
Citation: Lashley, A.; Miller, R.;

Provenzano, S.; Jarecki, S.-A.; Erba, P.;

Salim, V. Functional Diversification

and Structural Origins of Plant

Natural Product Methyltransferases.

Molecules 2023, 28, 43. https://

doi.org/10.3390/molecules28010043

Academic Editors: Patrícia Rijo

and Gabrielle Bangay

Received: 19 November 2022

Revised: 13 December 2022

Accepted: 15 December 2022

Published: 21 December 2022

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

molecules

Review

Functional Diversification and Structural Origins of Plant
Natural Product Methyltransferases
Audrey Lashley 1, Ryan Miller 1,2, Stephanie Provenzano 1,3, Sara-Alexis Jarecki 1, Paul Erba 1,2

and Vonny Salim 1,*

1 Department of Biological Sciences, Louisiana State University, Shreveport, LA 71115, USA
2 School of Medicine, Louisiana State University Health New Orleans, New Orleans, LA 70112, USA
3 School of Medicine, Louisiana State University Health Shreveport, Shreveport, LA 71103, USA
* Correspondence: vonny.salim@lsus.edu

Abstract: In plants, methylation is a common step in specialized metabolic pathways, leading to a vast
diversity of natural products. The methylation of these small molecules is catalyzed by S-adenosyl-
L-methionine (SAM)-dependent methyltransferases, which are categorized based on the methyl-
accepting atom (O, N, C, S, or Se). These methyltransferases are responsible for the transformation of
metabolites involved in plant defense response, pigments, and cell signaling. Plant natural product
methyltransferases are part of the Class I methyltransferase-superfamily containing the canonical
Rossmann fold. Recent advances in genomics have accelerated the functional characterization of
plant natural product methyltransferases, allowing for the determination of substrate specificities
and regioselectivity and further realizing the potential for enzyme engineering. This review compiles
known biochemically characterized plant natural product methyltransferases that have contributed
to our knowledge in the diversification of small molecules mediated by methylation steps.

Keywords: methyltransferase; plant natural products; bioactive molecules; enzyme; structure;
pharmaceuticals

1. Introduction

Methylations, a process universal within all organisms, are responsible for extensive
cellular modulations. These reactions are typically catalyzed by methyltransferases that
require cofactor S-adenosyl-L-methionine (SAM), resulting in the formation of the methy-
lated product and S-adenosyl-L-homocysteine (SAH) [1]. More commonly known for their
roles in epigenetics, methyltransferases are also involved in natural product biosynthesis in
plants. Plant natural product methyltransferases (PNPMTs) contribute to the diversification
of specialized metabolites with functions such as pigments [2,3], antioxidants [4], signal
transducer, and plant defense response [5–8]. Phenolic compounds, specifically, support
plant growth and provide additional advantages to tolerate environmental stresses against
insects and microbial invasion [9,10].

PNPMTs and their subsequent methylated products also display pharmaceutical prop-
erties for humans. Compared to their non-methylated counterparts, methylated plant
natural products exhibit different chemical properties, and thereby alter biological ac-
tivity. For instance, methylated resveratrol was shown to decrease its genotoxicity level
compared to non-methylated resveratrol, which has been reported to cause chromosome
aberration [11]. Furthermore, methylated resveratrol displays improved bioavailability and
overall bioactivity [12,13]. Methylation also influences the binding of small molecules to a
human neurotransmitter receptor. For example, as an intermediate in the morphine path-
way, the O-methylated benzylisoquinoline (BIA) thebaine exhibits stimulatory effects and
weaker analgesic properties compared to morphine, which lacks O-methylated groups [14].
Similarly, the methylated monoterpene indole alkaloid (MIA) ibogaine is less polar than
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its non-methylated counterpart, noribogaine, and is far more readily sequestered to the
lipophilic compartment of the brain [15,16].

In recent years, advanced -omics have enabled the discoveries of new plant natural
product methyltransferases. A number of PNPMTs have been elucidated by X-ray crys-
tallography, illuminating the SAM and substrate-binding domains. Canonically, based on
structures, all natural-product methyltransferases across kingdoms belong to Classes I and
III [1]. PNPMTs, bearing the Rossmann fold-binding site for SAM, are categorized as Class
I, while Class III is typically found in bacteria and associated with membranes [1,17–19].
The remaining classes of methyltransferases have been structurally characterized by the
domains that participate in macromolecular (DNA, RNA, and protein) methylation for epi-
genetic regulation and have been reviewed elsewhere [19–21]. In the past twenty years, the
emergence of synthetic biology and biotechnological advancements in the heterologous pro-
duction of plant enzymes in microbial systems have accelerated the gene identification and
functional characterization of plant natural product enzymes, including methyltransferases.
Here, we highlight how the biochemical characterizations of PNPMT genes integrated
with the structural knowledge could lay the foundations for more extensive enzyme engi-
neering efforts. In this review, we focus on Class I, SAM-dependent plant natural product
methyltransferases (PNPMTs), summarizing their structure, function, and application
for metabolic engineering to alter their enzyme specificity and diversification of plant
specialized metabolites.

2. Classification of PNPMTs Based on Methyl Acceptor

Methyltransferases are categorized based on the substrate atoms O-, N-, C-, S-, and
Se- that accept the methyl group. Though rare, a few reported PNMPTs were noted for
their ability to transfer methyl groups to more than one acceptor, such as those methylat-
ing halides and thiocyanates [22]. Among all plant natural product methyltransferases,
O-directed methyltransferases (OMTs) are the most abundant to date [1]. OMTs target the
hydroxyl groups of small molecules, such as alkaloids, lignin precursors, simple phenols,
phytoalexins, phytohormones, and flavonoids, to produce their methylated form. This
also includes the hydroxyl moiety of the carboxyl group, which can be found in salicylic
acid [5,23], jasmonic acid [7] and iridoid loganic acid [24]. OMTs are also further charac-
terized into two subclasses based on their dependence on or independence of a divalent
cation. The cation-dependent OMTs, also known as caffeoyl-CoA OMTs (CCoAOMTs),
typically have a lower subunit molecular weight of 26–30 kDa. CCoAOMTs are mainly
involved in lignin, phytohormone, and scent metabolism [16,25]. Comparatively, the cation-
independent OMTs, also known as caffeic acid OMT (COMT), range between 37 and 43 kDa
and are primarily active in phenylpropanoid and alkaloid biosynthesis [26].

The abundance of OMTs is also seen through the incredible diversity of their methoxy-
lated products (Figure 1). For instance, plant alkaloid OMTs have been well-characterized,
including the monoterpene indole alkaloid in Catharanthus roseus to synthesize vindo-
line, which is then dimerized with catharanthine to form anticancer vinblastine [27] and
monoterpene isoquinoline alkaloid in Psychotria ipecacuanha [28]. Notably, out of all known
alkaloid OMTs to date, the majority of them are involved in benzylisoquinoline alkaloid
biosynthesis (Table 1). Further characterization of plant alkaloid OMTs, known as norbella-
dine 4′OMTs, has been reported in Amaryllidaceae alkaloid biosynthesis from Narcissus
spp and Lycoris aurea [29,30]. Although heterocyclic nitrogenous methoxypyrazines are not
characterized as alkaloids, the OMTs involved in their pathway have been reported [31–33].
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Though not as abundant as the OMTs, N-directed methyltransferases (NMTs) still 
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amines, or more complex alkaloids [1] (Figure 2). Most N-directed methyltransferases 
have been cloned from alkaloid-producing plants. In particular, the caffeine biosynthetic 
pathway in xanthosine involves a series of N-methylation steps that serve as a model to 
study alkaloid biosynthesis [151,152]. The biosynthetic genes involved were cloned from 
Camellia sinensis [152,153], Coffea arabica [54,55,57,58,153] Paullinia cupana [59], Theobroma 
cacao [154], and Citrus sinensis [151]. Remarkably, caffeine and its xanthine precursors have 
evolved independently in a number of flowering plants using either of the two biochem-
ical pathways through caffeine synthase or xanthine methyltransferase-like enzymes, as 
exhibited in chocolate, citrus, and guarana plants [151]. Based on coding sequences, xan-
thine NMTs were determined to belong to the SABATH (salicylic acid, benzoic acid, the-
obromine synthase) family of methyltransferases, which exclusively utilize the “proximity 
and desolvation effects” [1,5], rather than general acid-base catalysis or cation-dependent 
mechanisms. Since SABATH methyltransferases generally methylate oxygen atoms, it is 
likely that a recent change in the function of xanthine alkaloid-producing species occurred 
[16]. A recent study hypothesized that despite stemming from different lineages, xan-
thosine methyltransferases have convergent evolutionary histories [16,151]. 

Figure 1. Representation of chemical diversity generated by O-directed methyltransferases. Methy-
lated atoms are highlighted in yellow.
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Table 1. Biochemically characterized plant natural product methyltransferases.

Name Plant Species Acceptor PNPMT
Class

Pathway/Substrate
Class Accepted Substrate

Nucleotide
Accession
Number

Protein
Accession
Number

PDB Ref

ALKALOIDS

Cj4’OMT Coptis japonica O OMT benzylisoquinoline (R,S)-laudanosoline, (R,S)-6-O-methylnorlaudanosoline,
(R,S)-norlaudanosoline, (S)-scoulerine D29812 BAB08005 [34]

Cj6OMT Coptis japonica O OMT benzylisoquinoline
(R,S)-norococlaurine, (R,S)-6-O-methylnorlaudanosoline,

(R,S)-laudanosoline, (R,S)-norlaudanosoline, laudanosoline,
(S)-scoulerine

D29811 BAB08004 [34]

CjCNMT Coptis japonica N NMT benzylisoquinoline

(R,S)-coclaurine, (R,S)-norreticuline, (R,S)-norlaudanosoline,
(R,S)-6-O-methylnorlaudanosoline,

6,7-dimethoxyl-1,2,3,4-tetrahydroisoquinoline,
1-methyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinolinne

AB061863 BAB71802 6GKZ [35,36]

PSMT1 P. somniferum O OMT benzylisoquinoline scoulerine JQ658999 AFB74611 6I5Z [37]
PsN7OMT P. somniferum O OMT benzylisoquinoline (S)-norreticuline FJ156103 ACN88562 [38]

PsSOMT1-3 P. somniferum O OMT benzylisoquinoline (S)-scoulerine, (S)-tetrahydrocolumbamine, (S)-norreticuline,
(S)-reticuline

JN185323 (1)
JN185324 (2)
JN185325 (3)

AFK73709 (1)
AFK73710 (2)
AFK73711 (3)

[39]

SiSOMT Stephania
intermedia O OMT benzylisoquinoline (S)-scoulerine, (S)-tetrahydropalmatrubine,

(S)-tetrahydrocolumbamine MK749415 QFU85196 [40]

SiCNMT1-3 Stephania
intermedia N NMT benzylisoquinoline (R)-coclaurine

MK749412
MK749413
MK749414

QFU85193
QFU85194
QFU85195

[40]

St6OMT1 Stephania
tetrandra O OMT benzylisoquinoline (S)-norcoclaurine [41]

NnOMT1,5 Nelumbo nucifera O OMT benzylisoquinoline 1-benzylisoquinolines

XM_010245752
XM_010249599
XM_010249600
XM_010273389
XM_010277761

XP_010244054
XP_010247901
XP_010247902
XP_010271691
XP_010276063

[42]

PsRNMT Papaver
somniferum N NMT benzylisoquinoline

(R)-reticuline, (S)-reticuline, papaverine,
(R,S)-tetrahydropapaverine, boldine, (S)-corytuberine,

(+)-isothebaine, (+)-isocorydine, (+)-glaucine,
(+)-bulbocapnine, narcotine hemiacetal, noscapine, hydrastine

KX369612 AOR51552 [43]

PsTNMT P. somniferum N NMT benzylisoquinoline (R,S)-canadine, (R,S)-tetrahydropalmatine, (R,S)-stylopine DQ028579 AAY79177 [44]

TfPavNMT Thalictrum
flavum N NMT benzylisoquinoline (S)-reticuline, pavine, (R,S)-tetrahydropapaverine,

(R,S)-scoulerine, (R,S)-stylopine EU883010 ACO90251 5KOK [45]

GfTNMT Glaucium flavum N NMT benzylisoquinoline (S)-stylopine, tetrahydropalmatine, (S)-canadine,
(S)-tetrahydrocolumbamine, (S)-scoulerine 6P3O [46]
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Table 1. Cont.

Name Plant Species Acceptor PNPMT
Class

Pathway/Substrate
Class Accepted Substrate

Nucleotide
Accession
Number

Protein
Accession
Number

PDB Ref

TtOMTI
(Thatu OMT

II;1.1)

Thalictrum
tuberosum O OMT benzylisoquinoline

caffeic acid, catechol, guajacol, ferulic acid, sinapic acid,
(S)-norcoclaurine, (S)-norlaudanosoline,

(R,S)-3′-O-methylnorlaudanosoline,
(R,S)-4′-O-methylnorlaudanosoline, (R,S)-laudanosoline,

(S)-4′-O-methyllaudanosoline, (S)-nororientaline,
(R)-nororientaline, (R,S)-norisoorientaline, (S)-reticuline,

(R,S)-3-O-demethylcheilanthifoline,
(S)-6-O-demethylautumnaline, (R)-6-O-demethylautumnaline

AF064693 AAD29841 [47]

Ca10OMT Camptotheca
acuminata O OMT

monoterpene
indole, flavonoid,

phenolics

10-hydroxycamptothecin, kaempferol, quercetin, kaempferol
3-OGlc, quercetin 3-O-Glc, 7-O-methylquercetin,

4′-O-methylquercetin
MG996006 AWH62806 [48]

Cr16OMT Catharanthus
roseus O OMT monoterpene

indole 16-hydroxytabersonine EF444544 ABR20103 [27]

CrNMT Catharanthus
roseus N NMT monoterpene

indole
16-methoxy-

2,3-dihydro-3-hydroxy tabersonine HM584929.1 ADP00410.1 [49]

TiN10OMT Tabernanthe iboga O OMT monoterpene
indole ibogamine, noribogaine, 10-hydroxycoronaridine MH454075 AXF35975

(partial) [50]

VmPiNMT Vinca minor O OMT monoterpene
indole picrinine, 21-hydroxylochnericine, norajmaline KC708450 AHH02782 [51]

RsANMT Rauvolfia
serpentina N NMT monoterpene

indole ajmaline, norajmaline KC708445 AHH02777 [52]

RsNNMT Rauvolfia
serpentina N NMT monoterpene

indole norajmaline, Nb-methylnorajamaline KC708449 AHH02781 [52]

RsPiNMT Rauvolfia
serpentina N NMT monoterpene

indole picrinine, 21-hydroxylochnericine, norajmaline KC708448 AHH02780 [52]

Vm16OMT Vinca minor O OMT monoterpene
indole 16-hydroxytabersonine MH010798 QBY35563 [53]

PiIpeOMT1-3 Psychotria
ipecacuanha O OMT monoterpene

isoquinoline

isococlaurine, N-deacetylisoipecoside,
7-O-methyl-N-deacetylisoipecoside, cephaeline, norcoclaurine,
4-O-methyllaudanosoline, nororientaline, isoorientaline, (1R)

norprotosinomenine, (1S) norprotosinomenine,
protosinomenine

AB527082 (1)
AB527083 (2)
AB527084 (3)

BAI79243 (1)
BAI79244 (2)
BAI79245 (3)

[28]

CaDXMT1 Coffea arabica N NMT purine paraxanthine, theobromine, 7-methylxanthine AB084125 BAC75663 [54]
CaMXMT C. arabica N NMT purine 7-methylxanthine, paraxanthine AB048794 BAB39216 [55]
CaXMT1 C. arabica N NMT purine xanthine AB048793 BAB39215 [54]
CcDXMT Coffea canephora N SABATH purine 3,7-dimethylxanthine DQ422955 ABD90686 2EFJ [56]
CcXMT Coffea canephora N SABATH purine xanthosine DQ422954 ABD90685 2EG5 [56]
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Table 1. Cont.

Name Plant Species Acceptor PNPMT
Class

Pathway/Substrate
Class Accepted Substrate

Nucleotide
Accession
Number

Protein
Accession
Number

PDB Ref

CmXRS1 C. arabica N NMT purine xanthosine AB034699 BAC43755 [57,58]

PcCS Paullinia cupana
var. sorbilis N NMT purine theobromine, 7-methylxanthine BK008796 DAA64605 [59]

NpN4OMT1 Narcissus sp. O OMT phenethylamine norbelladine, N-methylnorbelladine, dopamine KJ584561 AIL54541 [29]

LrOMT Lycoris radiata O
Cation-

dependent
OMT

alkaloid

norbelladine, caffeic acid, 3,4-dihyroxybenzaldehyde,
dopamine, 3,4-dihydroxybenzylamine, higenamine,

1,2,3,4-4H-6,7-isoquinolinediol, (-)-epinephrine,
(-)-norepinephrine, 5-hydroxyvanillin,

3,4,5-trihydroxybenzaldehyde, ethyl 3,4-dihydroxybenzoate,
4-Br-catechol, 4-F-catechol

MK805029 QEP29044 [60]

PMT Nicotiana
tabacum N NMT amine putrescine D28506 BAA05867 [61]

PMT Solanum
tuberosum N NMT amine putrescine AJ605553 CAE53633 [62]

PMT Calystegia sepium N NMT amine putrescine AM177608 CAJ46252 [63]

PMT Datura innoxia N NMT amine putrescine AM177609
AM177610

CAJ46253
CAJ46254 [63]

PMT Physalis
divaricata N NMT amine putrescine AM177611 CAJ46255 [63]

PMT Datura
stramonium N NMT amine putrescine AJ583514 CAE47481 [64]

PHENOLICS

CdFOMT5 Citrus depressa O OMT flavonoid
quercetin, 3-hydroxyflavone, 5-hydroxyflavone,

6-hydroxyflavone, 7-hydroxyflavone, naringenin,
(-)-epicatechin, equol

LC126059 BAU51794 [65]

CrOMT2 Catharanthus
roseus O OMT flavonoid myricetin, quercetin, dihydroquercetin, dihydromyricetin AY127568 AAM97497 [66]

CrOMT6 Catharanthus
roseus O OMT flavonoid homoeriodictyol, isorhamnetin, chrysoeriol, quercetin,

eriodictyol, kaempferol AY343490 AAR02420 [67]

CuCitOMT Citrus unshiu
Marc. O OMT flavonoid 3′,4′-dihydroxyflavone, 3′,4′,5,7-tetrahydroxyflavone LC516612 BBU25484 [68]

HvOMT1 Hordeum vulgare O OMT flavonoid tricetin, luteolin, tricetin, quercetin, 5-hydroxyferulic acid,
eriodictyol, taxifolin EF586876 ABQ58825 [69]
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Table 1. Cont.

Name Plant Species Acceptor PNPMT
Class

Pathway/Substrate
Class Accepted Substrate

Nucleotide
Accession
Number

Protein
Accession
Number

PDB Ref

ZmOMT1 Zea mays O OMT flavonoid luteolin, tricetin, quercetin, 5-hydroxyferulic acid, eriodictyol,
taxifolin XM_002436508 ABQ58826 [69]

ObF8OMT-1 Ocimum
basilicum O OMT flavonoid 7,8,4′-OH-flavone, 8-OH-7-OCH3-flavone, 7,8-OH-flavone,

7,8,3′,4′-OH-flavone KC354402 AGQ21572 [70]

ObFOMT1-6 Ocimum
basilicum O OMT flavonoid

luteolin, apigenin, scutellarein, hispidulin, naringenin,
chrysoeriol, diosmetin, acacetin, scutellarein-4′-methyl ether,

nevadensin, cirsimaritin, kaempferol, quercetin,
scutellarein-4′-methyl ether, nepetin, ladanein, cirsioliol,

genkwanin, scutellarein-7-methyl ether, naringenin-7-methyl
ether, scutellarein-7-O-glucuronide

JQ653275 (1)
JQ653276 (2)
JQ653277 (3)
JQ653278 (4)
JQ653279 (5)
JQ653280 (6)

AFU50295 (1)
AFU50296 (2)
AFU50297 (3)
AFU50298 (4)
AFU50299 (5)
AFU50300 (6)

[70]

ObPFOMT-1 Ocimum
basilicum O OMT flavonoid

7,8,4′-OH-flavone, 7,8-OH-flavone, 6,7-OH-flavone,
5,6-OH-flavone, 5,6-OH-7-OCH3-flavone, eriodictyol,

ladanein, scutellarein-7-methyl ether, scutellarein 4′-methyl
ether, scutellarein, scutellarin, cirsiliol, nepetin, luteolin,

luteolin-7-methyl ether, luteoline-7-glucoside, quercetagetin,
quercetin, quercetin-7-methyl ether, tricetin, 3′,4′-OH-flavone,
5,3′,4′-OH-flavone, 7,3′,4′-OH-flavone, 7,8,3′,4′-OH-flavone

KC354401 AGQ21571 [70]

OsNOMT Oryza sativa O OMT flavonoid racemic naringenin, kaempferol, apigenin, luteolin, racemic
liquiritigenin, quercetin AB692949 BAM13734 [71]

ShMOMT3 Solanum
habrochaites O OMT flavonoid

quercetin, kaempferol, myricetin, 7-methyl quercetin,
3-methyl quercetin, 3-methyl myricetin, 3′,5′-dimethyl

myricetin, 3′-methyl quercetin
KC513419 AGK26768 [72]

SlMOMT4 Solanum
lycopersicum O OMT flavonoid myricetin, 3′-methylmyricetin KF740343 AIN36846 [73]

MpOMT4 Mentha x piperita O OMT flavonoid
isorhamnetin, kaempferol, quercetin, rhamnetin, luteolin,

apigenin, 6-OH-apigenin, 7,8,3′,4′-OH-flavone, naringenin,
taxifolin

AY337461 AAR09602 [74]

PaF4’OMT Plagiochasma
appendiculatum O OMT flavonoid apigenin, luteoline, scutellarein, genkwanin, eriodictyol,

naringenin, quercetin, kaempferol, genistein KY977687 ARS23163 [75]

ShMOMT1 Solanum
habrochaites O OMT flavonoid myricetin, quercetin, 7-methyl quercetin, 3-methyl quercetin JF499656 ADZ76433 [76]

ShMOMT2 Solanum
habrochaites O OMT flavonoid

7-methyl quercetin, quercetin, kaempferol, myricetin,
4′-methyl kaempferol, 3,7,4′-trimethyl kaempferol, 3′-methyl
quercetin, 3-methyl quercetin, 3,7,3′,4′-tetramethyl quercetin,

3′-methyl myricetin, 3′,5′-dimethyl myricetin,
3′,4′,5′-trimethyl myricetin

JF499657 ADZ76434 [76]

AtCCoAOMT7 Arabidopsis
thaliana O OMT flavonoid luteolin, quercetin, caffeoyl-CoA, esculetin At4g26220 NP_567739 [77]
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Table 1. Cont.

Name Plant Species Acceptor PNPMT
Class

Pathway/Substrate
Class Accepted Substrate

Nucleotide
Accession
Number

Protein
Accession
Number

PDB Ref

AtOMT1 Arabidopsis
thaliana O OMT flavonoid quercetin, myricetin, luteolin U70424 AAB96879 [78,79]

CaFOMT1 Chrysosplenium
americanum O OMT flavonoid

3,7,4′-triOMeQ, 2′-OH 3,6,7,4′-tetraOMeQg, 2′-OH
3,7,4′-triOMeQ, 3,6,7,4′-tetraOMeQg; Abbreviations: Q,

quercetin; Qg, quercetagetin (6-OH-Q)
U16794 AAA80579 [80]

CaOMT2 Chrysosplenium
americanum O OMT flavonoid quercetin, luteolin, 5-hydroxyferulic, caffeic acid U16793 AAA86982 [81]

OsCAldOMT1 Oryza sativa O OMT flavonoid 5-hydroxyconiferaldehyde, selgin Q6ZD89 [82]

VvOMT1-2 Vitis vinifera O OMT flavonoid
quercetin, resveratrol, caffeic acid, epicatechin,

3-isobutyl-2-methoxypyrazine,
3-isopropyl-2-methoxypyrazine

GQ357167 (1)
GQ357168 (2)

ADJ66850 (1)
ADJ66851 (2) [31]

EnFOMT Eucalyptus nitida O OMT flavonoid pinocembrin, chrysin, naringenin, apigenin, alpinetin,
7-hydroxyflavone, hesperetin, luteolin, quercetin OM96491 UOO01100 [83]

GmSOMT-2 Glycine max O OMT flavonoid naringenin, daidzein, quercetin, genistein, apigenin TC178411
(TIGR) [84]

VvAOMT2 Vitis vinifera O
Cation-

dependent
OMT

anthocyanin delphinidin 3-O-glucoside, cyanidin 3-O-glucoside HQ702997 ADY18303 [85]

VvCCoAOMT Vitis vinifera O
Cation-

dependent
OMT

anthocyanin cyanidin 3-O-glucoside chloride, caffeoyl-CoA Z54233 CAA90969 [86–88]

GeD7OMT Glycyrrhiza
echinata O OMT isoflavone daidzein AB091685 BAC58012 [89]

GeHI4′OMT Glycyrrhiza
echinata O OMT isoflavone (2R,3S)-2,7,4′-trihydroxyisoflavanone, medicarpin AB091684 BAC58011 [89]

GmIOMT1 Glycine max O OMT isoflavone 6-hydroxydaidzein, 8-hydroxydaidzein, 3′-hydroxydaidzein NM_001250549 NP_001237478 [90]

MsIOMT Medicago sativa O OMT isoflavone 6,7,4′-trihydroxyisoflavone, daidzein, genistein,
(+)6a-hydroxymaackiain, (+)maackiain AF000976 AAC49927 1FP2 [91,92]

MsI7OMT Medicago
truncutula O OMT isoflavone 6,7,4′-trihydroxyisoflavone, daidzein, (+)6a-hydroxymaackiain 6CIG [92]

MtHI4′OMT Medicago
truncutula O OMT isoflavone (2S, 3R)-2,7,4′-trihydroxyisoflavanone, 6a-hydroxymaackiain AY942158 AAY18581 1ZG3

1ZHF [8]

PmIOMT9 Pueraria montana
var. lobata O OMT isoflavone genistein, daidzen, prunetin, isoformononetin KP057892 AKW47171 [93]

PIOMT4 Pueraria lobata O OMT isoflavone 3′-hydroxy-daidzein, luteolin, quercetin KP057887 AKW47166 [94]

McPFOMT Mesembryanthemum
crystallinum O

Cation-
dependent

OMT
phenylpropanoid quarcetagetin, quercetin, caffeoyl coA, caffeic acid AY145521 AAN61072 3C3Y [95]
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Table 1. Cont.

Name Plant Species Acceptor PNPMT
Class

Pathway/Substrate
Class Accepted Substrate

Nucleotide
Accession
Number

Protein
Accession
Number

PDB Ref

GmSOMT-9 Glycine max O
Cation-

dependent
OMT

phenylpropanoid quercetin, luteolin, taxifolin, catechin, taxifolin, caffeic acid NM_001249311 NP_001236240 [96]

MsCOMT Medicago sativa O OMT phenylpropanoid 5-hydroxyconiferaldehyde, caffeic acid, 5-hydroxyferulic acid,
caffeoyl aldehyde, caffeoyl alcohol, 5-hydroxyconiferyl alcohol M63853 AAB46623 1KYW

1KYZ [97]

ObCVOMT1 Ocimum
basilicum O OMT phenylpropanoid chavicol, eugenol, t-ioseugenol, t-anol, catechol, phenol,

coniferyl alcohol AF435007 AAL30423 [98]

ObEOMT1 O. basilicum O OMT phenylpropanoid eugenol, chavicol, t-ioseugenol, guaiacol, caffeic acid, coniferyl
alcohol, ferulic acid AF435008 AAL30424 [98]

OsROMT9 Oryza sativa O OMT phenylpropanoid quercetin, catechin, eriodictyol, luteolin, myricetin, taxifolin,
rhamnetin, caffeic acid DQ288259 ABB90678 [99]

OsOMT1 Oryza sativa O OMT phenylpropanoid tricetin, luteolin, quercetin, eriodictyol, 5-hydroxyferulic acid DQ530257 ABF72191 [100]

VpOMT4 Vanilla planifolia O
Cation-

dependent
OMT

phenylpropanoid caffeoyl coA JF344740 ADZ76153 [101]

RsOMT1,3 Rauvolfia
serpentina O

Cation-
dependent

OMT
phenylpropanoid caffeic acid, 3,5-dimethoxy-4-hydroxycinnamic,

3,4,5-trihydroxybenzoic
KX687823 (1)
KX687825 (3)

AOZ21151 (1)
AOZ21153 (3) [102]

MsCCoAOMT Medicago sativa O
Cation-

dependent
OMT

phenylpropanoid caffeoyl CoA U20736 AAC28973 1SUI [103]

SbCCoAOMT Sorghum bicolor O
Cation-

dependent
OMT

phenylpropanoid caffeoyl-CoA XM_002436505 XP_002436550 5KVA [104]

SbCOMT Sorghum bicolor O OMT phenylpropanoid 5-hydroxyconiferaldehyde, caffeic acid, p-coumaraldehyde,
coniferaldehyde XM_002436506 ADW65743 [105]

VvOMT3 Vitis vinifera O OMT phenylpropanoid
3-isopropyl-2-hydoxypyrazine,

3-isobutyl-2-hydroxypryazine, quercetin, resveratrol, caffeic
acid, epicatechin, catechin, eugenol, isoeugenol, orcinol

XM_002436507 AGK93042 [32]

ObCCMT1-3 Ocimum
basilicum O SABATH phenylpropanoid trans-cinnamic acid, hydrocinnamic acid, p-coumaric,

4-hydroxyhydrocinnamic acid, m-courmaric acid, benzoic acid XM_002436509
ABV91100 (1)
ABV91101 (2)
ABV91102 (3)

[106]

LpCaOMT Lolium perenne O
Cation-

dependent
OMT

phenylpropanoid caffeoyl alcohol, caffeic acid, 5-hydroxyferulic acid, caffeoyl
aldehyde, 5-hydroxyconiferaldehyde AF033538 AAD10253

3P9C
3P9I
3P9K

[107]

MOMT4 Clarkia breweri O OMT phenylpropanoid coniferyl alcohol, sinapyl alcohol JX287369 AFQ94040 3TKY [108]

HlOMT1-2 Humulus lupulus O OMT chalcone desmethylxanthohumol, xanthohumol EU309725 (1)
EU309726 (2)

ABZ89565 (1)
ABZ89566 (2) [109]
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Table 1. Cont.

Name Plant Species Acceptor PNPMT
Class

Pathway/Substrate
Class Accepted Substrate

Nucleotide
Accession
Number

Protein
Accession
Number

PDB Ref

MtChOMT Medicago
truncutula O OMT chalcone 2′,4,4′-trihydroxychalcone L10211 AAB48059 1FPQ [92,110]

AcOMT1 Acorus calamus O OMT polyphenol
isorhapontigenin, resveratrol, piceatannol, oxyresveratrol,

pinostilbene, naringenin, anol, isoeugenol, chavicol, eugenol,
p-coumaric acid, caffeic acid

LC387636 BBE32341 [111]

VvROMT Vitis vinifera O OMT polyphenol resveratrol monomethyl ether, resveratrol FM178870 CAQ76879 [112]

AtSAMT
Arabidopsis

thaliana,
Arabidopsis lyrata

O SABATH phenolics benzoic acid, salicylic acid, anthranilic acid AY224595
AY224596

AAP57210
AAP57211 [113]

CbSAMT Clarkia breweri O SABATH phenolics salicylic acid, benzoic acid AF133053 AAF00108 1M6E [5,23]
MONOTERPENES

CrLAMT Catharanthus
roseus O SABATH monoterpene

iridoid loganic acid, secologanic acid EU057974 ABW38009 6C8R [24]

OpLAMT Ophiorrhiza
pumila O SABATH monoterpene

iridoid loganic acid, secologanic acid MT942677 QWX38535 [114]

FURANOCOUMARIN

PpBMT Peucedanum
praeruptorum O OMT furanocoumarin bergaptol KU359196 ANA75355 5XG6

5XOH [115]

TOCOPHEROLS

AtγTMT Arabidopsis
thaliana C CMT vitamin E δ-tocopherol, γ-tocopherol AF104220 AAD02882 [116,

117]
Pfγ-TMT Perilla frutescens C CMT vitamin E γ-tocopherol AF213481 AAL36933 [118]

POLYKETIDE
MdOMT Malus domestica O OMT polyketide 3,5-dihydroxybiphenyl MF740747 ASV64939 [119]

STEROLS
GmSMT Glycine max C CMT sterol sterol U43683 AAB04057 [120]

TwSMT1 Tripterygium
wilfodii C CMT sterol sterol KU885950 ARI48333 [121]

Ntsmt2-1 Nicotiana
tabacum C CMT sterol 24-methylene lophenol U71108

U81312
AAB62808
AAC34951

[122,
123]

Ntsmt1-1 Nicotiana
tabacum C CMT sterol cycloartenol AF053766 AAC35787 [123]

HALIDE/THIOCYANATE

AtHOL1 Arabidopsis
thaliana

SCN,
halides HTMT thiocyanate/halide SCN- > I > Br > Cl (Not F) AY044314 AAK73255 3LCC [22,124]

RsHTMT Raphanus sativus Halides HTMT thiocyanate/halide halides (except F) AB477013 BAH84870 [125]
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Table 1. Cont.

Name Plant Species Acceptor PNPMT
Class

Pathway/Substrate
Class Accepted Substrate

Nucleotide
Accession
Number

Protein
Accession
Number

PDB Ref

AMINOBENZOATE
RgANMT Ruta graveolens N NMT aminobenzoate anthranilate DQ884932 ABI93949 [126]

OTHER SMALL MOLECULES

AtASMT Arabidopsis
thaliana O OMT indole N-acetylserotonin, serotonin AT4G35160 Q9T003 [127]

EsPaNMT Ephedra sinica N NMT monoamine
alkaloid

(+/-)-cathinone, (+/-)-norephedrine, (-)-norpseudoephedrine,
(+/-)-ephedrine, (+)-pseudoephedrine MH029305 AWJ64115 [128]

HvNMT Hordeum vulgare N NMT indole 3-aminomethylindole, 3-aminomethylindole,
N-methyl-3-aminomethylindole U54767 AAC18643 [129]

SoPEAMT Spinacia oleracea N NMT phospholipid phosphatidylethanolamine AF237633 AAF61950 [130]

DTCMT Brassica rapa S SMT organosulfur dithiocarbamate
Brara.B01660
Brara.G00303
(Phytozome)

Brara.B01660
Brara.G00303
(Phytozome)

[131]

AtJMT Arabidopsis
thaliana O SABATH carboxylic acid (±) jasmonic acid, dihydrojasmonic acid AY008434 AAG23343 [7]

CrSMT1 Catharanthus
roseus S SMT organosulfur

benzene thiol, furfuryl thiol, 3-mercaptohexyl-acetate,
3-mercaptohexan-1-ol, benzoyl thiol, 1-mercaptopropan-2-ol,

pyridine-2-thiol, phenol, 1,3-hexandiol, 1,4-dithiothreitol,
3-mercaptopropan-1-ol, 6-mercapto-hexan-1-ol,

2-mercaptoethanol (BME)

DQ084384 AAZ32409 [132]

EjMBMT Eriobotyra
japonica O SABATH carboxylic acid p-methoxybenzoic acid, benzoic acid, jasmonic acid LC127197 BAV54103 [133]

AtIAMT Arabidopsis
thaliana O SABATH indole indole acetic acid NM_124907 NP_200336 3B5I [134]

BoSMT Brassica oleracea Se SeMT amino acid DL-selenocysteine, L-selenocysteine, DL-cysteine, L-cysteine,
DL-homocysteine AY817737 AAX20123 [135]
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The majority of plant natural product OMTs have been characterized as part of
phenylpropanoid-related biosynthetic pathways, which include flavonoids. Various types
of flavonoids (flavonols, flavones, isoflavones, flavanols, and anthocyanins) play significant
physiological roles in plants, typically in response to biotic and abiotic stresses [136]. For
instance, the methoxylated flavonoid tricin in rice serves as a plant defense response against
insect herbivores [137]. While flavonoid-OMTs generally do not require a cation for catalyza-
tion, cation-dependent flavonoid-OMTs have been reported. Specific cation-dependent
flavonoid-OMTs include the anthocyanin-OMT and an (iso) flavonol-6-OMT, which are
multifunctional in methylating caffeoyl-CoA and associated flavonoids [70,90,95,138] (Table 1).

The position and number of methyl groups determine the structural diversity of
flavonoids, though these are restricted by the placement of hydroxyl groups [136]. O-
methylation can occur at any position theoretically, however, 7- and 4′-methoxylation are
most prevalent among flavonoids; interestingly, a number of polymethoxylated flavonoids
have also been reported [136]. Although the majority of flavonoid-OMTs are active towards
aglycone substrates, anthocyanin 3′OMT and 5′OMT were later characterized and displayed
strong preference for glycosylated substrates [138].

While OMTs are generally regiospecific, plant OMTs involved in phenylpropanoid
and flavonoid biosynthesis are less selective and catalyze sequential methylations of almost
identical substrates [1,65,107,139]. A small group of plant OMTs has demonstrated strong
enzymatic specificity for a single structure, but overall, plant OMTs tend to accept a wide
span of substrates, with varying substrate preferences, including flavonoids, lignin precur-
sors, and alkaloids [48,140]. For example, an alkaloid OMT, 10-hydroxycamptothecin OMT
in Camptotheca acuminata, was strongly preferred to methylate 10-hydroxycamptothecin but
was also capable of methylating flavonoids, stilbenes, and caffeic acids [48].

Plant natural product OMTs have also been cloned and biochemically characterized
from several BIA-producing species. In the most studied BIA-producing organism, Pa-
paver somniferum, once (S)-norcoclaurine is formed by the condensation of dopamine and
4-hydroxyphenylacetaldehyde, the hydroxyl group in the isoquinoline moiety is methy-
lated to produce (S)-coclaurine. Further characterization of similar cDNAs encoding
this methyltransferase has been reported in six species [34,141–144]. Moreover, the crys-
tal structure of norcoclaurine-6-O-methyltransferase from Thalictrum flavum (Tf6OMT)
has been reported (PDB accession number: 5ICC) [143]. Additional OMTs in the BIA
pathway contribute to the final step in the central pathway to produce (S)-reticuline by
methylating 3′-hydroxy-N-methylcoclaurine 4′-O-methyltransferase (4′OMT). The cor-
responding transcripts encoding 4′OMT-like enzymes have also been reported in three
species [34,141,142,144–146]. A number of these BIA OMTs are remarkably substrate-
specific, such as norreticuline 7-O-methyltransferase, which introduces a third methoxy
group to produce (S)-norlaudanine in papaverine biosynthesis [38,141]. Multiple O-
methylation is more common in BIA biosynthetic pathways, and the additional transcripts
of similar enzymes have also been reported, including reticuline 7-O-methyltransferase and
scoulerine 9-O-methyltransferase [39,141,142,144,147–149]. In other cases, a similar enzyme
to biochemically characterized scoulerine 9-O-methyltransferase preferentially methylates
the 2-hydroxyl of quaternary protoberberine and columbamine in only Coptis japonica [150].

Though not as abundant as the OMTs, N-directed methyltransferases (NMTs) still offer
a respectable diversity of natural products. The N-methylated phytochemicals consist of pri-
mary amines, secondary amines found in indoles and imidazoles, tertiary amines, or more
complex alkaloids [1] (Figure 2). Most N-directed methyltransferases have been cloned from
alkaloid-producing plants. In particular, the caffeine biosynthetic pathway in xanthosine
involves a series of N-methylation steps that serve as a model to study alkaloid biosynthe-
sis [151,152]. The biosynthetic genes involved were cloned from Camellia sinensis [152,153],
Coffea arabica [54,55,57,58,153] Paullinia cupana [59], Theobroma cacao [154], and Citrus sinen-
sis [151]. Remarkably, caffeine and its xanthine precursors have evolved independently in a
number of flowering plants using either of the two biochemical pathways through caffeine
synthase or xanthine methyltransferase-like enzymes, as exhibited in chocolate, citrus,



Molecules 2023, 28, 43 13 of 27

and guarana plants [151]. Based on coding sequences, xanthine NMTs were determined
to belong to the SABATH (salicylic acid, benzoic acid, theobromine synthase) family of
methyltransferases, which exclusively utilize the “proximity and desolvation effects” [1,5],
rather than general acid-base catalysis or cation-dependent mechanisms. Since SABATH
methyltransferases generally methylate oxygen atoms, it is likely that a recent change in
the function of xanthine alkaloid-producing species occurred [16]. A recent study hypothe-
sized that despite stemming from different lineages, xanthosine methyltransferases have
convergent evolutionary histories [16,151].
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A number of NMTs involved in monoterpene indole alkaloid biosynthetic pathways
have been characterized, including those involved in vindoline production in Catharanthus
roseus [49], N-methylation of picrinine from the Apocynaceae family [51], and ajmaline
synthesis [52]. NMTs have contributed significantly to the diversification of benzyliso-
quinoline alkaloids (BIA), and several NMTs have been characterized in nine Ranunculales
species [16].

C-directed methyltransferases (CMTs) have been well characterized and primarily partic-
ipate in specialized metabolism by methylating aliphatics, such as tocopherol [116–118] and
sterol [120–123]. Notable examples highlighted in this review are illustrated in Figure 2.

S-directed methyltransferases (SMTs) are generally involved in the production of
volatile halogen and sulfur compounds as well as thiocyanate [1]. A few examples of
characterized SMTs in plants have been reported, including those from C. roseus [132].
A thiocyanate methyltransferase found in Arabidopsis thaliana that synthesizes methylth-
iocyanate [124] was later structurally analyzed [22]. Halide/bisulfide methyltransferase
activity was also detected in the leaves of Brassica oleracea [155]. Some MTs exhibit high
specificity for halides or bisulfides, known as halide ion methyltransferases (HMTs) and
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halide/thiol methyltransferases (HTMTs). HMTs and HTMTs are found in coastal trees,
grasses, and several agricultural plants, with particularly high levels of activity in Raphanus
sativus (daikon radish), Oryza sativa (paddy rice) Triticum aestivum (wheat), and Cyathea
lepifera (fern) [125]. These HMT and HTMT genes were later cloned [156,157]. HMTs have
also been biochemically characterized in broccoli with high substrate specificity toward ho-
mocysteine [158]. Lyi and colleagues also reported a selenocysteine methyltransferase that
produces Se-methylselenocysteine [135]. Interestingly, these two genes play roles in sulfur
and selenium metabolism in broccoli. Another SAM-dependent HTMT was cloned from
Raphanus, and upon biochemical testing, exhibited high specificity for iodide, bisulfide, and
thiocyanate [125]. Plant SMTs have also been characterized in the production of brassinin
in cruciferous vegetables [131,159]. A comprehensive list of biochemically characterized
PNPMTs with some structurally characterized features is detailed in Table 1.

3. The Identification of Plant Natural Product Methyltransferase (PNPMT) Genes

All known Class I PNPMTs consist of an alternating α-helix/ß-strand structure with
associated monomeric molecular masses of 25 to 55 kDa [1]. Bioinformatic analyses to iden-
tify putative PNPMT genes are primarily based on a series of conserved motifs, with heavy
reliance on the core Rossmann fold [1,25]. Within the Rossmann fold, a nine-residue amino
acid incorporating a glycine-rich structure “GxGxG” signature sequence corresponding to
a SAM-binding motif is found in SAM-dependent MTs (red boxes in Figure 3). Although
these consensus sequences (V/I/L)(L/V)(D/E)(V/I)G(G/C)G(T/P)G [160] contain substi-
tutions, the amino acid sequences are typically better aligned within the same subclasses
(cation-dependent, cation-independent, SABATH, BIA).
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Figure 3. Alignment of the protein sequences of plant NPMTs and bacterial MTs. The plant species
and accession numbers of these MTs are listed in Table 1. Plant NPMTs include cation-dependent SbC-
CoAOMT, cation-independent MtHI4′OMT, SABATH CrLAMT, and CcDXMT, and BIA TfPavNMT, in
comparison to the bacterial MT within Class I bacterial LiOMT (Leptospira interrogans, WP_000087781),
and non-Class I bacterial SvAviRbMT (Streptomyces viridochromogenes, WP_003998250). The red boxes
indicate the glycine-rich Rossmann fold consensus sequences with 0–3 mismatches. The amino acid
residues highlighted in blue are highly conserved, those in green are conserved, and those in yellow
are moderately conserved. “*” represents every 10th amino acid after each numerical indicator.
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Amino acid sequences of PNPMTs from separate subclasses of cation-dependent,
cation-independent, SABATH, and BIA MTs were chosen from the list of biochemically
characterized plant natural product MTs (Table 1) to construct a phylogenetic tree (Figure 4).
The genes within the same subclasses share high sequence similarity, while several of these
highly homologous MTs have been reported to be involved in the biosynthesis of similar
classes of metabolites, including clusters of BIA OMTs/NMTs and alkaloid biosynthetic
genes (Ca10OMT, IpeOMT1, Vm16OMT, Cr16OMT) [16,48]. Sequence analysis and the
phylogenetic results confirmed the functional classification of cation-dependent, cation-
independent, and SABATH families. Class I cation-dependent bacteria OMT is included to
compare with plant cation-dependent OMTs (Figure 4).
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Figure 4. Phylogenetic relationships among functionally characterized plant NPMTs and bacterial
MTs. A phylogenetic tree was generated using the neighbor-joining method and the Poisson cor-
relation method via MEGA X [161]. The scale bar shows the amino acids substituted per sequence
alignment. Bolded sequences indicate the NPMTs further analyzed in this review. The underlined se-
quences are bacterial methyltransferases, showing the relationship between bacteria and plant NPMTs.
The plant species and accession numbers can be found in Table 1. The bacterial MT species and acces-
sion numbers are: LiOMT, Leptospira interrogans O-methyltransferase (WP_000087781); SvAviRbMT,
Streptomyces viridochromogenes antibiotic-resistant mediating O-methyltransferase (WP_003998250).
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4. Structural Biochemistry of PNPMTs

Protein X-ray crystallography has allowed for the extensive structural elucidation of
numerous Class I methyltransferases. The resulting X-ray crystal structures have offered
great insight into the general structures of these methyltransferases and have determined
that they remain highly consistent, despite the primary amino acid sequences having low
similarity [162]. Nevertheless, the primary amino acid sequences are still necessary to
conduct phylogenetic analysis as they yield clarity into the evolutionary relationships of all
PNPMTs. Furthermore, increased genomic data and the availability of coding sequences
facilitate the molecular characterization or determinants of function [16,151]. For example,
characterized active sites that accept xanthine have distinguishing features that promote
attachment with xanthine molecules [152,154]. In particular, the hydrophobic pocket
and specific residues affecting substrate specificity, encourage such xanthine attachment,
later confirmed by site-directed mutagenesis [16,151,154,163]. In plant OMTs, structural
analysis often involves dimers. Most OMTs form homodimers [92], though a BIA OMT
was reported to form a heterodimer [164]. Typically, a dimerization interface is present as
several helices actively participate in substrate binding. This dimerization interface also
constitutes a hydrophobic “back wall” [92], though its participation in substrate binding
varies among plant OMTs [16]. The analysis of primary amino acid sequences revealed
that the N-terminus domain contributes to the dimerization with partial involvement in
substrate-binding within the hydrophobic pocket, while the C-terminus domain is involved
in SAM-binding via the Rossmann fold.

Class I PNPMTs are characterized by a conserved domain known as the Rossmann
fold. The Rossmann fold is defined by a seven-stranded ß-sheet, commonly ordered 3 2 1 4
5 7 6, with the seventh strand in an antiparallel position to the remaining strands and three
α-helices on each side of the ß-sheet [17,165].

Recognized as the defining features of all SAM-dependent methyltransferases, six
sequentially ordered motifs (I-VI) either contribute to the formation of the SAM-binding
pocket or have interactions with SAM itself. [1,18,25,166] (Figure 5). Motif I consists of
ß-strand I and the adjoining loop, and located at the N-terminus is a glycine-rich sequence
(GxGxG) with one or two glycines interacting with SAM [18]. Generally, this glycine-rich
sequence remains conserved throughout Class I, but there is a minority of cases where
alanine residues replaced the glycines [18]. Motif II consists of ß-strand II and the following
helix, and there is either an aspartate or glutamate residue located at the C-terminus [18,166].
The helix is structurally conserved and directly contributes to the SAM-binding pocket [18].
Motif III is involved in SAM binding. This motif possesses a hydrophilic amino acid at the
N-terminus of ß-strand III, and a partially conserved glycine residue at the C-terminus [18].
Motif IV is composed of ß-strand IV and the adjoining loops. Located at the C-terminus
is a partially conserved acidic residue [1]. Motif V consists of a helix following strand IV,
although this motif does not typically interact with SAM [18]. However, in a few cases, this
motif may act as a site for hydrophobic side chains, securing SAM’s adenine moiety [166].
Finally, motif VI, very uncommonly interacting with SAM, is characterized by strand V and
its preceding loop, as well as a conserved glycine residue, followed by two hydrophobic
residues at the beginning of the strand [18]. Interestingly, among all subclasses, the residues
of the motifs were highly conserved, although SAM’s position with its binding pocket
varied depending on the subclass [18,25,166] (Figure 5).
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Figure 5. Rossmann fold motifs highlighted in Class I plant NPMTs and Class I bacterial MTs.
Three-dimensional visualizations were created using PDB crystal structures and PyMOL. (a) Cation-
dependent, SbCCoAOMT, (b) Cation-independent MtHI4′OMT, (c) SABATH, CrLAMT, (d) bacterial
Leptospira interrogans O-methyltransferase, LiOMT (PDB 2HNK), (e) closer look at the MtHI4′OMT
SAM-binding pocket, with important residues and hydrogen bonding highlighted, (f) representation
of the methyl transfer between SAM and MtH14′OMT. Species names and PDB numbers for the
above-mentioned plant NPMTs can be found in Table 1. The colored beta sheets and alpha helices
represent Motifs I-VI, which make up the characteristic MT Class I Rossmann fold. The red strand
represents Motif I, the light blue strand and helix represents Motif II, the orange strand represents
Motif III, the green strand represents Motif IV, the yellow helix represents Motif V, and the purple
strand represents Motif VI. The darker blue structure is either SAM or its demethylated form, SAH.
The lighter blue structure is the substrate.

The Rossmann fold is a multifunctional domain of the PNPMT and other Class I
methyltransferases alike—not only is the Rossmann fold able to house the methyl donor
SAM, but it also has influences on the substrate-binding pocket, and thus, the orientation of
the methyl acceptor atom [5]. While the Rossmann-fold domain is widely conserved across
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all Class I methyltransferases, structural tweaks allow for some degree of promiscuity. In
contrast to DNA methyltransferases, which are designed to identify the general features
of macromolecular substrates due to their widely conserved active sites [19], PNPMTs
generally exhibit higher levels of specificity [1]. A number of important amino acid residues
that contribute to this specificity have been identified via structural-based analysis and confirmed
by site-directed mutagenesis in several cases, including in caffeoyl-CoA methyltransferases [103],
chalcone and isoflavone methyltransferase [92], and benzylisoquinoline [16,167].

In some alkaloid biosynthesis studies, heterodimers have been suggested to participate
in the catalysis of new substrates. From Thalictrum tuberosum, the heterodimers of four
OMTs accepted substrates, such as catechols, hydroxycinnamates, and alkaloids, exhibit far
more promiscuity than their homodimer counterparts [47]. A missing step in noscapine
biosynthesis in Papaver somniferum was filled with a then newly discovered heterodimer
consisting of PsSOMT2 and PsSOMT/Ps6OMT [164]. Due to the degree of promiscuity
within alkaloid heterodimers, understanding their functionalization has the potential to un-
cover new biochemical processes [136]. Overall, the advances in the structural biochemistry
of PNMPTs have highlighted the degree of specificity that both conserves the SAM-binding
pocket and provides structural determinants of functions and their involvements in plant
natural product biosynthesis.

5. Engineering Plant Natural Product Methyltransferases (PNPMTs)

Methyltransferases are attractive enzymes to manipulate for the purpose of altering
metabolic pathways. The regioselectivity of PNPMTs is relatively more favorable in com-
parison to organic synthesis in which protecting groups are often added to produce specific
methylated products with a further disadvantage of low yield [1]. The structure–function
analysis has been extensively applied for enzyme engineering, which involves mutagenesis
approaches to substitute their amino acids to obtain the desired methylated products.
For example, a poplar flavonoid-OMT mutant with amino acid Asp257Gly was reported
to methylate the 3-hydroxyl group compared to its native selectivity in methylating the
7-hydroxyl group [168]. In another case, variants of Vitis vinifera resveratrol OMT with
point mutations were generated and resulted in modified native substrate specificity to
increase the yield of pinostilbene (monomethylated resveratrol), rather than to produce
dimethylated resveratrol [169]. In addition to shifting in the regiospecificity of methylation
and/or modified substrate specificity, the promiscuity of PNPMTs has been proven to be
more versatile, as the biosynthetic pathway can be altered with a possibility of yielding
an unknown molecule via de novo pathways, and thus, increasing the diversity of plant
natural products [1,170]. In most cases, beneficial mutations are identified by in-silico
methods combined with a high-throughput screening assay to accelerate the engineering
process. Zhao and colleagues rationally designed Peucedanum praeruptorum bergaptol
O-methyltransferase to increase the production of bergapten with improved pharmacologi-
cal properties, especially for increasing pigmentation levels [171]. One Val320Ile mutant
protein was particularly reported to be promising for further applications in treating depig-
mentation disorder [171]. In the absence of crystal structures, computer-guided analysis
to analyze the active site and the catalytic mechanisms of plant natural product methyl-
transferases can provide alternative manufacturing strategies via metabolic engineering
approaches in microbial systems.

A number of de novo biosynthesis pathways that produce methylated natural prod-
ucts have been successfully designed in microbial systems. For instance, dimethylated
resveratrol (pterostilbene) was produced in an engineered Escherichia coli strain express-
ing Arabidopsis caffeic acid/resveratrol O-methyltransferase. The intracellular pool of
L-tyrosine, a precursor molecule in the stilbene biosynthetic pathway, was improved in this
engineered strain grown in L-methionine-rich media to increase the SAM supply [172]. This
approach overcomes a central issue in engineering methyltransferases, which is cofactor
regeneration, as SAH is a known inhibitor for methyltransferase activities and its accumula-
tion can be toxic for the microbial hosts [1,170]. Although the incorporation of native SAM
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recycling pathways involving multiple enzymatic reactions can be challenging to integrate
within the host systems, deregulation of the SAM pathway was shown to successfully
increase the production of O-methylated products. MetJ or Met repressor in bacteria is
often a target for silencing or deletion in order to regulate methionine production. Silencing
of the MetJ gene via CRISPRi enhances the production of O-methylated anthocyanin in
Escherichia coli [173]. Similarly, deleting MetJ was also effective in shuttling the pool of SAM
in an engineered Escherichia coli strain that overexpressed methionine biosynthetic pathway
genes, especially in improving vanillate production [174].

The engineering of methyltransferases has advanced beyond its ability in transferring
a methyl group. The development of SAM analogs has allowed for the diversification
of small molecules. In particular, a mutated halide methyltransferase from Arabidopsis
thaliana efficiently transferred ethyl-, propyl-, and allyl-moieties to SAH in order to produce
SAM analogs with the respective alkyl groups [175]. Recently, efforts in developing SAM
analogs to diversify active biomolecules have been accelerated after the discovery of the
naturally occurring carboxy-S-adenosylmethionine pathway involved in tRNA modifica-
tion [176]. Interestingly, coclaurine N-methyltransferase from Coptis japonica was selected to
test the possibility of plant methyltransferases catalyzing the reaction using an alternative
cofactor of carboxy-SAM [177]. By comparing its SAM-binding residues with the crystal
structure tRNA carboxymethyltransferase, which highly prefers carboxyl-SAM, coclaurine
N-methyltranferase was successfully engineered to accept carboxy-SAM over SAM to pro-
duce carboxymethylated tetrahydroisoquinoline [177]. While the use of SAM analogs in the
diversification of plant small molecules seems likely to be effective at smaller scales, more
innovations are still required to increase efforts in their regeneration and efficient synthesis.

Although microbial systems remain excellent hosts for engineering plant methyl-
transferases, plant hosts are still relevant to consider, especially in obtaining natural
products for industrial and specific agricultural applications. Engineered monolignol
4-O-methyltransferase, for example, was useful for reducing lignin content for the effec-
tive production of liquid biofuels, a desired utilization of cellulosic fiber, while it allows
for the diversification of possible active compounds in transgenic plants [178]. Engi-
neered plant host systems also provide additional platforms for extending the natural
product biosynthetic pathways beyond methylated metabolites, as novel compounds with
unique biological activities might be accumulated. Overall, the versatility of plant natural
product methyltransferases can inspire future efforts in enzyme and metabolic engineer-
ing for improved capabilities in widening the diversity of bioactive compounds with
pharmacological properties.

6. Conclusions and Future Directions

The structural elucidation of PNPMTs has heavily augmented our knowledge of how
SAM-dependent methyltransferases contribute to the diversification of small molecules
in the plant kingdom. The increasing number of structure determinations, along with
the elucidation of their architecture, has significantly provided insights into their molecu-
lar evolution. A comprehensive representation of biochemically characterized PNPMTs
demonstrates not only the structural diversity of Class I of SAM-dependent methyltrans-
ferases but also provides a point of reference to search for other PNPMTs that have yet to
be discovered. With the continuous advances in next-generation sequencing and progress
in -omics-based technologies, we anticipate more PNPMT genes will be discovered. While
only less than 20% of the PNPMTs that we compiled have been structurally elucidated,
we expect more reports on the protein crystal structures of PNPMTs. This knowledge of
structural biochemistry will benefit the development of machine learning algorithms for
more advanced prediction of protein folding, gene annotation, and functional validation.
By delineating the substrate specificity and structural attributes of PNPMTs, we have
provided an overview of the recently expanded strategies to facilitate the development
of enzyme and metabolic engineering. We also anticipate that all these advancements
will give rise to further diversification and increased production of methylated natural
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products with enhanced pharmacological properties as human therapeutics. Ultimately,
the complete knowledge of molecular and structural determinants of PNPMT function
will reveal important aspects of the catalytic mechanism and inform metabolic engineering
efforts, thus generating novel biocatalysts for wide applications in biotechnology.
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