic advances for patients with
Parkinson’s disease; problems include the poor oral bioavailability of anthocyanins and
limited evidence of neurorestorative properties.

3.8. Epilepsy

Epilepsy is characterised by spontaneous seizures with neurobiological, cognitive and
psychosocial consequences leading to increased morbidity, disability and mortality [123].
Although a wide range of pharmacological treatments are available, around 30% of epilep-
tics remain drug resistant. Gut dysbiosis is involved in the development and susceptibility
of adults to epilepsy as this is associated with neuroinflammation, altered neuromodula-
tors and disruption of the blood–brain barrier [124]. This relationship is strengthened by
decreased symptoms with antibiotics, probiotics, the ketogenic diet and faecal microbial
transplantation [124,125]. Further, the ketogenic diet, a high-fat, low-carbohydrate diet
that results in ketosis, effective in about one-third of drug-resistant epilepsies, produces
anti-inflammatory responses with likely neuroinflammatory pathways including adenosine
modulation, ketone bodies, mTOR pathways, PPARγ, NLRP3 inflammasome and gut
microbiota [126]. Pro-inflammatory cytokines such as IL-1β, IL-6, TNF-α and IFN-γ are
increased in animal models of epilepsy and in human studies [127]. Together with neuroin-
flammation, oxidative and nitrosative stress is rapidly induced in animal models of epilepsy;
anti-inflammatory and antioxidant drugs may moderate disease severity by providing
neuroprotection and decreased cognitive deficits in preclinical studies and in adults with
drug-resistant epilepsies [128]. Antioxidants may provide neuroprotection by targeting
mitochondrial oxidative stress to modify apoptosis–autophagy and autophagy–ferroptosis
crosstalk [129]. However, no studies have specifically tested the role of anthocyanins
in epilepsy.

4. Conclusions

Central nervous system disorders show different ranges of symptoms that define the
disease state. Common changes in these disorders, present to varying extents, include
foetal origin, development during childhood, changes in the gut microbiota, and increased
oxidative stress and neuroinflammation leading to nerve damage. Mechanisms of action
of anthocyanins in chronic human disease include decreased oxidative stress and inflam-
mation and changes in the gut microbiota. The broad commonalities between symptoms
of central nervous system disorders and the mechanisms of therapeutic actions of the
anthocyanins infer that anthocyanins are potential treatments for these disorders. While
clinical evidence is limited, the information presented in this review forms the basis for in-
depth evaluation of the role of chronic treatment with anthocyanins as adjunctive therapy
for central nervous system disorders. Further, initiation of treatment as early as possible,
possibly even pre-conception and continued throughout pregnancy, the first 1000 days,
childhood and early adulthood may reduce the risk of central nervous system disorders
in adults.

Author Contributions: Conceptualisation, L.B.; methodology, S.K.P. and L.B.; writing—original draft
preparation, L.B.; writing—review and editing, S.K.P. and L.B. All authors have read and agreed to
the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.



Molecules 2023, 28, 80 10 of 14

Conflicts of Interest: The authors declare no conflict of interest.

References
1. GBD 2019 Mental Disorders Collaborators. Global, regional, and national burden of 12 mental disorders in 204 countries and

territories, 1990-2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet Psychiatry 2022, 9, 137–150.
[CrossRef] [PubMed]

2. Panchal, S.K.; John, O.D.; Mathai, M.L.; Brown, L. Anthocyanins in chronic diseases: The power of purple. Nutrients 2022, 14, 2161.
[CrossRef] [PubMed]

3. Mattioli, R.; Francioso, A.; Mosca, L.; Silva, P. Anthocyanins: A comprehensive review of their chemical properties and health
effects on cardiovascular and neurodegenerative diseases. Molecules 2020, 25, 3809. [CrossRef] [PubMed]

4. Silva, S.; Costa, E.M.; Calhau, C.; Morais, R.M.; Pintado, M.E. Anthocyanin extraction from plant tissues: A review. Crit. Rev. Food
Sci. Nutr. 2017, 57, 3072–3083. [CrossRef] [PubMed]

5. Yang, S.; Mi, L.; Wu, J.; Liao, X.; Xu, Z. Strategy for anthocyanins production: From efficient green extraction to novel microbial
biosynthesis. Crit. Rev. Food Sci. Nutr. 2022. [CrossRef]

6. Hornedo-Ortega, R.; Rasines-Perea, Z.; Cerezo, A.B.; Teissedre, P.-L.; Jourdes, M. Chapter 5. Anthocyanins: Dietary sources,
bioavailability, human metabolic pathways, and potential anti-neuroinflammatory activity. In Phenolic Compounds-Chemistry,
Synthesis, Diversity, Non-Conventional Industrial, Pharmaceutical and Therapeutic Applications; Badria, F.A., Ed.; IntechOpen: London,
UK, 2021. [CrossRef]

7. Tian, L.; Tan, Y.; Chen, G.; Wang, G.; Sun, J.; Ou, S.; Chen, W.; Bai, W. Metabolism of anthocyanins and consequent effects on the
gut microbiota. Crit. Rev. Food Sci. Nutr. 2019, 59, 982–991. [CrossRef]

8. Gui, H.; Sun, L.; Liu, R.; Si, X.; Li, D.; Wang, Y.; Shu, C.; Sun, X.; Jiang, Q.; Qiao, Y.; et al. Current knowledge of anthocyanin
metabolism in the digestive tract: Absorption, distribution, degradation, and interconversion. Crit. Rev. Food Sci. Nutr. 2022.
[CrossRef]

9. de Ferrars, R.M.; Czank, C.; Zhang, Q.; Botting, N.P.; Kroon, P.A.; Cassidy, A.; Kay, C.D. The pharmacokinetics of anthocyanins
and their metabolites in humans. Br. J. Pharmacol. 2014, 171, 3268–3282. [CrossRef]
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