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Abstract
Liquid chromatography mass spectrometry (LC–MS) has emerged as a mainstream strategy for metabolomics analyses. One 
advantage of LC–MS is that it can serve both as a biomarker discovery tool and as a platform for clinical diagnostics. Conse-
quently, it offers an exciting opportunity to potentially transition research studies into real-world clinical tools. One important 
distinction between research versus diagnostics-based applications of LC–MS is throughput. Clinical LC–MS must enable 
quantitative analyses of target molecules in hundreds or thousands of samples each day. Currently, the throughput of these 
clinical applications is limited by the chromatographic gradient lengths, which—when analyzing complex metabolomics 
samples—are difficult to conduct in under ~ 3 min per sample without introducing serious quantitative analysis problems. To 
address this shortcoming, we developed sequential quantification using isotope dilution (SQUID), an analytical strategy that 
combines serial sample injections into a continuous isocratic mobile phase to maximize throughput. SQUID uses internal 
isotope-labelled standards to correct for changes in LC–MS response factors over time. We show that SQUID can detect 
microbial polyamines in human urine specimens (lower limit of quantification; LLOQ = 106 nM) with less than 0.019 nor-
malized root mean square error. Moreover, we show that samples can be analyzed in as little as 57 s. We propose SQUID as 
a new, high-throughput LC–MS tool for quantifying small sets of target biomarkers across large cohorts.
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Introduction

Liquid chromatography mass spectrometry (LC–MS) is 
one of the most common biomarker discovery tools used in 
metabolomics and has been applied to a broad range of inves-
tigations ranging from the mapping of metabolic pathways 

[1–3], to the tracking of pharmacokinetics in vivo [4], and 
the discovery of biomarkers that are predictive of disease 
[5–9]. One of the primary advantages of using LC–MS in 
these studies is that it provides a direct path between dis-
covery and clinical implementation. Clinical LC–MS is a 
well-established diagnostic strategy [10, 11] and biomark-
ers identified in research-oriented studies can be ported into 
clinical LC–MS diagnostic applications. However, there are 
significant differences between discovery and clinical appli-
cations of LC–MS metabolomics that shape the types of 
methods that can be employed in clinical settings [12].

Clinical applications of LC–MS are targeted, require abso-
lute quantification, and emphasize sample throughput [10]. 
These needs are shaped by the regulatory framework that 
governs in vitro diagnostics and by the need to control costs 
in clinical reference laboratories [13]. Currently, most clinical 
applications of LC–MS are completed with triple quadrupole 
instruments. Throughput on these instruments is typically 
limited by the number of scans per second or by chromato-
graphic gradient lengths [14, 15]. The high scanning speed of 
modern instruments [16], in combination with the relatively 
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small number of metabolites that need to be quantified in 
most clinical assays [13], generally makes chromatography 
the rate-limiting element in clinical analyses [10].

Chromatography involves balancing trade-offs between 
metabolite resolution and throughput. Chromatographi-
cally resolving metabolites from complex biological samples 
frequently requires gradients that are 10–20 min long [17]. 
Although shorter gradients (~ 3 min) [17] and flow injection 
workflows [18] can be used in some circumstances, both strate-
gies tend to introduce analytical complications that lower the 
quantitative performance of the LC–MS system [19], largely 
due to increasing difficulties with ion suppression [20]. Con-
sequently, clinical LC–MS analyses are frequently paired with 
additional sample handling steps [21–24], such as solid phase 
extraction, to enable faster LC–MS gradients and reduced matrix 
effects while concentrating target analytes within samples. 
Although these supplemental processing steps are effective in 
maximizing the throughput of the LC–MS system, they add cost 
and complexity to the overall analytical workflow. Additionally, 
these processing steps can act as sources of error and as such 
should be applied judiciously. One well-established approach to 
correcting for these errors is through isotope dilution—a strategy 
where a known concentration of an isotope-labelled standard 
is added to samples and metabolites are then quantified based 
on the ratio of labelled versus unlabelled metabolites present 
in extracts [22, 25–27]. In summary, clinical applications of 
LC–MS that seek to quantify biomarkers from complex bio-
logical samples generally need to use long chromatographic gra-
dients or multi-step sample cleanup methods to maximize the 
throughput of the LC–MS system. Although both strategies are 
effective [17], a direct LC–MS analysis that enables rapid quan-
tification of target biomarkers without the need for heavy sample 
processing would be a major benefit to clinical diagnostics. To 
address this need, we developed the sequential quantification 
using isotope dilution (SQUID) strategy that combines rapid 
serial injections to achieve high-throughput and isotope dilution 
to correct for instrument errors.

SQUID operates under the assumption that target biomark-
ers in clinical diagnostics generally have a narrow range of 
chemical properties, and thus can be selectively eluted using 
carefully calibrated isocratic gradients. In the context of hydro-
philic biomarkers, combinations of mobile phases and hydro-
philic interaction liquid chromatography (HILIC) stationary 
phases can be chosen that allow the target metabolites to be 
eluted while biological salts are retained on the column. This 
circumstance allows multiple samples to be serially injected 
into a continuous isocratic solvent flow, wherein the target ana-
lytes are eluted in a regular series, but contaminating salts are 
retained on the column. Since salts are one of the major sources 
of ion suppression in metabolomics studies [28], this strategy 
reduces one of the major quantitative problems inherent to 
flow injection, all while preserving sample throughput [18]. 
Serial injection strategies have been employed in other studies 

using different analytical methodologies [29, 30] though their 
use necessitates additional care with sample normalization. 
To enable absolute quantification, which is essential for clini-
cal diagnostics, we coupled this serial injection strategy with 
[U13C]-labelled internal standards to enable quantification by 
isotope dilution, which is an established LC–MS quantitative 
approach [26]. Herein, we evaluate the efficacy of the SQUID 
strategy and illustrate its utility in analyzing a cohort of clinical 
urine specimens for the presence of polyamines, which are an 
established marker for microbial growth [31].

Materials and methods

Chemical reagents and biological samples

Unlabelled agmatine sulfate salt was purchased from Sigma-
Aldrich. Due to the absence of a viable commercial ven-
dor, [U-13C]agmatine was synthesized on site as previously 
described in [31]. Briefly, Escherichia coli (strain MG1665) 
was inoculated into M9 minimal media containing 22.2 mM 
[U-13C]glucose and grown overnight at 37 °C (5% CO2, 21% 
O2). Overnight saturated cultures were seeded into fresh media 
and the culture was monitored for glucose levels using a blood 
glucose monitoring system (Bayer Contour Next) until a level 
of 5 mM glucose was observed. The culture was then centri-
fuged for 10 min at 4000 × g and the supernatant was removed, 
filtered, and adjusted to a pH of 7.0 using a concentrated solu-
tion of ammonium bicarbonate. Agmatine from culture was 
then purified using solid phase extraction. This protocol is 
described below (scaled to larger column volume proportion-
ally). Resulting eluent was concentrated to 10 × using a vacuum 
centrifuge at 4 °C and agmatine levels were quantified through 
a reverse isotope dilution standard curve analyzed by LC–MS 
using a previously described method [31]. The purity of this 
solution was assessed to be 98.7% based on 12C/13C isotope 
ratio observed across 20 spiked sample injections.

Conversely, [U-13C]putrescine was purchased from Cambridge 
Isotope Laboratories Inc and was reconstituted in 50% methanol 
for use as an internal standard in bacterial culture experiments.

Patient mid-stream urine samples and clinical isolates 
of Escherichia coli and Pseudomonas aeruginosa were 
acquired from Alberta Precision Laboratories collected 
under their standardized workflow.

Isotopic internal standardization of agmatine/
putrescine

Both [U-13C]agmatine and [U-13C]putrescine were used 
as an internal standard for detecting native agmatine and 
putrescine in biological samples.

For method validation studies, unlabelled agmatine sulfate 
salt was used to assess the SQUID method’s performance for 
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agmatine. A standard curve was generated in a 50% metha-
nol/50% urine matrix containing 50 to 50,000 nM 12C agmatine 
and 250 nM [U-13C]agmatine (n = 4) relative to original urine 
content. Performance was measured through the lower limit of 
detection (LLOD) and lower limit of quantification (LLOQ) 
calculation as well as normalized root mean square error 

( NRMSE =

√

Σn
i=1

(yi−ŷ)
2

n
∕ŷ ). Similarly, [U-13C]putrescine was 

used to assess SQUID’s performance for putrescine.
In order to assess the effectiveness of our isotope normali-

zation strategy, one healthy urine sample was spiked directly 
with an agmatine standard to a final concentration of 5000 nM 
12C agmatine and 500 nM [U-13C]agmatine.

Urine sample preparation

Urine samples were prepared as previously described [31]. 
Briefly, urine samples were fixed 1:1 (v/v) in methanol on 
site and transferred on dry ice to the Lewis Research Group 
Laboratory. Samples were stored at − 80 °C until the date 
of processing and spectral analysis. From these samples, 
95 E. coli–positive samples and 96 healthy patient samples 
were identified and selected for further analysis. A volume 
of 350 µL of each of these samples was combined with 150 µL 
of an internal standard solution of U13C-agmatine constituted 
in 50% methanol to a final concentration of 250 nM (relative 
to original urine content) in 96-well plates. These samples 
were then subjected to solid phase extraction (see below).

Solid phase extraction

Samples were concentrated using a 96-well Thermo Scien-
tific™ HyperSep™ Silica plate (60108–712, Thermo Fisher 
Scientific) for solid phase extraction using gravity filtration. 
This plate was first equilibrated sequentially with water (400 
µL) and methanol (400 µL), and then the 500-µL sample 
solutions were loaded onto the plate. Columns were then 
washed with methanol (1 mL), water (1 mL), and then meth-
anol containing 0.1% formic acid (250 µL), sequentially. 
Following this, samples were eluted using 125 µL of water 
containing 2% formic acid into a 96-well plate. A volume 
of 25 µL of a concentrated solution of ammonium bicarbo-
nate (pH 8.0) was added to a final concentration of 100 mM 
in order to partially neutralize the formic acid and raise the 
solution pH above 3.0, in preparation for LC–MS analysis.

Microbial culture extract preparation

Microbial sample extracts were cultured and extracted 
according to a previously described metabolic prefer-
ence assay [32]. Briefly, three clinical isolates of E. coli 

and P. aeruginosa were used to inoculate Mueller–Hin-
ton medium in triplicate which were grown overnight at 
37 °C in a humidified incubator (5% CO2, 21% O2) as 
seed cultures. Samples were then diluted in fresh medium 
to 0.5 McFarland and incubated for 4 h under the same 
atmospheric conditions. Following incubation, samples 
were centrifuged for 10 min at 4000 × g to pellet bacterial 
cells and supernatants were removed and fixed at a ratio 
of 1:1 with methanol. Samples were then diluted tenfold 
using 50% methanol and spiked with an internal standard 
of [U-13C]putrescine to a final concentration of 250 nM.

Instrumentation

Chromatographic separation was achieved using a Thermo 
Scientific™ Vanquish™  UHPLC Integrated biocompat-
ible system (Thermo Fisher Scientific). Heated electrospray 
ionization was performed using a Thermo Scientific™ Ion 
Max API Source (Thermo Fisher Scientific). Mass spec-
tral data acquisition was performed on a Thermo Scien-
tific™ Q-ExactiveHF™ mass spectrometer (Thermo Fisher 
Scientific).

Chromatographic parameters

All samples were run using a Thermo Scientific™ Syn-
cronis™ ZIC-HILIC column (inner diameter, 2.1  mm; 
length, 100 mm; particle size, 1.7 µm) with a binary sol-
vent system of 20 mM ammonium formate pH 3.0 in water 
(solvent A) and 0.1% formic acid in acetonitrile (solvent 
B). Samples were injected into an isocratic solvent flow 
of 0.6 mL/min of 86% solvent B at a spacing of 0.95 min 
(inclusive of sample injection cycle). Sample injection vol-
ume used was 2 µL and column compartment temperature 
was held at 30 °C for all samples. For analysis of positive vs 
negative urine samples, a more conservative peak spacing 
of 1.35 min was used to allow for a wider dynamic range of 
analyte signals while minimizing potential for cross inter-
ference between neighbouring peaks. Following all sam-
ple batches, column was run at 5% solvent B for 15 min at 
0.6 mL/min to elute any accumulated salt before equilibra-
tion at 86% solvent B for 5 min.

Mass spectrometry parameters and data acquisition

All samples were acquired in full scan positive ion mode 
scanning a mass range of 50–750 m/z at 240,000 resolving 
power. The following source conditions were used: + 3000 V 
spray voltage, 275 °C capillary temperature, 300 °C vapor-
izer temperature, 35 arbitrary units (au) sheath gas flow, 15 
au auxiliary gas flow, 2 au sweep gas flow. All gas flows 
were run using nitrogen gas. All spectra were acquired using 
Thermo Scientific™ Xcalibur™ instrument control software.
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Data analysis

Extracted ion chromatograms for figure production were gen-
erated in Xcalibur 4.0.27.19 software using a mass window of 
(+ / −) 10 ppm. Exact m/z values used for figure creation and 
peak integration corresponded to theoretical [M + H]+ ion 
m/z values and were as follows: 12C agmatine, 131.1291 m/z; 
[U-13C]agmatine, 136.1459 m/z; 12C putrescine, 89.1073 m/z; 
[U-13C]putrescine, 93.1207 m/z. Peak integration was per-
formed using MINT software (publicly accessible at https://​
github.​com/​Lewis​Resea​rchGr​oup/​ms-​mint-​app/​relea​ses/​tag/​
v0.1.​7.6) [33]. The MINT software can read LC–MS data 
output to extract the peak intensities of target metabolites 
[33]. Data conversion from “.raw” to “.mzXML” files for 
compatibility with MINT was performed using MSConvert 
as part of the ProteoWizard software package [34]. Statistical 
analysis and violin plot creation were performed in R i386 
3.5.1 using an in-house developed software package [35]. 
Data visualization and scientific figure creation were done 
using Microsoft Excel and Adobe Illustrator.

Results and discussion

SQUID injects samples sequentially into a continuous iso-
cratic flow of solvents (Fig. 1). Target analytes are separated 
by tuning the mobile phase such that the analytes weakly 
interact with the column and thereby slowly elute from the 
column under the isocratic solvent flow. Injection rates are 
then calibrated to match retention times such that peaks of 

the target analytes elute at the same cadence as the sample 
injection rate. We empirically calibrated the mobile phase 
to optimize the system for analyzing polyamines (putrescine 
and agmatine) and were able to achieve a 0.95-min spacing 
between peaks for these compounds (Fig. 1). Given that the 
autosampler used in this analysis (Thermo Scientific™ Van-
quish™ Flex) requires 0.82 min to complete the injection 
cycle, the SQUID methods presented here are approaching the 
throughput limits possible on this chromatographic platform.

Although the SQUID chromatographic approach cap-
tures strong binding molecules (e.g., salts) on the column, 
metabolites that interact weakly with the stationary phase 
will elute unpredictably across the serial injection cycle. 
The co-elution of the target analytes with these other com-
pounds could therefore affect the response factors of the tar-
get analytes and thus alter their signal intensities. To address 
this issue, samples were prepared with a [U-13C]-labelled 
internal standards and native biomarkers were quantified 
by established isotope dilution methods [10, 36]. As pre-
dicted, when one urine sample was injected 12 times con-
secutively (Fig. 2), the intensity of agmatine was found to 
be variable (9.35% mean error; normalized root mean square 
error = 0.108), presumably due to differential co-elution of 
non-target molecules across the analysis. However, this vari-
ability was corrected (1.42% mean error; normalized root 
mean square error = 0.019) when concentrations of the tar-
get analyte were calculated according to the isotope ratio 
relative to the internal [U-13C] standard. In summary, our 
analyses of technical replicates indicate that SQUID analy-
ses are subject to significant quantitative variability, but this 

Fig. 1   Schematic overview of 
SQUID. The upper panel dem-
onstrates a conventional injec-
tion cycle relative to the SQUID 
isocratic injection approach. 
The lower panel demonstrates 
the resulting chromatographic 
peak spacing observed when 
using the conventional versus 
SQUID approaches. Black 
arrows indicate the pacing 
of sample injections under each 
methodology
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variability can be corrected by computing their concentra-
tions according to isotope dilution methods.

To assess the performance of SQUID as a diagnostic tool, 
we measured the lower limit of detection (LLOD) and lower 
limit of quantification (LLOQ) of SQUID when used for the 
analysis of urinary polyamines. To achieve this, an unlabelled 
agmatine standard was prepared as a dilution series using a 
clinical urine specimen containing 250 nM [U-13C]agmatine 
(Supplemental Fig. 1). Using this method, the LLOD of 12C 
agmatine detection was found to be 106 nM and the LLOQ 
was found to be 353 nM (thresholds defined as 3- and tenfold 
greater than the noise level, respectively) [37].

To demonstrate the utility of the SQUID-based 
approach, a cohort of 191 patient urine samples was ana-
lyzed for the presence of agmatine, a microbial polyam-
ine that is produced via the catabolism of arginine [38]. 
Polyamines have been previously shown to be linked to 
significant microbial loads in urine [39, 40]. The presence/
absence of microbes based on agmatine levels was scored 
relative to the presence or absence of E. coli, as identi-
fied by Alberta Precision Laboratories following standard 
clinical urine culture procedures [41]. As shown in Fig. 3, 

SQUID could readily distinguish between culture-positive 
and culture-negative samples. The mean isotope ratio for 
12C/[U-13C]agmatine was 18.7 in positive cultures and 
0.005 in negative cultures. Quantitatively, this translates 
into an average 12C agmatine concentration of 2170 nM for 
culture-positive samples with culture-negative sample lev-
els being below our LLOD (0.581 nM). Moreover, we ana-
lyzed the entire cohort of 191 specimens in under 270 min.

Clinical diagnostics are only one example of wide range 
of metabolomics applications that could benefit from the 
high-throughput, quantitatively robust, targeted analysis 
made possible via SQUID. Microbial engineering, biofuels 
research, and antibiotic lead screening are just a few examples 
of throughput-oriented studies that could benefit from this 
approach. To illustrate SQUID’s utility for this wider range of 
potential applications, we analyzed the growth media (Muel-
ler–Hinton) from in vitro cultures of P. aeruginosa (n = 9) 
and E. coli (n = 9) for the presence of putrescine, a microbi-
ally produced polyamine that is known to be produced by E. 
coli [40] but not P. aeruginosa. As expected, SQUID readily 
distinguished the E. coli from the P. aeruginosa cultures based 
on the presence/absence of putrescine (Fig. 4). This example 

Fig. 2   Normalization by isotope 
ratio resolves differential ion 
suppression. (a) 12 serial 
sample injections of healthy 
urine samples spiked with a 
5000 nM unlabelled agmatine 
standard and a 500 nM [U-13C]
agmatine standard to demon-
strate the run-to-run variability 
in signal intensity across techni-
cal replicates. Bar plots show 
the effect before (b) and after 
(c) isotope correction to the 
internal standard. Isotope ratios 
were defined as the 12C/[U-13C]
agmatine peak areas observed 
for each injection
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Fig. 3   Application of SQUID for detecting polyamines in urine. 
To illustrate the potential utility of SQUID in high-throughput 
approaches to detecting microbes, we analyzed 191 human urine 
specimens provided by Alberta Precision Laboratories by LC–MS. 
Ninety-five of these samples were identified as culture-positive 

(≥ 107 CFU/L of E. coli) and 96 samples were culture-negative con-
trols (<  107  CFU/mL). Upper quadrants (a/b) display extracted ion 
chromatograms for native 12C agmatine levels and lower quadrants 
(c/d) show the respective internal standard levels
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coli cultures. Blue/orange boxes highlight each technical replicate for 
the nine biological samples

274



Rapid LC–MS assay for targeted metabolite quantification by serial injection into isocratic…

1 3

illustrates that SQUID is applicable to a range of potential bio-
markers and sample types and could thus be used in a range 
of studies where sample throughput is the primary concern.

Conclusion

Herein, we show that SQUID is a rapid and quantitatively 
robust LC–MS-based strategy for analyzing small sets 
of chemically similar catabolites across large cohorts of 
sample. The methods presented here would allow a single 
LC–MS platform to analyze over 1000 samples per day 
and maintain quantitative performance across the cohort. 
We have illustrated the application of SQUID to two possi-
ble metabolomics studies—clinical diagnostics and analy-
ses of in vitro microbial cultures—and have provided a 
template that will allow SQUID to be adapted to a wide 
range of throughput-oriented studies.

Although the SQUID methods we present here have obvi-
ous benefits regarding instrument efficiency, there are some 
inherent drawbacks to this strategy that warrant considera-
tion. Firstly, SQUID relies on a precisely calibrated mobile 
phase to separate target analytes from other compounds and 
to establish the cadence of injections. Any differences in 
the chromatographic properties between target analytes will 
cause the phase of these elution peaks to shift over time and 
may complicate analyses. Secondly, our analyses illustrate 
significant sample-to-sample variability in response factors 
that necessitate the use of isotope-labelled internal standards 
for each target biomarker. Naturally, this limits the scope of 
SQUID analyses to metabolites that can either be purchased 
commercially or can be readily made. In addition, the use 
of isotope-labelled internal standards limits the dynamic 
range of metabolites that can be accurately quantified [36]. 
Thirdly, analyzing SQUID spectra is more challenging than 
conventional metabolomics since existing software packages 
are not designed for binning extracted ion chromatograms 
according to segmented elution windows. In this study, we 
solved this problem by analyzing spectra directly using our 
in-house analysis software, Metabolomics Integration Tool 
(MINT). Large-scale applications of this method would ben-
efit from the use of such a purpose-built software package. In 
summary, we show that SQUID is a fast and quantitatively 
robust method for quantifying select target biomarkers that 
could potentially be applied to a wide range of metabolomics 
projects.
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