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OGG1 in the Kidney: Beyond Base Excision Repair
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8-Oxoguanine DNA glycosylase (OGG1) is a repair protein for 8-oxoguanine (8-oxoG) in eukaryotic atopic DNA. Through the
initial base excision repair (BER) pathway, 8-oxoG is recognized and excised, and subsequently, other proteins are recruited to
complete the repair. OGG1 is primarily located in the cytoplasm and can enter the nucleus and mitochondria to repair
damaged DNA or to exert epigenetic regulation of gene transcription. OGG1 is involved in a wide range of physiological
processes, such as DNA repair, oxidative stress, inflammation, fibrosis, and autophagy. In recent years, studies have found that
OGG1 plays an important role in the progression of kidney diseases through repairing DNA, inducing inflammation,
regulating autophagy and other transcriptional regulation, and governing protein interactions and functions during disease and
injury. In particular, the epigenetic effects of OGG1 in kidney disease have gradually attracted widespread attention. This study
reviews the structure and biological functions of OGG1 and the regulatory mechanism of OGG1 in kidney disease. In addition,
the possibility of OGG1 as a potential therapeutic target in kidney disease is discussed.

1. Introduction

Renal inflammatory diseases are a group of diseases that
occur in the kidney and involve the inflammation of cells,
including obstructions, tumors, metabolism, heredity, or
injury [1]. Acute kidney injury (AKI) is the clinical manifes-
tation of most acute kidney diseases, with chronic kidney
disease (CKD) being the final outcome [2]. Although there
has been a great deal of advancements in the understanding
of biomarkers for the clinical diagnosis of AKI and advances
in pathophysiological understanding, the transformation of
molecular-based research into clinical therapy lacks effective
targets. The multifactorial etiology of AKI and the complex-
ity of the patient population introduces spatiotemporal and
individual differences into the search for effective treatments
[3]. In hospital settings [4], renal ischemia-reperfusion
injury due to sepsis, surgery, trauma, or nephrotoxin injury
is the leading cause of AKI. However, infections, toxins,
and dehydration associated with acute illness are common
causes of community-acquired AKI. Under oxidative stress
conditions [5], reactive oxygen species (ROS) [6] or toxin
[7] stimulation aggravates the damage to renal tubular epi-

thelial cells (TECs) and vascular endothelial cells, further
activating inflammatory pathways [8]. This leads to an
imbalance of cellular homeostasis and abnormal repair [9],
eventually leading to irreversible kidney damage and pro-
gression to CKD or renal tumors. Therefore, identification
of novel effective targets and agents is of great importance
for the prevention and treatment of kidney injury.

ROS, the most common cell damage factor in AKI, can
be generated either externally or through the cellular envi-
ronment from the metabolism of cells themselves [10]. Gua-
nine has a low-redox potential [11] due to its unsaturated
N7-C8 bond and is easily oxidized by reactive oxygen species
to produce its most common oxidation product, 8-oxoG. 8-
oxoG constitutes the most frequent base lesion observed in
DNA, with an estimated frequency of 0.3–4 lesions per 106
bases [12]. The arrangement of the H-bond donor and
acceptor is changed in 8-oxoG, and this characteristic mis-
coding gives 8-oxoG its special mutagenic properties [13].
In addition to Watson-Crick pairing with cytosine, 8-oxoG
can form a stable Hoogsteen pairing with adenine, which
can lead to a G:C to T:A conversion after replication [14].
Considering the high-mutagenic potential of 8-oxoG, 8-
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oxyguanine DNA glycosylase is produced in living organ-
isms. The first step of the catalytic basic excision repair path-
way is the detection and removal of 8-oxoG from oxidative
DNA damage [15]. Removal of 8-oxoG through the action
of OGG1 is essential to prevent genomic instability and
allow correct gene transmission from one generation to the
next.

OGG1 can bind to promoter regions rich in 8-O gua-
nine, causing changes in DNA conformation, the recruit-
ment of transcription factors, and the activation of
downstream gene transcription [16]. The mechanism of
OGG1 involvement in renal inflammatory diseases is as fol-
lows: OGG1 can enhance NF-κB/RelA binding to cis-
elements and thereby induce the rapid expression of chemo-
kines/cytokines and inflammatory cell accumulation in air-
ways [17]. OGG1 also directly interacts with other pathway
proteins and affects downstream biological processes. OGG1
promotes TGF-β1-induced cell transformation through inter-
acting with Smad7, activates SMAD2/3, and promotes fibrosis
by interacting with the TGF-β/Smad axis [18]. Recent studies
have indicated that OGG1 participates in autophagy and
mitophagy regulation [19]. In hyperoxygen-induced lung
injury, OGG1 interacts with molecular proteins of the autoph-
agy pathway to negatively regulate the release of inflammatory
cytokines [20].

OGG1 has been extensively studied in tumors, but less
commonly in renal tumors. OGG1 is a common mutation
site in renal tumors such as renal clear cell carcinoma [21].
Chronic kidney disease (CKD) is a multifactorial chronic
disease characterized by genetic abnormalities. Studies have
found that the OGG1 gene is associated with DNA damage
in patients with CKD, and that OGG1 may be involved in
the pathological process of CKD [22]. Studies have indicated
that OGG1 promotes fibrosis progression in CKD by inter-
acting with Smad7 to promote TGF-β1-induced cell trans-
formation [18].

2. Structural Features and Biological
Functions of OGG1

OGGs belong to the helix-hairpin-helix superfamily of base
excision repair DNA glycosylases [23]. The helix-hairpin-
helix structure [24] is comprised of amino acids at position
245-270 which serves as the catalytic region of the OGG
family. OGGs also contain a glycine/proline-enriched region
and a conserved aspartic acid motif. This motif contains
lysine 249 and aspartic acid 268 and binds DNA to exert
the catalytic activity of OGG1. OGG members are divided
into three subfamilies: OGG1, OGG2, and AGOG. OGG1
exists mainly in eukaryotes and a few bacteria [25]. OGG2
is present in bacteria and archaea, while AGOG is present
in archaeal organisms. The most significant difference
between OGG1, OGG2, and AGOG is the additional N-
terminal A domain, which is formed by an antiparallel
twisted β-slice and is found only in the OGG1 enzyme. Since
OGG2 and AGOG enzymes can cleave 8-oxoG from DNA
in the absence of the A domain, this suggests that the N-
terminal domain has other functions that are not specifically
enzymatic digestive functions. In addition, human OGG1 is

present as two major alternative splice isomers, hOGG1α
and hOGG1β [26], which have different C-terminal
domains. The human OGG1α isoform is expressed in the
cytoplasm, nucleus, and mitochondria, whereas the human
OGG1β isoform is only expressed in the mitochondria.
The absence of mitochondrial translocation signals in the
A domain of the hOGG1 N-terminus seems to prevent its
localization to mitochondria [27] and supports the role of
the N-terminal A domain in protein localization. The
STRING database lists several protein-protein interactions
of hOGG1, including protein kinase C, XRCC1, and PARP1
[28]. Therefore, the N-terminal A domain of OGG1 may be
an anchor point involved in protein interactions.

OGG1 is a DNA glycosylase enzyme with apurinic/
apyrimidinic (AP) site lytic activity which removes ROS-
induced 8-oxoG [29]. OGG1 can bind to the promoter
region of the inflammatory cytokine Cxcl2 [30] to activate
transcription independently of its digestion activity. Vari-
ous protein-protein interactions may modulate OGG1
activity. For example, in in vitro experiments, with an
increase in APE1 [31], OGG1 AP lyase activity increased,
and the binding and modification of OGG1 to PARP1
[32] reduced BER function. OGG1 can regulate gene tran-
scription of the fibrosis factor VEGF through the presence
of a putative G-quadruplex sequence in the promoter of
the binding VEGF-coding chain [33]. OGG1 binds to
oncosuppressor gene promoters and recruits chromodo-
main helicase-DNA-binding protein 4 (CHD4), which is
associated with cancer. Finally, OGG1-mediated RAS acti-
vation can induce MEK, ERK, and PI3K to activate the
NF-κB signaling pathway and induce downstream inflam-
matory gene expression [34, 35].

3. OGG1 in Cellular Homeostasis

OGG1 is mainly located in the cytoplasm and can enter the
nucleus and mitochondria to repair DNA and activate mul-
tiple transcriptional pathways to regulate cellular homeosta-
sis during cell injury. OGG1 regulates homeostasis through a
variety of pathways, including DNA repair [36], oxidative
stress [37], inflammatory responses, fibrosis, mitophagy
[38], apoptosis, and energy metabolism (Figure 1). In addi-
tion to conventional DNA base excision and repair, OGG1
regulates downstream gene transcription as a key regulator
of cellular homeostasis, mainly in the following three ways:
(1) G-quadruplexes mediated by the BER pathway affect
gene expression. (2) The BER pathway recruits topoisomer-
ase to promote gene expression. (3) OGG1 recruits chroma-
tin modification complexes to influence gene expression.

4. DNA Repair

The main types of DNA damage [39] include base deletions,
mismatches, DNA crosslinking, and DNA strand breaks,
which consist of DNA single-strand breaks (SSBs) and
DNA double-strand breaks (DSBs). The base excision repair
[40] pathway involves the repair of various types of DNA
damage affecting the nuclear genome and is the most basic
and important DNA repair method. OGG1 is a key enzyme
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that initiates the base excision repair pathway in prokaryotic
and eukaryotic cells [36]. OGG1 has 8-oxoG DNA N-
glycosylase activity [41]. OGG1 is also a double-edged sword
in the process of base excision repair. Converting 8-oxoG
into an AP site carries risk. First, there is the risk of informa-
tion loss and mutations. Second, AP sites have strong effects
on DNA secondary structure, protein binding, and G-
quadruplex folding [42]. Third, AP sites stall transcription
and replication [31] and the reactive aldehyde group of the
AP site may react with amino groups to form DNA-
protein crosslinks with potentially deleterious consequences
for genome integrity [43]. Lastly, the related injured site and
repair-associated conversion to single-strand breaks carry
the risk of damage acceleration towards DNA double-
strand breaks, resulting in genome instability, mutation,
translocation, and loss of information. 8-oxoG accumulation
may be connected to the DNA secondary structure of G-
quadruplex folds, leading to higher sensitivity towards base
modification or impaired excision by OGG1 in some sec-
ondary structures at the telomeres [44]. Antioxidant-
mediated upregulation of OGG1 via NRF2 induction is asso-
ciated with the inhibition of oxidative DNA damage [45]
(Figure 2).

OGG1-deficient cells exhibit enhanced spontaneous
mutagenesis [46, 47]. Upregulation of OGG1 may improve
the ability of base excision repair to combat DNA damage
and rescue genomic instability [48]. Upon PARP1 overex-
pression in cells, OGG1 forms an immunoprecipitable
complex with PARP1, and inhibition of PARP1 or
OGG1 results in DNA damage and decreased viability,
which enhances DSB repair [49]. Under oxidative stress,
OGG1 interacts with the mediator subunits CDK8 and
MED12 on chromatin to maintain genomic stability [50].
Transcription-coupled nucleotide excision repair factor,
Cockayne syndrome protein B (CSB), has been suggested
to function in the repair of oxidative DNA damage. CSB
promotes XRCC1 recruitment to oxidative DNA damage
to maintain genome stability by OGG1 and interacts with
PARP1 [51]. Chip assay results showed that when levels of
8-oxoG in the G-quadruplex structure of DNA were
increased through H2O2 exposure, OGG1 was recruited
to the KRAS promoter and further recruited the down-

stream nuclear factors MAZ and hnRNPA1, which are
critical for transcription, reflecting the transcriptional reg-
ulation of OGG1 in the folding and stability of DNA pro-
moter regions [52]. During gene damage, CHD4 helps
maintain transcriptional silencing associated with DNA
hypermethylation. CHD4 is recruited by OGG1 upon oxi-
dative damage and interacts with 8-oxoG, which plays an
important role in inhibiting tumor proliferation, invasion,
metastasis, and in DNA stability [53]. Genome-wide map-
ping of AP site damage, BER protein binding, and G-
quadruplex structures revealed that oxidative base-
induced AP site damage was consistent with the binding
and localization of OGG1 and APE1 in G-quadruplex
structures, suggesting that the interaction between APE1
and OGG1 plays an important role in the regulation of
G-quadruplex structure formation in the genome [54].
Additionally, acute oxidative stress leads to increased
RECQL4 acetylation and its interaction with OGG1 partic-
ipates in base excision repair. The NAD+-dependent pro-
tein SIRT1 deacetylates RECQL4 in vitro and in cells,
thereby controlling the interaction between OGG1 and
RECQL4 after DNA repair by maintaining RECQL4 in a
low-acetylated state. The stimulation of human α-OGG1
catalytic activity by AP endonuclease-APE1 was proposed
to enhance turnover and bypass of AP lyase activity [55].
Owing to the interaction between OGG1 and APE-1, stim-
ulation of human α-OGG1 activity was also observed in
the presence of the scaffold protein XRCC1 [56]. Human
α-OGG1 also physically interacts with PARP1 to stimulate
polyADP-ribosylation [32]. This suggests that OGG1 plays
a critical role in DNA repair.

OGG1 knockout mice are viable, fertile, and do not show
marked pathological defects in adulthood. However, a third
study reported significantly higher lung tumorigenesis in
OGG1 knockout mice at 18 months after birth than in WT
mice. Furthermore, OGG1-/- mice accumulate 8-oxoG in
the liver nucleus and mitochondrial DNA in an age-
dependent manner [57]. Strong cancer susceptibility was
observed in OGG1 and Mutyh double-knockdown mice, in
which 8-oxoG accumulated in the liver, lung, and small
intestine but not in the brain, kidney, and spleen, showing
organ specificity [58].
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Figure 1: Biological functions of OGG1. OGG1 can regulate DNA repair, energy metabolism, and autophagy pathway in response to mild
stimulation and regulate oxidative stress, inflammation, and fibrosis exposed to severe stimulation. OGG1: 8-oxyguanine DNA glycosylase 1.
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Abnormal base excision repair pathways of OGG1 and
OGG1 polymorphisms are associated with a variety of
tumors in humans [59]. The OGG1 Ser326Cys polymor-
phism may be a risk factor for cancers of the lungs, digestive
system, and head and neck [60]. Additionally, a significant
association was observed between OGG1 germline muta-
tions and breast cancer risk, which are considered promising
targets for the diagnosis, treatment, and prevention of breast
cancer [61]. Defective OGG1 regulates the coordination
between innate and adaptive immunity through excessive
oxidative stress and cytokine dysregulation, which are
important targets in lung cancer treatment [62]. The
OGG1 gene has somatic mutations in some human cancer
cells, which are highly polymorphic in the human popula-
tion. The repair activity of the mutant OGG1 protein is sig-
nificantly lower than that of the wild-type form and is thus
involved in many types of tumorigenesis [63].

5. Mitochondrial Homeostasis

The most important factor in maintaining the balance of
mitochondrial homeostasis is the stable repair of mito-
chondrial DNA (mtDNA). OGG1, a key enzyme involved
in mtDNA repair, is important for mitochondrial homeo-
stasis. OGG1 decreases mitochondrial fragmentation and
improves mitochondrial function in H9C2 cells under oxi-
dative stress conditions [64]. The levels of the mitochon-
drial proteins involved in fission, DRP1 and FIS1, have
been reported to be reduced in cells overexpressing mouse
OGG1. Another study [65] found that overexpression of
α-OGG1 protected the mitochondrial network from frag-
mentation after exposure to menadione. Targeting the
human mutant protein MTS-OGG1-R229Q to the mito-
chondria results in decreased mtDNA integrity and cellu-
lar survival after exposure to oxidative agents when

compared to the wild-type MTS-OGG1, and catalytically
inactive α-OGG1 mutants did not preserve the mitochon-
drial morphology in the cells exposed to oxidative stress
[66]. In addition, an increase in OGG1 acetylation, an
increase in mitochondrial ROS, and a decrease in SIRT3
are all related to mtDNA deletion [67]. Mitochondria-
targeted human 8-oxoguanine DNA glycosylase and
aconitase-2 reduce oxidant-induced alveolar epithelial cell
apoptosis, preventing oxidant-induced mitochondrial dys-
function, p53 mitochondrial translocation, and intrinsic
apoptosis [68]. Nrf2 can bind to the antioxidant response
element in the promoter of OGG1, participate in mtDNA
repair, and maintain mitochondrial homeostasis [69].

6. Oxidative Stress

Under oxidative stress, the repair of 8-oxoG by the BER
enzymes OGG1 and APE1 perturbs the structural equilib-
rium of the VEGF promoter DNA sequence between duplex
and G-quadruplex structures, resulting in epigenetic modifi-
cations of gene expression [70]. Binding of APE1 to the AP
site of OGG1 on the putative G-quadruplex sequence pro-
moter element of VEGF enhances gene transcription to
improve oxidative stress damage [71]. Studies have shown
that OGG1 can activate the Nrf2 signaling pathway to pro-
tect renal tubular epithelial cells from oxidative DNA dam-
age [72]. Long-term oxidative stress can lead to the
continuous expression of OGG1-mediated inflammatory
genes, leading to an excessive inflammatory response, which
may lead to a series of diseases, such as cancer [73].

In addition to targeting DNA, oxidative stress can also
affect proteins such as OGG1. Studies [74] have shown that
under oxidative stress, OGG1 is sensitive to oxidants, and
cysteine sites can be targeted to modify the response of
OGG1 to alter its downstream cellular functions. The DNA

OGG1
PARP1
XRCC1

OGG1 AP lyase

Activation of
Transcription

8-oxoG

Pol𝛽
PCNA
FEN1
Ligase 3

Infammation

Fibrosis

Autophagy

Recruiting NFkB,
VEGF, ATG7
transcription
factors

Opening G-
quadruplet
structure

Figure 2: The role of OGG1 in regulation gene transcription in the promoter region. ROS oxidizes guanine in the DNA promoter region
and recruits OGG1 to DNA promoter region, and OGG1 interacts with PARP1 and XRCC1 to remove 8-oxoG. At the same time, the G-
quadruplex structure is opened up and the transcription factors NF-κB, VEGF, and ATG7 are recruited to activate downstream
inflammatory, fibrosis, and autophagy pathways. Then, Polβ, PCNA, FEN1, and Ligase 3 work together to repair DNA double strands.
ROS: reactive oxygen species; PARP1: polyADP-ribose polymerase 1; XRCC1: X-ray repair cross complementing 1; NF-κB: nuclear factor
kappa-B; VEGF: vascular endothelial growth factor; ATG7: autophagy-related 7; Polβ: DNA polymeraseβ; PCNA: proliferating cell
nuclear antigen; FEN1: flap structure-specific endonuclease 1.
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repair function of OGG1 decreases under oxidative stress,
and the main reason for this may be the cysteine-based enzy-
matic inactivation of OGG1. OGG1 can regain its repair
activity after the redox balance is reestablished [75–77].

7. Inflammation

OGG1 plays an important regulatory role in the immune
inflammatory response. OGG1-deficient mice had good sur-
vival and showed significant resistance to acute and systemic
inflammation. Visnes et al. [78] developed a selective active
site inhibitor of OGG1, TH5487, which obstructs the bind-
ing and repair functions of OGG1 and 8-oxoG, and has
obvious anti-inflammatory effects under the stimulation of
oxidative stress, which is well-tolerated in mice. TH5487
prevents tumor necrosis factor-α-induced OGG1-DNA
interactions at guanine-rich promoters of proinflammatory
genes. NF-κB is an important inflammatory transcription
factor that enables downstream NLRP3 signaling and
TNF-α expression, further promoting the release of IL-18,
IL-1β, and other inflammatory cytokines [79]. This
decreases the DNA occupancy of NF-κB [80] and proinflam-
matory gene expression, resulting in decreased immune cell
recruitment to the mouse lungs. Promoter-associated OGG1
enhances NF-κB/RelA binding to cis-elements and facilitates
the recruitment of specificity protein 1, transcription initia-
tion factor II-D, and p-RNA polymerase II, resulting in the
rapid expression of chemokines/cytokines and the accumu-
lation of inflammatory cells in mouse airways [17].
OGG1-/- mice showed significantly higher expression of
type I IFN genes such as Isg15, Irf9, and Ifnb. OGG1 regu-
lates Ifnb expression through the cGAS-STING pathway
[81]. Biochemical studies have shown that STAT1 plays a
key role in endotoxin-induced OGG1 expression and
inflammatory responses. OGG1 acts as a STAT1 coactivator
and has transcriptional activity in the presence of endo-
toxins, resulting in the induction of the expression of proin-
flammatory mediators at the transcriptional level [82]
(Figure 3).

8. Fibrosis

OGG1 appears to be involved in activating the WNT path-
way and promoting the accumulation of nuclear β-catenin
[83]. Studies [84] have shown that mtDNA damage and
mutation are related to various pathological conditions,
including the fibrosis of a variety of organs. Therefore,
mtDNA repair is particularly important [85]. Deacetylase
SIRT3 is located in the mitochondrial matrix and can bind
to OGG1 in fibrosis, contribute to mtDNA repair, protect
against apoptosis, and reduce fibrosis under oxidative stress
[86]. In addition, SIRT3 can regulate OGG1 protein expres-
sion and activate DNA repair to prevent apoptosis and fibro-
sis [87, 88]. TGF-β1 is involved in the phenotypic
transformation of fibroblasts. Induction of human lung
fibroblasts with TGF-β1 increased the expression levels of
fibrosis markers, smooth muscle α-actin collagen-1, and
fibronectin [89]. TGF-β1 can also activate the PI3K/AKT
[90] and MAPK [91] signaling pathways to regulate fibrosis.

TGF-β1 treatment depletes SIRT3, further inducing
increased production of ROS and DNA damage and
decreased OGG1 levels [92]. However, overexpression of
SIRT3 reverses the damage of fibrosis and induces mitoph-
agy [93]. Inhibition of VEGF receptor signaling attenuates
kidney microvascular rarefaction and fibrosis [94], and
OGG1 can temporarily modify the hypoxia-response ele-
ment of the VEGF gene under oxidative stress to regulate
VEGF expression [95]. Although an association between
OGG1 and the fibrosis pathway was found, the role of
OGG1 in promoting fibrosis was more clearly demonstrated
in the OGG1 knockdown mouse model. Wang et al. [18]
observed that OGG1 promoted TGF-β1-induced cell trans-
formation and activated Smad2/3 by interacting with Smad7
and that the interaction between OGG1 and the TGF-β/
Smad axis modulates the cell transformation process in
fibroblasts. Additionally, they demonstrated that OGG1
deficiency relieved pulmonary fibrosis and decreased the
expression level of Smad7 and the phosphorylation of
SMAD2/3 in BLM-treated mice (Figure 3). The role of
OGG1 in promoting fibrosis is consistent with its role in
promoting inflammation under oxidative stress as found
by Visnes et al. [78], which further demonstrates the impor-
tance of OGG1 as a clinical target.

9. Autophagy

Autophagy is an important mechanism for cell homeostasis
and is closely associated with cell repair. However, the exact
relationship between DNA repair and autophagy remains
unclear. OGG1 influences autophagy by binding to proteins
or genes involved in the autophagy pathway. Ye et al. [20]
found that OGG1 deficiency downregulates autophagy both
in vitro and in vivo by decreasing lc3-I to LC3-II conversion,
LC3 spot staining, and Atg7 expression. Additionally, they
found that OGG1 binds to the promoter of Atg7 and that
OGG1 can decrease the gene expression level of Atg7.
Finally, OGG1 negatively regulates the release of inflamma-
tory cytokines through molecular interactions that coordi-
nate autophagy pathways in hyperoxygen-induced lung
injury [96].

OGG1 can influence autophagy through several mole-
cules that act as bridges. OGG1, p53, and TNF-αmay jointly
or independently repair DNA oxidative damage and/or
induce apoptosis [97]. Studies have shown that DNA
double-strand breaks can induce the coactivation of P53
and OGG1, and that they functionally coordinate [98]. The
P53 protein is a key molecule in DNA damage-induced apo-
ptosis and can play a bidirectional regulatory role in autoph-
agy through its subcellular localization [99]. For example,
P53 induces autophagy by activating AMPK, inactivating
mTOR, and promoting the transcriptional expression of
damage-regulated autophagy modulators [100–102]. Under
glucose starvation, AMPK promotes autophagy by directly
activating Ulk1 through the phosphorylation of Ser317 and
Ser777. In response to injury, K63 ubiquitination of TAK1
activates AMPK in damaged lysosomes to trigger autophagy
[103]. Under nutrient sufficiency, high-mTOR activity pre-
vents Ulk1 activation by phosphorylating Ulk1 Ser757 and
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disrupting the interaction between Ulk1 and AMPK
[104–106]. On the other hand, P53 can also promote the
expression of phosphatidylinositol phosphate PTEN and then
inhibit the PI3K/AKT/mTOR signaling pathway to activate
autophagy [107]. Furthermore, Muñoz-Gámez et al. found
that OGG1 binds directly to PARP1 through the N-terminal
region of OGG1, and that this interaction is enhanced by oxi-
dative stress [108]. PARP1 and OGG1 act in the same regula-
tory pathway and PARP1 activity is required for OGG1-
mediated repair of oxidative DNA damage in G1-arrested
cells. ROS-induced DNA damage and PARP1 are required
for the optimal induction of starvation-induced autophagy
[109]. Finally, PARP1 can induce ATP depletion and suppress
the mTOR pathway to regulate autophagy initiation [110].

Autophagy also regulates OGG1 expression and DNA
repair. Some studies [111] have shown that autophagy can
also promote the degradation of DNA damage repair pro-
teins, thereby facilitating cell death. Other studies [112,
113] have shown that the inhibition of the autophagy path-
way protein mTOR by rapamycin suppresses the repair of
DSBs. In response to a nutrient starvation model, autophagy
activation was shown to degrade OGG1 in cardiomyocytes
[114]. This study found that OGG1 was activated by the
autophagy inhibitor bafilomycin in autophagy-deficient

Atg5(-/-) mouse cell models under nutrient deprivation.
Nevertheless, the pharmacological activation of autophagy
did not induce OGG1 loss. There may be a feedback mech-
anism between autophagy and OGG1 activation in specific
injury models. In summary, the study of the relationship
between OGG1 and autophagy is of great significance for
exploring the regulatory relationship between DNA damage
repair and autophagy, and many more studies are needed to
fully explore this area (Figure 4).

10. Apoptosis and Energy Metabolism

The effect of OGG1 on apoptosis remains controversial.
There is a view that mitochondria-targeted OGG1 overex-
pression can prevent mitochondria-regulated apoptosis
caused by oxidative stress, including alveolar epithelial cell
apoptosis following asbestos exposure [115]. However, after
excessive oxidative damage, the BER pathway further
increases the level of ROS-induced DNA damage by produc-
ing repair intermediates, leading to PARP1 overactivation
and cell death [116]. OGG1-deficient mice exhibit excellent
inflammatory resistance and a good survival ability, which
seems to blur this controversy.
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Figure 3: The role of OGG1 in the regulation of inflammation and fibrosis. OGG1 can act as a positive regulator of NF-κB to prompt P50,
P65, and TNF-α expression and further prompt the release of pro-IL-1β and the upstream inflammatory factors IL-1β. Furthermore, OGG1
regulates cGAS-STING pathway to increase the expression of the proinflammatory genes P50, P65, and PIRF3. Fibrosis is the main
pathological process of various chronic diseases at the end stage and can be driven by inflammation. OGG1 can activate TGF-β to
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fibrosis. TNF-α: tumor necrosis factor-α; PIRF3: phosphointerferon regulatory factor 3; TGF-β: transforming growth factor beta; α-SMA:
alpha-smooth muscle actin; FN: fibronectin; MMPs: matrix metalloproteinases; TIMPs: tissue inhibitors of metalloproteinases; ZO-1:
zonula occludens-1. PI3K: phosphoinositide 3-kinase; MAPK: mitogen-activated protein kinase; mTOR: mammalian target of rapamycin;
RTK: receptor tyrosine kinase.
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Researchers have found some metabolic differences in
OGG1-deficient mice. Dr. Lloyd’s laboratory found that
OGG1+/+ OGG1-/- mice fed with a high-fat diet showed
inconsistent gene expression in liver and muscle cells, suggest-
ing that OGG1 may be related to gene expression in cellular
metabolism [117]. After a high-fat diet for 12-week stress tests
in relatively young animals, OGG1-/- mice became significantly
heavier and accumulated more adipose tissue than WT coun-
terparts. Levels of dynamin-related protein-1 and fission-1 were
significantly increased in the muscles of OGG1-/- mice. In
OGG1-overexpressing mice, following 12 weeks of a hypercalo-
ric high-fat diet consumption, body weight and composition
analyses revealed that OGG1 Tg mice were significantly pro-
tected from increased body weight and fat mass after the
imposed high-fat diet relative to WT animals [118].

Chronic exposure to elevated levels of free fatty acids
impairs pancreatic beta cell function and contributes to a
decline in insulin secretion in type 2 diabetes. Overexpres-
sion of hOGG1 in the mitochondria can reduce FFA-
induced inhibition of ATP production and reduce apoptosis
of islet β cells, suggesting that OGG1 may be a new target for
intervention in type 2 diabetes mellitus [119].

11. OGG1 in Kidney Disease

11.1. Kidney Tumors. The OGG1 gene is located at 3p25 on
chromosome 3, and a heterozygous deletion in the 3p25
region was found in 85% of 99 cases of renal tumor loci,

including renal clear cell carcinoma. Hence, this is a common
mutation site [21]. Chevillard et al. [120] identified homozy-
gous mutations in renal tumors when screening for changes
in OGG1 cDNA in human tumors, including two transitions
(GC to TA and TA to AT) and one transition (GC to AT) with
a base substitution. All three of these substitutions led to
amino acid changes in the human OGG1 protein.

In addition, the incidence of multiorgan tumors observed
at 34 weeks in OGG1 knockout mice showed that the inci-
dence of colon adenomas and total colon tumors showed a
trend with a sharp increase, with bladder hyperplasia and an
increased rate of tubular hyperplasia also observed [121].
Rapamycin-mediated activation of AMPK and inhibition of
mTOR upregulates OGG1, which may be a viable therapeutic
target for renal tumors [19]. Chromatin immunoprecipitation
identified transcription factor AP4 as a positive regulator of
the OGG1 promoter. In the kidneys of patients with tuberous
sclerosis, loss of a protein encoded by tuberous sclerosis com-
plex 2 (Tsc2) can downregulate OGG1 protein expression by
regulating transcription factor AP4 binding to the OGG1 pro-
moter, thereby increasing the incidence of tumors.

12. OGG1 in AKI

12.1. Ischemia-Reperfusion Injury. OGG1 has been widely
studied in brain and lung ischemia-reperfusion injury but less
so in renal ischemia-reperfusion injury. In a renal ischemia-
reperfusion experiment in rats [122], high-performance liquid
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Figure 4: The role of OGG1 in the regulation of autophagy. DNA single- or double-strand oxidative damage recruits OGG1 excision repair
8-oxoG. OGG1 interacts with PARP1 and induces ATP depletion and the activation of AMPK. AMPK promotes TAK1/JNK pathway and
ULK1 to regulate autophagy process. Additionally, OGG1 binds to the promoter region of ATG7 to induce autophagy. AMPK and TSC2
activation may negatively affect the expression of OGG1. On the other hand, OGG1 is found to inhibit autophagy by activating the
PI3K/AKT/mTOR pathway in specific damage models. ATP: adenosine triphosphate; AMPK: adenosine monophosphate-activated
protein kinase; TAK1: transforming growth factor β-activated kinase 1; JNK: c-jun N-terminal kinase; ULK1: Unc-51-like autophagy-
activating kinase 1; TSC2: tuberous sclerosis complex 2.
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chromatography with mass spectrum analysis of the nuclear
DNA revealed an immediate accumulation of 8-oxo-dG in
nuclear DNA prepared from the cortex and outer medulla of
the kidney 1h after ischemia-reperfusion. An RNase protec-
tion assay showed a high level of OGG1 mRNA in the normal
kidney, which decreased within 3h only in the outer medulla
and increased after 1-7 days of ischemia-reperfusion both in
the cortex and outer medulla. They also found that the accu-
mulation of 8-oxoG in mtDNA, rather than in nuclear
DNA, may be involved in renal tubular cell injury and other
pathological reactions caused by renal ischemia-reperfusion
injury. In cardiac ischemia-reperfusion injury model studies,
mtDNA damage repaired by OGG1 base excision seemed to
have no significant effect on cardiac function [123, 124]. In
an ischemia-reperfusion model, the DNA repair function of
OGG1 is inhibited under oxidative stress, and the upregulated
OGG1 levels may also have other transcriptional regulatory
effects, which require further study.

The DNA repair function of OGG1 is decreased in
ischemia-reperfusion injury, yet the function of inducing
the NF-κB pathway to activate the inflammatory response
is not weakened. Inhibition of OGG1 with TH5487 inter-
feres with OGG1 incision activity, resulting in fewer DNA
double-strand breaks in cells exposed to oxidative stress
and reducing the DNA mutation rate caused by OGG1
exposure to AP sites, which may reduce the incidence of
cancer in cases of oxidative stress damage [125]. In addition,
the anti-inflammatory function of TH5487 reduces inflam-
matory damage caused by oxidative stress and may contrib-
ute to ischemia-reperfusion in a more meaningful way [126].

12.2. Septic AKI. Staphylococcus aureus is an opportunistic
pathogen and is one of the leading causes of life-
threatening sepsis [127]. Staphylococcus aureus sepsis
induces early renal mtDNA damage, upregulates the expres-

sion of inflammatory factors, such as TNF-α, IL-10, and
Ngal mRNA, and activates OGG1 [128]. OGG1, an early
septic mitochondrial reactive protein, is regulated by the
nuclear transcription factors NRF-1 and NRF-2α and the
activation of inflammation [129, 130]. Mabley et al. investi-
gated the role of OGG1 in inflammation using an endotoxic
shock model and found that OGG1-/- mice are resistant to
endotoxin-induced organ dysfunction, neutrophil infiltra-
tion, and oxidative stress when compared with the response
observed in wild-type controls (OGG1+/+) [131]. Further-
more, deficiency of OGG1 protects against inflammation
and the mutagenic effects of H. pylori infection in mouse
models [132]. These results indicate that OGG1 regulates
the moderate activation of inflammation in septic AKI.

13. OGG1 in CKD

Chronic kidney disease (CKD) is a multifactorial chronic
disease characterized by genetic abnormalities. Genome-
wide association studies [133] have identified hundreds of
loci in which genetic variants are associated with kidney
function. However, causal genes and pathways involved in
CKD remain unknown. In a study on the relationship
between DNA damage, genomic instability, and gene poly-
morphisms in patients with CKD, it was found that genes
such as OGG1 and XRCC1 involved in base excision repair
are related to DNA damage [22]. OGG1 promotes fibrosis
progression in chronic kidney disease by interacting with
Smad7 to promote TGF-β1-induced cell transformation
[18]. Another study showed the role of the Ser326Cys poly-
morphism in the OGG1 gene, which modulates the level of
8-oxoG in the leukocytes of CKD patients [134]. OGG1
has also been widely studied in the context of tumors and
lung injuries. Recent studies have found that the regulation
of gene transcription of OGG1 seems to be as important as
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Figure 5: The role of OGG1 in kidney diseases. In kidney tumors, OGG1 induces DNA base excision repair and regulates autophagy to
inhibit formation of kidney tumors. In acute kidney injury, OGG1 activates inflammation and induces oxidative stress to aggravate renal
injury. In chronic kidney disease, OGG1 induces chronic inflammation and promotes fibrosis.
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the effect of base excision and repair [135]. How OGG1 reg-
ulates downstream gene transcription in patients with CKD
is worthy of further exploration (Figure 5).

14. Conclusions and Prospects

Previous studies have shown that OGG1 inhibits tumorigen-
esis via base excision and repair. In recent years, studies have
found that OGG1 participates in the regulation of renal
inflammatory diseases by upregulating certain inflammatory
cytokines, inducing oxidative stress and inflammation, pro-
moting fibrosis, and regulating autophagy. The powerful
anti-inflammatory effect of the OGG1 specific inhibitor
TH5487 has been verified. As an emerging target, OGG1
has new prospects for the clinical treatment of inflammatory
diseases of the kidney.
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