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Abstract
Zinc nanoparticles (Zn-NPs) have garnered a great deal of attention as potential cancer therapy. The use of microorganisms 
in the synthesis of nanoparticles emerges as an eco-friendly and exciting approach. This study was designed to assess bio-
synthesized Zn-NPs as therapeutic agent against kidney cancer induced by ferric-nitrilotriacetate (Fe-NTA) in rats.
Zn-NPs were synthesized from edible mushroom then characterized by transmission electron microscopy analysis, dynamic 
light scattering, and Fourier transform infrared spectroscopy. Rats were divided into 4 different groups: group I (control), 
group II (Fe-NTA group), group III (Zn-NPs group), and group IV (Fe-NTA + Zn-NPs group). Animals were sacrificed then 
kidney and liver function tests, MDA level, glutathione, glutathione peroxidase, and superoxide dismutase activities were 
measured by using colorimetric methods. Caspase-3 level and carcinoembryonic antigen concentration were measured by 
using ELISA. Finally, DNA fragmentation was visualized by using agarose gel electrophoresis.
Treatment with Zn-NPs significantly suppressed renal oxidative stress by restoring glutathione level, glutathione peroxidase, 
and superoxide dismutase activities and ameliorated oxidative damage parameters of lipid peroxidation as well as renal 
toxicity markers. Molecular and tumor markers showed significant improvement with respect to induction group, and this 
was well appreciated with the histopathological alteration findings in the treated groups.
Microbial synthesized Zn-NPs possess antitumor-promoting activity against Fe-NTA-induced toxicity and carcinogenesis, 
which should be evaluated in a clinical study.
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Introduction

Cancer is reported as the second, after cardiovascular dis-
eases, leading cause of death. In 2018, there were about 
18.1 million new cancer cases and 9.6 million cancer deaths 
worldwide [1]. Renal cell carcinoma (RCC) is recorded as 
the third most frequent urologic malignancy, affecting more 
than 400,000 patients each year [2]. Due to the increasing 
prevalence of malignancies, new effective therapeutics and 
treatment strategies are highly required [1]. Nowadays, there 

is a growing interest in applying the nanotechnology to can-
cer due to its uniquely appealing features for diagnosis and 
imaging, drug delivery, and the therapeutic nature of some 
nanomaterials themselves [3]. There are different chemical 
and physical methods for the nanoparticle production, which 
are still being under investigation for the purpose of obtain-
ing particles with a certain size and lower toxicity [4]. Green 
synthesis of nanoparticles, in which the nanoparticles can 
be biologically synthesized by using living organisms such 
as bacteria, fungi, and plants, is considered a new approach 
to prevent the production of unsafe or undesired byproducts 
by reliable, maintainable, and eco-favorable synthesis tech-
niques. [5, 6].

Zinc is an essential trace element that is crucial for 
growth and development; it has three major biological func-
tions, as catalyst, structural, and regulatory functions as it is 
representing an integral component of approximately 10% 
of the human proteome and encompassing hundreds of key 
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enzymes and transcription factors. Moreover, zinc has criti-
cal effect in immune function, oxidative stress, and apoptosis 
[7, 8]. Zinc oxide nanoparticles (ZnO-NPs) are widely used 
in biomedicine, especially as anticancer and antibacterial, 
due to their potent ability to induce excess reactive oxygen 
species (ROS) production, release zinc ions, and induce cell 
apoptosis [9]. Several studies demonstrated the antitumor 
activity of ZnO-NPs [10–12], which also proved to have 
cytotoxic and genotoxic effects [13–16]. To our knowledge, 
until now, there are no studies designed to investigate the 
antitumor efficacy of zinc nanoparticles (Zn-NPs), which 
may be safer than ZnO-NPs. Therefore, the current study 
was aimed to assess the activity of green biosynthesized 
Zn-NPs as therapeutic agent against renal cancer induced 
by ferric-nitrilotriacetate (Fe-NTA) in rats by studying its 
various potential biochemical and molecular targets as well 
as tumor promotion markers which are known to be dysregu-
lated in cancer cells.

Materials and Methods

Ethics Statement

The current study was approved by the animal ethics care 
committee of the National Centre for Radiation Research and 
Technology (NCRRT), Egyptian Atomic Energy Authority, 
Cairo, Egypt.

Chemicals

Various chemicals were used in this study, such as disodium 
salt of nitrilotriacetic acid (NTA), ferric nitrate hydrate, 
sodium bicarbonate, zinc chloride (ZnCl2), and agarose, 
were procured from Sigma Pvt. Ltd.

Animals

Adult male Wister rats weighing about 140–170 g pur-
chased from the breeding unit of the Egyptian Organiza-
tion for Biological Products and Vaccines (Cairo, Egypt) 
were used in this study. The animals were acclimatized to 
the laboratory conditions prior to the study for seven days 
and kept at 25 ± 2 °C and a relative humidity of 40–45% 
with alternative day and night cycles of 12 h each. They 
were fed with normal pelleted rat chow and water ad libi-
tum. The normal pelleted rat chow purchased from Al Qaed ِ ِ
Company, Cairo, Egypt, contains 65% carbohydrates (corn 
starch 15% and sucrose 50%), 20.3% proteins (casein 20% 
and DL-methionine 0.3%), 5% fat (corn oil 5%), 5% fibers, 
3.7% salt mixture, and 1% vitamins mixture. Animal mainte-
nance and treatments were conducted in accordance with the 
National Institute of Health Guide for Animal, as approved 

by Institutional Animal Care and Use Committee (IACUC). 
A 30-day toxicity study of Zn-NPs was conducted in male 
rats by studying plasma biological markers, survival, and 
decrease in body weights.

Methods

Chemical Studies

Preparation of Fe‑NTA Solution  Ferric-nitrilotriacetate (Fe-
NTA) solution was prepared according to Athar and Iqbal 
[17]. In brief, disodium salt of nitrilotriacetic acid (NTA) 
(0.64 mmol/kg body weight (b.w.)) and ferric nitrate hydrate 
(0.16 mmol/kg b.w.) were dissolved in distilled water, and 
pH was adjusted to 7.0 using sodium bicarbonate. The molar 
ratio of Fe to NTA was 1:4.

Biosynthesis of Zinc Nanoparticles  Zn-NPs were synthe-
sized according to the method of Philip [18]. Briefly, the edi-
ble white mushroom Agaricus bisporus was obtained from 
Ploshia Mushroom Company (Egypt) and washed several 
times with deionized water; then, about 68 g of finely cut 
mushroom was boiled for 2 min in 300 ml water and filtered 
and cooled to room temperature and used as reducing agent 
and stabilizer. To a vigorously stirred 30 ml aqueous solution 
of ZnCl2 (50 mg/100 ml water), 6 ml mushroom extract was 
added, and the stirring continued in a shaker at 37 °C and 
200 rpm for 24 h for the synthesis of nanoparticles. Finally, 
the resulting solution was filtered through a 0.22-μm filter 
(Millipore).

Characterization of Zn‑NPs 

1.	 Transmission electron microscopy analysis (TEM)

Synthesized Zn-NPs were analyzed by TEM. Samples 
of Zn-NPs were prepared by placing a drop of the suspen-
sion of Zn-NPs on carbon-coated copper grids and allow-
ing water to evaporate. The shape and size of nanoparticles 
were determined from TEM micrographs. The software 
(Advanced Microscopy Techniques, Danvers, USA) for the 
digital TEM camera was calibrated for size measurements 
of the nanoparticles. TEM measurements were performed 
on a JEOL model 1200EX.

2.	 Dynamic light scattering (DLS) of Zn-NPs

Sample of Zn-NPs was analyzed for size determination 
by DLS Zetasizer (ZS) which was manufactured in Malvern, 
UK.
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3.	 Fourier transform infrared spectroscopy (FTIR)

Samples of Zn-NPs and biological material used in 
the synthesis (mushroom extract) were analyzed for func-
tional groups by FTIR, VERTEX-70, BRUKER, Ettlingen, 
Germany.

4.	 Determination of LD50 of Zn-NPs using experimental 
animals

In screening as a new drug, determination of LD50 of 
Zn-NPs is usually an initial step in the assessment and 
evaluation of its toxic characteristics in vivo and provides 
information on health hazards likely to arise from short-
term exposure to ZnNPs. LD50 of ZnNPs was determined 
as described by Akhila et al. [19]. According to our pilot 
study, to estimate LD50 of Zn-NPs, various doses of the 
green biosynthesized Zn-NPs prepared in distilled water 
were administered once daily by oral gavage. The animals 
were observed for 30 days, and cumulative mortality within 
these days was used for the calculation of LD50 as the meas-
urement of acute toxicity.

Evaluation of Therapeutic Antitumor Efficacy of Biosynthe‑
sized Zn‑NPs  The present study was designed to comprise 
a series of in vitro and in vivo investigations, as follows:

1.	 In vitro study

The antitumor effect and inhibitory concentration 50 
( IC

50
 ) of Zn-NPs was investigated on the viability of baby 

hamster kidney fibroblast cell line (BHK-21) using sulforho-
damine-B (SRB) assay for cytotoxicity screening according 
to the method of Vichai and Kirtikara [20].

2.	 In vivo study

The long-term in vivo study shows the therapeutic anti-
tumor efficacy of Zn-NPs against chemically induced renal 
carcinogenesis in the animal model represented in biochemi-
cal changes such as changes in antioxidant enzyme activities, 
lipid peroxidation levels, tumor marker, caspase-3 activity, 
liver, and kidney functions, as well as histopathological 
changes following 1-month treatment.

a.	 Experimental design

Sixty animals were randomly divided into four equal 
groups as follows: in group I (control group), animals in 

this group were not given any chemical treatment. In group 
II (Fe-NTA group), rats in this group were intraperitoneally 
injected with Fe-NTA twice weekly at a dose (9 mg/kg 
b.w.) until the end of experiment (9 months), and within 
the period of experiment, diethylnitrosamine will also be 
injected (200 mg/kg b.w.) once a time. In group III (Zn-NPs 
group), rats in this group were treated with Zn-NPs orally 
three times a week, day, or other days at a dose level of 
100 µg/kg b.w. for 2 months. In group IV (Fe-NTA + Zn-
NPs group), rats in this group were received Fe-NTA as 
mentioned in group II then treated with Zn-NPs as described 
in group III. Finally, all the animals were sacrificed, and 
blood samples were drawn from the vena cava into heparin-
ized syringe, and plasma was separated by centrifugation 
at 3000 g for 10 min at 4 °C and stored at − 20 °C pending 
analyses. Kidneys were excised, washed in ice-cold saline, 
and blotted to dryness. Each rat kidney was divided into 
two parts: one put in 10% formalin for histopathological 
examination and the other one was homogenized in ice-cold 
50 mM Tris–HCl/0.25 M sucrose buffer (pH 7.4) to pre-
pare 10% (w/v) tissue homogenate and stored at − 80 °C for 
analysis of DNA fragmentation and biochemical assays. An 
aliquot of the kidney tissue homogenate was centrifuged at 
10,000 rpm for 15 min at 4 °C, and the cytosolic supernatant 
was used for the determination of apoptotic agent caspase-3.

b.	 Biochemical analysis

•	 Kidney and liver function tests

Plasma creatinine, urea, alanine aminotransferase (ALT), 
gamma-glutamyl transferase (GGT), lactate dehydrogenase 
(LDH), sodium (Na +), potassium (K +), albumin, and total 
proteins were measured colorimetrically using a commercial 
assay kit (Biodiagnostic, Egypt).

•	 Determination of malondialdehyde (MDA)
	   Lipid peroxide concentrations were determined 

in kidney tissue homogenate MDA which is the end 
product of unsaturated fatty acid peroxidation and can 
react with thiobarbituric acid (TBA) to form a colored 
complex called thiobarbituric acid-reactive substance 
(TBARS). TBA reactivity was assayed by the method 
of Yoshioka et al. [21].

•	 Glutathione (GSH), glutathione peroxidase (Gpx), and 
superoxide dismutase (SOD) activities

	   Levels of GSH and Gpx and SOD activities were 
assayed also in kidney tissues by using colorimetric 
assay kit of Biotech Inc.

•	 Caspase-3 level
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	   Homogenates of kidney tissues of each group were 
assayed for caspase-3 level using caspase-3 colorimetric 
detection ELISA kit purchased from KOMA Biotech Inc. 
(South Korea).

•	 Carcinoembryonic antigen (CEA) concentration
	   CEA concentration was determined in plasma using 

ELISA kit (MBS720630, My Biosource, San Diego, CA, 
USA).

•	 DNA fragmentation assay

DNA was extracted from kidney samples as previously 
described by Bortner et al. [22]. The extent of DNA frag-
mentation was assessed by the agarose gel electrophoresis 
containing ethidium bromide (0.5 mg/ml) at 5 V/cm for 1 h.

Histopathological examination
Kidney tissues were fixed in 10% formalin, dehydrated 

by ethanol, and embedded in paraffin. Sections of 5-μm 
thickness were cut and stained with hematoxylin and eosin 
according to the method described by Banchroft et al. [23] 
and examined by light microscope.

Statistical Analysis

Statistical analysis was performed using IBM SPSS soft-
ware (version 23.0; IBM Corp., Armonk, NY, USA). Data 
are reported as the mean ± SE. One-way ANOVA was used 
to determine statistically significant differences between 
group’s means. The level of significance between mean val-
ues was set at P ≤ 0.05.

Results

Characterization of Zn‑NPs

By TEM

As shown in Fig. 1A, the results of TEM for Zn-NPs showed 
that Zn-NPs were of different size about (12–17 nm) and 
different shapes mostly spherical.

By DLS

Dynamic light scattering was used for Zn-NPs size determi-
nation, which revealed that Zn-NPs size ranged from 50 to 
100 nm; 22% of Zn-NPs represented the size of 50 nm, 24% 

Fig. 1   Characterization of Zn-
NPs. A Transmission electron 
microscope (TEM) of Zn-NPs. 
B DLS analysis of Zn-NPs for 
size determination. C FTIR 
Spectroscopy of Zn-NPs
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represented 70 nm, and 30% represented 60 nm, as shown 
in Fig. 1B.

By FTIR

FTIR spectrum was used to analyze the biological extract 
of mushroom used in the synthesis of Zn-NPs and the syn-
thesized Zn-NPs. FTIR analysis of the mushroom extract 
shows a strong signal at 3320.83  cm−1 which represent 
hydroxyl group (–OH), and at 1636.98 cm−1 represents amid 
I group of proteins and other signals at 601.04 represents 
single bond of carbon with –H or –N which with other weak 
bonds named fingerprint (Fig. 1C). FTIR spectrum of Zn-
NPs revealed a strong signal at 3324.57 represents –OH, 
and at 1636.34 represents amid I of proteins, and at 603.38 
represents carbon with –H or –N which with other weak 
bonds named fingerprint (Fig. 3b).

Determination of LD50 of Zn‑NPs

Rats were observed for toxicity and mortality. The result 
showed that Zn-NPs administration caused no toxicity symp-
toms, and no mortality was recorded; even Zn-NPs were 
used at a dose of 1000 µg/kg b.w., and finally, Zn-NPs were 
used at a dose of 100 µg/kg b.w.

Evaluation of Therapeutic Antitumor Efficacy 
of Biosynthesized Zn‑NPs

In Vitro Results (Cell Viability Tests)

The in vitro anticancer cytotoxic activity of (Zn-NPs) was 
investigated on baby hamster kidney fibroblast cell line 
(BHK-21) using sulforhodamine-B (SRB) assay. The cyto-
toxic activity was expressed as reduction of cell viability 
relative to control. The results were indicated in Fig. 2. The 
50% growth inhibitory concentration ( IC

50
 ) value for ZnNPs 

was estimated from the available cytotoxicity. The ZnNPs 
recorded IC

50
 value 68.03 µg/ml against hamster kidney 

fibroblast cell line.

Biochemical Results

The effect of Zn-NPs on MDA level and antioxidant status 
(GSH content, GPx, and SOD enzyme activities) in the kid-
ney tissue of different studied groups is reported in Table 1. 
Our results revealed a significant decrease in GSH content, 
GPx, and SOD activities while plasma MDA level was sig-
nificantly increased in Fe-NTA-treated group upon their 
comparison with the normal control group. Whereas, Zn-
NPs-treated rats (Fe-NTA + Zn-NPs) showed a significant 
increase in antioxidant status associated with a significant 
decrease in MDA content compared with Fe-NTA-model.

Results of plasma toxicity markers (Na+, K+, urea, and 
creatinine levels) as well as enzyme activities of ALT, LDH, 
and GGT are shown in Table 2. It was found that there is a 
significant increase of all previous parameters in Fe-NTA-
treated group compared to the control group, whereas the 
results represented in the same table showed that plasma 
albumin and total protein concentrations in Fe-NTA group 
were significantly decreased with respect to control group. 
On contrary, Fe-NTA + Zn-NPs-treated rats showed a sig-
nificant decrease in the levels of studied parameters com-
pared to induced group. On the other hand, tumor-induced 
rat group treated with Zn-NPs showed a significant increase 
in both plasma albumin and total proteins concentrations 
upon its comparison with Fe-NTA model.

Fig. 2   Antitumor activity of ZnNPs against Baby Hamster Kidney 
Fibroblast cells

Table 1   Effect of Zn-NPs on 
the MDA level and antioxidant 
statue in the kidney tissue of 
different studied groups

The mean difference is significant at the 0.05 level. P < 0.05
a Significant difference versus control group
b Significant difference versus Fe-NTA group

Parameters Groups

Control Fe-NTA Zn-NPs Fe-NTA + ZnNPs

MDA (µmol/l) 158.00 ± 1.00b 217.65 ± 1.33a 170.64 ± 3.17b 173.33 ± 2.34ab

GSH (U/g) 107.00 ± 3.00b 80.6 ± 0.66a 97.0 ± 1.03b 94.3 ± 2.34ab

GPx (U/g) 0.5 ± 0.03b 0.33 ± 0.01a 0.48 ± 0.04b 0.45 ± 0.02 b

SOD (U/g) 10.3 ± 0.81b 8.9 ± 0.13a 10.01 ± 0.53b 10.15 ± 0.42b
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Caspase-3 level in the kidney tissue homogenate recorded 
a significant increase in the Fe-NTA + Zn-NPs group upon 
their comparison with the normal control and Fe-NTA 
groups. Plasma CEA was significantly increased in Fe-NTA-
treated rats compared to control group; however, Zn-NPs 
treatment (Fe-NTA + Zn-NPs group) resulted in a significant 
decrease in CEA level compared to Fe-NTA model (Fig. 3).

DNA Fragmentation

Analysis of agarose gel electrophoresis revealed that DNA 
was completely intact in kidney samples of both normal 
control and Zn-NPs groups. However, induction of renal 
carcinoma resulted in elevation in the degree of DNA frag-
mentation in kidney samples of Fe-NTA group; treatment 
with Zn-NPs succeeded in repairing the fragmented DNA 
compared to renal induction samples (Fig. 4).

Histopathological Examination

Histopathological examination of kidney sections derived 
from normal control rats (Fig. 5A) and Zn-NPs-treated rats 
(Fig. 5B) showed normal histological structure of the glo-
meruli and tubules at the cortex. However, the examined 
kidney sections from Fe-NTA rats revealed congestion in 
their glomerular tufts associated with degeneration and 
dysplasia and disfiguration in the lining epithelium of the 
tubules (Fig. 5C). The examined kidney sections from Zn-
NPs-treated rats after intoxication with Fe-NTA revealed 

Table 2   Effect of Zn-NPs 
treatment on plasma toxicity 
markers of different studied 
groups

The mean difference is significant at the 0.05 level. P < 0.05
a Significant difference versus control group
b Significant difference versus Fe-NTA group

Parameters Groups

Control Fe-NTA Zn-NPS Fe-NTA + ZnNPs

Na (meq/l) 160.0. ± 0.57b 170.6 ± 0.66a 165.6 ± 0.33ab 165.8 ± 0.72ab

K (mmol/l) 5.4 ± 0.28b 7.4 ± 0.04a 5.7 ± 0.21b 5.6 ± 0.08b

Albumin (g/dl) 4.33 ± 0.06b 3.65 ± 0.02a 4.00 ± 0.10ab 4.06 ± 0.14b

Total protein (g/dl) 7.08 ± 0.11b 6.05 ± 0.07a 7.04 ± 0.11b 6.90 ± 0.09b

ALT (U/ml) 43.32 ± 5.23b 66.64 ± 3.32a 49.00 ± 2.30b 50.32 ± 2.90b

LDH (U/ml) 849.6 ± 5.78b 881.50 ± 4.44a 858.00 ± 4.61b 860.00 ± 2.87b

GGT (U/g) 12.66 ± 0.88b 18.83 ± 0.16a 13.33 ± 0.33b 14.65 ± 0.88b

Urea (mmol/l) 29.0 ± 0.57b 56.6 ± 2.40a 33.0 ± 1.15b 34.6 ± 1.76ab

Creatinine (mg/dl) 0.54 ± 0.02 b 1.22 ± 0.15a 0.76 ± 0.03b 0.78 ± 0.07b

a,b

a 

b b
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Fig. 3   Effect of Zn-NPs treatment on the levels of caspase-3 (U/ml) 
and CEA levels (ng/ml). Results are given as mean ± SE. Means are 
significantly different at p < 0.05 (a) Significance compared to control 
group. (b) Significance compared to Fe-NTA group

DNA marker   Control   Fe-NTA   Zn-NPs   Fe-NTA+Zn-NPs

M         1             2          3            4

Fig. 4   DNA fragmentation pattern of different studied groups on aga-
rose gel electrophoresis. Necrotic strand breaks/streaking DNA was 
observed in Fe-NTA group (lane 2), but not in other groups (lanes 1, 
3, 4)
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congestion were detected in the glomeruli associated with 
mild dysplasia in the lining tubular epithelium (Fig. 5D).

Discussion

The present study was designed to assess the antitumor 
activity of green biosynthesized Zn-NPs as therapeu-
tic agent against renal cancer induced by Fe-NTA in rats. 
Results from our biochemical analysis reveal that the levels 
of CEA, MDA, Na + , K + , urea, creatinine, ALT, LDH, and 
GGT were significantly decreased, while the levels of SOD, 
GSH, GPx, and caspase-3 were significantly increased in 
Fe-NTA + Zn-NPs-treated rats when compared to Fe-NTA-
treated rats. These results show the protective antitumor 
activity of Zn-NPs which emphasized by histopathological 
examination and DNA fragmentation. In our study, Zn-NPs 
were biosynthesized from the edible white mushroom Aga-
ricus bisporus; this process is known as green synthesis of 
nanomaterials which proved to have many benefits for the 
environmental ecosystem and also very useful in control-
ling the desired size and shape for nanomaterials [24–26]. 
This study is considered from a few studies which prepared 
Zn-NPs, as most studies prepared Zinc oxide nanoparticles 

(ZnO-NPs) which proved to have cytotoxic effects [13–16]. 
In this study, the green biosynthesized Zn-NPs were very 
safe and had no toxic effects, as results of LD50 revealed that 
no toxicity symptoms and no mortality were recorded, even 
Zn-NPs were used at a dose of 1000 µg/kg b.w.

The obtained Zn-NPs were characterized by different ana-
lytical methods. Transmission electron microscopy (TEM) 
photos of Zn-NPs revealed that shapes were found to be 
spherical and size ranging from 12 to 17 nm. Zetasizer par-
ticle size analysis using dynamic light scattering (DLS) for 
Zn-NPs revealed that Zn-NPs ranged from 50–100 nm. This 
result is in agreement with result obtained by others [27] 
who reported that TEM of biogenic Zn-NPs synthesized by 
Lavandula Vera leaf extract were found to be of spherical 
shape with the size range of 30–80 nm, and the most fre-
quent nanoparticles (NPs) were in the range of 50–60 nm.

Generally, formation of the nanoparticles assisted by 
different extracts led to addition of some functional groups 
on the surface of nanoparticles. Thus, Fourier transform 
infrared spectroscopy (FTIR) measurements were used to 
recognize such functional groups located on the surface of 
biogenic Zn-NPs [28]. In the present work, FTIR analysis of 
Zn-NPs and biological material used in the synthesis (mush-
room extract) showed shifting in the signal wave number 

(A) (B)

(C) (D)

Fig. 5   Hematoxylin and eosin–staining histological examinations 
of rat kidney sections representative of the antitumor efficacy of 
Zn-NPs in renal cancer induced by Fe-NTA in Wistar rats from dif-
ferent groups (40 × magnification). A Control group: there was no 
histopathological alteration, and the normal histological structure 
of the glomeruli and tubules at the cortex were recorded. B Zn-NPs 

group: vacuolization was observed in the lining endothelium of the 
congested glomerular tufts. C Fe-NTA- intoxicated group: there was 
congestion in their glomerular tufts associated with degeneration and 
dysplasia and disfiguration in the lining epithelium of the tubules. D 
Fe-NTA + Zn-NPs group: congestion was detected in the glomeruli 
associated with mild dysplasia in the lining tubular epithelium

1 3

278



Assessment of the Antitumor Activity of Green Biosynthesized Zinc Nanoparticles as Therapeutic…

cm−1 of hydroxyl group when compared that of biological 
extract with Zn-NPs indicates the involvement of –OH in 
Zn-NPs formation and stabilization as it is used in the zinc 
ion reduction and capping forming Zn-NPs and the presence 
of functional groups as in the mushroom FTIR. These results 
are in agreement with result obtained by previous study [27] 
that identified strong FTIR peaks functional groups in the 
plant extract as found in Zn-NPs FTIR analysis consistent 
with the results obtained in FTIR of the present study.

In this study, the renal cancer in rats was induced by using 
Fe-NTA twice weekly at a dose of 9 mg/kg b.w. for 9 months 
(the end of experiment). Fe-NTA is a potent nephrotoxic 
agent, causing renal adenocarcinoma in experimental rats 
when administrated for several times [29]. The mechanism 
by which Fe-NTA causes its effects seems mainly due to 
its ability to deplete the antioxidant battery and induce 
ROS generation by iron-catalyzed Fenton reaction, which 
in turn causing lipid peroxidation, and DNA damage [30, 
31]. This is consistent with our results as the level of MDA 
was significantly increased while the level of GSH and the 
activities of SOD and GPx were significantly decreased 
in Fe-NTA-treated rats when compared to controls. Also, 
results obtained from DNA fragmentation assay revealed 
the elevation in the degree of DNA fragmentation in kidney 
samples of Fe-NTA group. When rats were received Fe-NTA 
then treated with Zn-NPs, it was well-noticed that levels of 
MDA and DNA fragmentation were significantly decreased 
while the level of GSH, and the activities of SOD and GPx 
were significantly increased in Fe-NTA + Zn-NPs-treated 
rats when compared to Fe-NTA-treated rats, confirming 
the protective effect of Zn-NPs against the oxidative stress 
induced by Fe-NTA. In agreement to our findings, several 
studies reported that Fe-NTA enhance lipid peroxidation 
in kidney tissue by increasing thiobarbituric acid reactive 
substances such as MDA which is cytotoxic, damage the 
DNA leading to 8-hydroxy-2′-deoxyguanosine (8-OHdG) 
formation of which is mutagenic and carcinogenic leading 
to numerous functional changes in cells [31–33].

Renal cancer lacks specific predictive biomarkers, and 
only some symptoms, such as hematuria, might aid in dis-
covering the presence of cancer [34]. Therefore, the authors 
choose two nonspecific tumor markers: CEA and LDH, to 
monitor the antitumor effect of Zn-NPs. Results of the cur-
rent study showed that serum levels of both CEA and LDH 
were significantly decreased in Fe-NTA + Zn-NPs-treated 
rats when compared to Fe-NTA-treated rats, demonstrating 
the antitumor effect of Zn-NPs. Serum levels of CEA are 
known to be elevated in different types of cancer including 
renal cancer [35, 36]. Cancerous cells are reported to have 
upregulated LDH, and elevated LDH levels are associated 
with poor outcomes in cancer patients [37]. Also, previous 
studies suggest the role of LDH in tumor progression [38, 
39].

Caspases are a family of 15 protease enzymes playing 
essential roles in programmed cell death i.e., apoptosis [40]. 
Caspase-3 is the main executioner of apoptosis, it is acti-
vated by other caspases (-8, -9, or -10). Once activated, it is 
stimulating the proteolytic cleavage of other proteins which 
is related to fragmentation of DNA, nuclear collapse, and 
condensation and margination of chromatin [41, 42]. Many 
anticancer therapeutic agents are able to cause tumor cell 
death by activating caspase-3; therefore, caspase-3 activa-
tion is used as a surrogate marker for the efficacy of cancer 
treatment [43]. Results of the present study show that the 
levels of caspase-3 in the kidney tissue homogenate were 
significantly increased in the Fe-NTA + Zn-NPs group upon 
their comparison with the normal control and Fe-NTA 
groups, confirming the antitumor efficacy of Zn-NPs in renal 
cancer treatment.

Concomitant with the improvement of the biochemical 
markers and DNA fragmentation, the histopathological 
examination of kidney sections from Zn-NPs-treated rats 
after intoxication with Fe-NTA revealed an improvement by 
noticeable amelioration in the cellular architecture of kidney 
tissue with mild dysplasia in the lining tubular epithelium.

Conclusion

From the aforementioned results, it can be concluded that 
Zn-NPs ameliorate the oxidative stress induced by Fe-NTA, 
which is manifested by a decrease in lipid peroxidation, 
increase of enzymatic and non-enzymatic antioxidant mol-
ecules as well as it possesses antitumor promoting activity 
against Fe-NTA-induced toxicity and carcinogenesis through 
reduction of tumor cell infiltration and enhancing tumor 
cell apoptosis which is confirmed histopathologically and 
biochemically by decreased CEA, increased caspase-3, and 
decreased level of DNA fragmentation. Therefore, Zn-NPs 
are considered a good therapeutic agent against renal cancer 
induced by Fe-NTA in rats.
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