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Abstract
Establishing causality is an essential step towards developing interventions for psychiatric disorders, substance use and 
many other conditions. While randomized controlled trials (RCTs) are considered the gold standard for causal inference, 
they are unethical in many scenarios. Mendelian randomization (MR) can be used in such cases, but importantly both RCTs 
and MR assume unidirectional causality. In this paper, we developed a new model, MRDoC2, that can be used to identify 
bidirectional causation in the presence of confounding due to both familial and non-familial sources. Our model extends the 
MRDoC model (Minică et al. in Behav Genet 48:337–349, https://​doi.​org/​10.​1007/​s10519-​018-​9904-4, 2018), by simultane-
ously including risk scores for each trait. Furthermore, the power to detect causal effects in MRDoC2 does not require the 
phenotypes to have different additive genetic or shared environmental sources of variance, as is the case in the direction of 
causation twin model (Heath et al. in Behav Genet 23:29–50, https://​doi.​org/​10.​1007/​BF010​67552, 1993).
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Introduction

To understand the mechanisms of diseases and disorders, it 
is essential to differentiate between correlation and causa-
tion. Many research designs and current statistical models 
are unable to distinguish correlation from causation. While 
randomized controlled trials (RCTs) are the gold standard 
for causal inference (Evans and Davey Smith 2015), they 
are unethical or impractical in many common situations. For 

example, exposure to a traumatic experience, a possible risk 
factor for substance abuse, is not amenable to randomiza-
tion. Mendelian randomization (MR), an instrumental vari-
able method, is an alternative approach to evaluate causality 
when RCTs are not possible. It has improved our under-
standing of the etiologies of several conditions (Ohlsson and 
Kendler 2020). However, MR is based on strong assump-
tions, which can be difficult to validate. In this article, we 
consider research designs that mitigate such assumptions.

MR is an important method for examining causality in 
observational studies (Choi et al. 2020; Katikireddi et al. 
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2018). It uses genetic variants as instrumental variables 
to detect and estimate the causal effect of an exposure on 
an outcome. This method has three main assumptions: (i) 
exchangeability, the variant is not associated with a con-
founder in the relation between the exposure and outcome; 
(ii) no horizontal pleiotropy (exclusion restriction), the vari-
ant should affect the outcome exclusively via the exposure; 
and (iii) relevance, the instruments are sufficiently predic-
tive of the exposure. Most psychiatric and substance use 
disorders appear to be multifactorial and highly polygenic, 
i.e., they are subject to the effects of many environmental 
events and genetic variants (e.g., SNPs) with small effects on 
the phenotype of interest. As instruments, individual genetic 
variants are likely to be poorly predictive of the exposure, 
which renders MR susceptible to weak instrument bias. The 
bias can be in the direction of the confounded observed asso-
ciation, as previously reported (Burgess et al. 2011; Bur-
gess and Thompson 2013; Hemani et al. 2018). The size 
and direction of the bias, however, depends on the research 
study design.

The instrument should not share common causes with the 
outcome and should affect the outcome exclusively via the 
exposure, which is known as the no horizontal pleiotropy 
assumption. The no horizontal pleiotropy assumption seems 
unlikely to be met in complex traits such as psychiatric dis-
orders or substance use, because the relevant phenotypes 
and variants are characterized by pervasive comorbidity and 
pleiotropy. With larger genome-wide association studies 
(GWAS), more variants are found to have pleiotropic effects, 
with hundreds being reported (Jordan et al. 2019). In two-
sample MR, the data originate from two separate GWAS, 
so no individual has data on both exposure and outcome. 
By contrast, in one-sample MR, genotyped individuals are 
assessed on both traits. In one-sample MR, weak instrument 
bias tends to be in the direction of the confounded observed 
association, whereas in two-sample MR, the bias is towards 
the null (i.e., regression dilution; Hemani et al. 2018).

In MR, the causation is assumed to be unidirectional from 
exposure to outcome (Hemani et al. 2018; Katikireddi et al. 
2018). Some authors have applied MR to investigate direc-
tionality of the causal paths (Timpson et al. 2011; Welsh 
et al. 2010). However, here directionality is investigated by 
performing MR twice, one test for each direction between 
the variables of interest. This can be problematic, as the 
relationship in one direction can interfere with the relation-
ship in the opposite direction. Biology features many such 
feedback loops of this kind, from homeostatic mechanisms 
for body temperature or nicotine level (Verhulst et al. 2021) 
to the mutual potentiation of aggressive behavior and puni-
tive discipline (Smith 2006).

Like RCTs, MR can be applied to infer causality in the 
presence of confounding, but the approach comes with 
assumptions that limit its application in some cases. Other 

designs can be helpful in some cases where MR is not suit-
able given its assumptions. Here we explored a structural 
equation model (SEM) implementation of MR, which allows 
for full background confounding and reciprocal causation. 
This model combines two twin models, namely the Direc-
tion of Causation model and the MR-DoC model (Minică 
et al. 2018). The Direction of Causation (DoC) model can 
infer causal relationships by using information from the 
cross-twin cross-trait correlations, even in cross-sectional 
studies (Neale and Cardon 1992; Heath et al. 1993; Neale 
et al. 1994). This model requires two phenotypes, which 
differ in their MZ correlations, or their DZ correlations, or 
both. However, to accommodate bidirectional causality, one 
must assume that confounding factors are limited to either 
additive genetic, common environment or specific environ-
mental components of variance. In essence, any three of the 
five potential sources of covariance between the traits may 
be estimated, but no more (Fig. 1; Duffy and Martin 1994; 
Maes et al. 2021).

Minică et al. (2018) combined the classical twin model 
and the MR model (Heath et al. 1993; Gillespie et al. 
2003; Neale et al. 1994), in a model for unidirectional 
causality called MR-DoC. This model accommodates hor-
izontal pleiotropy, i.e., an effect of the genetic instrument 
on the outcome that is not mediated by the exposure vari-
able. These alternative pathways are often denoted “direct 
effects,” but in practice the alternative pathways likely 

Fig. 1   Classic DoC model.  Path diagram representing a Direction 
of Causation model for one twin. This is depicting the relationship 
between two phenotypes, and the causal paths are estimated affording 
information from the cross-twin cross-trait correlations. Cross-twin 
covariance between additive genetic effects is 0.5 (not shown) for DZ 
twins, as DZs are expected to share 50% of the genetic effects. Stand-
ard structural equation modeling symbology is used. Circles represent 
latent variables, whose variances are fixed to unity. Double-headed 
arrows are covariances or variances, single-headed are the causal 
regression paths. Squares represent observed variables. A, C and E 
are the additive, shared and unique environmental effects. This model 
is not identified with data from MZ and DZ twins. To make it identi-
fied one needs to set to zero any two of the five paths ra, rc, re, g2 and 
g1 (Maes et al. 2021)
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involve many different mediators. Following Burgess 
et al. (2011), Burgess and Thompson (2013), and Kohler 
et al. (2011), Minică et al. (2018) used a polygenic score 
(PS) as the instrument, in an attempt to avoid the weak 
instrument problem associated with single SNPs. Minică 
et al. (2018) showed that the model has higher power to 
detect causality than traditional MR (Minică et al. 2018). 
Two strong assumptions of the MR-DoC model are unidi-
rectional causation and the absence of within-person (i.e., 
unshared) environmental confounding. The latter implies 
that the correlation between the non-familial environmen-
tal influences on the exposure and the outcome is zero. In 
contrast, confounding originating in genetic and shared 
environmental correlations can be accommodated in the 
MR-DoC model.

MR-DoC2 extends the MR-DoC model by integrat-
ing two polygenic scores (PSs), one for each phenotype. 
Using two PSs in a twin sample allows us to model bidi-
rectional causation in the presence of full confounding, 
originating in shared and unshared environmental and 
additive genetic effects. The ability to estimate bidi-
rectional causality in the presence of full (shared and 
unshared environmental and additive genetic) confound-
ing requires the assumption of no direct horizontal plei-
otropy: we assume no direct effect of PS1 on phenotype 
2 (Ph2), nor of PS2 on phenotype 1 (Ph1). However, we 
note that the model does not imply that PS1 (or PS2) 
is uncorrelated with Ph2 (Ph1), we return to this issue 
below. We first present the model, address the issue of 
parameter identification, and continue to address statisti-
cal power.

Methods

All analyses were performed using R version 4.1.1 (Core 
Team 2021). The models were specified using RAM matrix 
algebra in OpenMx v2.19.6 (Neale et al. 2016). We estab-
lished local model identification numerically using the 
OpenMx function mxCheckIdentification (Hunter et al. 
2021). The MR-DoC 2 model is shown in Fig. 2 for an indi-
vidual twin (rather than a twin pair) to ease presentation. 
In Fig. 2, the two phenotypes (denoted Ph1 and Ph2) are 
modeled as follows:

where i denotes twin pair and j denotes individual twin. The 
parameters a1, c1 and e1 represent the effects of the addi-
tive genetic (A), shared environmental (C), and unshared 
environmental variables (E) on the phenotype Ph1 (a2, c2, 
and e2, defined analogously as effects of A2, C2, and E2 on 
Ph2). The parameters b1 and b3 express the instrumental 
variable effects on Ph1 and Ph2, respectively. The param-
eters of main interest are g1 and g2, i.e., the bidirectional 
causal effects. Note that the model includes correlations 
between the additive genetic and environmental variables 
(i.e., cor(A1, A2) = ra, etc.), which are denoted ra, rc, and re. 
An important feature of the present model is that it includes 
the parameter re, as it has been previously shown that the 
absence of re in a DoC model would introduce bias in the 
estimates (Rasmussen et al. 2019). Finally, note that the 
instruments may be correlated (correlation rf in Fig. 2), due 

Ph1ij = a1A1ij + c1C1ij + e1E1ij + g2Ph2ij + b1PS1ij,

Ph2ij = a2A2ij + c2C2ij + e2E2ij + g1Ph1ij + b3PS2ij,

Fig. 2   MR-DoC2. Path diagram 
of the MR-DoC2 model for an 
individual. The model is locally 
identified when parameters b2 
and b4 are fixed (zero). The 
model includes the effects of 
additive genetic (A), common 
environment (C) and specific 
environment (E) factors for both 
Ph1 and Ph2, and their effects 
may correlate (parameters ra, 
rc and re)
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to possible linkage disequilibrium. The vector of parameters 
is denoted θ = [ra, rc, re, rf, a1, c1, e1, a2, c2, e2, g1, g2, b1, 
b3, σx, σy], where σx and σy are the standard deviations of the 
PS1 and PS2, respectively. The model’s path coefficients and 
variances were estimated by maximum likelihood estima-
tion; see details of the simulation next section (Tables 2 and 
3, and S1). Note that the model, as shown in Fig. 2, includes 
the parameters b2 and b4, but these parameters were fixed to 
zero for identification. However, possible combinations of 
parameters that render the model identified are presented in 
Table 5. In particular, one cannot freely estimate b2 and b4, 
but either can be estimated if re is fixed to zero (Table 5).

Simulation procedure

Statistical power was explored by exact data simulation 
given various combinations of parameter values (van der 
Sluis et al. 2008). We used the R function mvrnorm() in the 
MASS library to simulate exact data (Venables et al. 2002). 
The power calculation was based on the likelihood ratio 
(LR) test. Given exact data simulation, parameter estimates 
of the full (identified) model equal the true values exactly. 
By subsequently fitting a model with one or more parameters 
of choice fixed to zero (nested under the true model), we 
obtain the exact non-centrality parameter (NCP) of the LR 
test given the sample sizes. The NCP is the difference in the 
expected value of the LR test statistic under the null and the 
alternative hypotheses (Verhulst 2017). Given the NCP, the 
degrees of freedom of the LT test (i.e., the difference in the 
number of parameters in the null and the alternative hypoth-
esis), and the chosen Type I error rate alpha (e.g., 0.05), we 
can calculate the power to reject the constraints associated 
with the alternative hypothesis. The exact data simulation 
approach is equivalent to the analysis of exact population 
covariance matrices and mean vectors. While power can be 
established empirically using simulated data, this is compu-
tationally less efficient and offers no advantage above exact 
data simulation.

The simulation procedure involved: (1) choosing a set of 
parameter values for the model shown in Fig. 2; (2) exact 
data simulation, with arbitrary N = 1,000 MZ pairs and 
N = 1,000 DZ twin pairs; (3) fitting the true model using 
ML estimation in OpenMx; (4) fitting the false model by fix-
ing one or more parameters to zero and refitting the model; 
and (5) calculating the NCP and the power to reject the false 
model restrictions. Type I error rate α was set to 0.05. In 
the power calculations, we focused on the causal param-
eters g1, or g2, or g1 and g2 together, i.e., 1 df tests (g1 = 0 
or g2 = 0), or a 2 df test (g1 = g2 = 0). The 1 df tests are the 
tests of main interest, because they distinguish unidirectional 
from bidirectional causation. Note that the 2 df test is also 
of interest as the full background confounding (ra, rc, and 
re are all non-zero), implies that Ph1 and Ph2 may correlate, 

regardless of causal relations. We investigated the power 
in a factorial design, in which each parameter featured as a 
factor, with a given number of levels.

Additionally, we calculated the R2 (proportion of 
explained variance) in the regression of the phenotypes (Ph1 
and Ph2 in Fig. 2) on their respective PSs, and the correla-
tion between Ph1 and Ph2 (Table 4). Given the NCPs and 
the parameters, we proceeded by regressing the NCPs on the 
parameter values to gauge the influence of the parameter val-
ues on the NCPs (i.e., the statistical power). In this manner, 
we can assess which parameters, in addition to the param-
eters g1 and g2, are the most relevant in determining the 
statistical power. Note that the regression analyses estimate 
the effect of the parameter values on the NCPs. So they do 
not directly address statistical power, which depends on the 
sample sizes, effect sizes, and α error rate. To provide some 
insight into the power given N = 1000 MZ and N = 1000 DZ, 
we present power and R2 for a variety of parameter configu-
rations in Tables 2, 3 and 4 and S1.

We executed three factorial designs, i.e., combining all 
chosen parameters’ values. The first factorial design included 
full ACE confounding. Each parameter in the parameter vec-
tor θ (except x, y, e1, and e2) was a factor (a total of 13 
parameters), each factor had two levels (Table 1), e1 was 
specified as 

√

1 − a2
1
− c2

1
 and e2 as 

√

1 − a2
2
− c2

2
 . There-

fore, the final number of cells in the first design was 212 = 
4096 (Tables 1 and 2).

The second design was based on an AE model, i.e., we 
set rc = c1 = c2=0. The model without C is of interest, 
because in adults C influences are often negligible or absent 
(Polderman et al. 2015). The parameters (i.e., factors) had 
two or three levels, again e1 was specified as 

√

1 − a2
1
− c2

1
 

and e2 as 
√

1 − a2
2
− c2

2
 . (Tables 1 and 3). The number of 

cells in this design was 37*22 =  8748. Table 4 contains 
example cells of this design, where the power to reject g1 = 0 
(df = 1) was moderate to high.

We executed a third design, again based on an AE model. 
In this design, we included negative and positive g1 and g2 
values, which may be of interest given hypothetical negative 
causal effects (Table 5). In this design, the factors had one 
or three levels, e1 was specified as 

√

1 − a2
1
− c2

1
 and e2 as 

√

1 − a2
2
− c2

2
 , and the number of cells in the first design was 

44 = 256 (Tables 1 and 4). Although we focused on the df = 1 
tests throughout, we also report the df = 2 tests in Table S1 
for this design.

These factorial designs served to determine the contri-
butions of the various parameters to the statistical power 
to reject g1 = 0, g2 = 0, and g1 = g2 = 0. We selected param-
eter values such that the phenotypic twin correlations were 
reasonable (see Table 5) and the predictive strength of the 
instrument was plausible (Table 4 and S1). Specifically, 
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we found the highest power with positive b1, b3, g1, and 
g2 values and the lowest with lowest g1 and g2 values. 
Tables 2 and 3 show results of linear regression analyses 
in which we regressed the NCP on the parameter values. 
The R2 of each parameter reveals much of the variance in 
the statistical power is explained by that parameter. Thus, 
the contribution of each parameter to the statistical power 
changes can be quantified and compared.

Results

Power

Based on the simulation results, we identified the follow-
ing trends concerning the power to reject g1 = 0, g2 = 0 
and g1 = g2 = 0. First, the magnitude of the parameters b1 
and b3, i.e., the predictive strength of the genetic instru-
ments, are important to the power. This result can be seen 
in Tables 2 and 3 by considering the R2 values of b1 and 

Table 1   Parameter levels on 
the three factorial designs, with 
respective total number of cells 
for each design simulation

The model specification can be seen in Fig.  2. Also, e1 was specified as 
√

1 − a
2

1
− c

2

1
 and e2 as 

√

1 − a
2

2
− c

2

2
 . Table 4 exemplifies rows extracted from Design 3

θ Design 1 (ACE) Design 2 (AE) Design 3 (AE)

b1 
√

0.025 , 
√

0.05
√

0.025 , 
√

0.05,
√

0.075 −

√

0.075 , −
√

0.03 , 
√

0.03 , 
√

0.075

b3 
√

0.025 , 
√

0.05
√

0.025 , 
√

0.05 , 
√

0.075 −

√

0.075 , −
√

0.03 , 
√

0.03 , 
√

0.075

g1 
√

0.020 , 
√

0.05
√

0.020 , 
√

0.04 , 
√

0.06 −

√

0.050 , −
√

0.020 , 
√

0.050 , 
√

0.020

g2 
√

0.020 , 
√

0.05
√

0.020 , 
√

0.04 , 
√

0.06 −

√

0.050 , −
√

0.020 , 
√

0.050 , 
√

0.020

ra 0.25, 0.50 0.0, 0.25, 0.50 0.3
rc 0.25, 0.50 0 0
re 0.25, 0.50 0.0, 0.25, 0.50 0.3
rf 0.25, 0.50 0.0, 0.25, 0.50 0.3
a1 

√

0.10 , 
√

0.25
√

0.10 , 
√

0.25
√

0.5 
a2 

√

0.10 , 
√

0.25
√

0.10 , 
√

0.25
√

0.3 
c1 

√

0.10 , 
√

0.25 0 0

c2 
√

0.10 , 
√

0.25 0 0

Total cells 212 = 4096 37*22 = 8748 44 = 256

Table 2   Variance explained in statistical power (non-centrality 
parameter; NCP) by model parameters

Linear regression of NCP on the parameter values used for 4096 
power analyses in the ACE model

NCP ( �2)

g1 = 0 g2 = 0 g1 = g2 = 0

b1 0.365 0.000 0.181
g1 0.517 0.000 0.289
b3 0.000 0.365 0.181
g2 0.000 0.517 0.289
ra 0.000 0.000 0.000
rc 0.000 0.000 0.000
re 0.002 0.002 0.000
rf 0.041 0.041 0.000
a1 0.000 0.002 0.001
a2 0.002 0.000 0.001
c1 0.000 0.002 0.001
c2 0.002 0.000 0.001
Total R2 0.929 0.929 0.945

Table 3   Variance explained in statistical power (non-centrality 
parameter; NCP) by model parameters

Linear regression of NCP on the parameter values used for 8748 
power analyses in the AE model

NCP ( �2)

g1 = 0 g2 = 0 g1 = g2 = 0

b1 0.460 0.000 0.226
g1 0.402 0.000 0.222
b3 0.000 0.460 0.226
g2 0.000 0.402 0.222
ra 0.001 0.001 0.001
rc 0.000 0.000 0.000
re 0.009 0.009 0.001
rf 0.036 0.036 0.001
a1 0.000 0.003 0.002
a2 0.003 0.000 0.002
c1 0.000 0.000 0.000
c2 0.000 0.000 0.000
Total R2 0.911 0.911 0.902
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b3. Specifically, the PS regression coefficients, b1 and b3, 
explain around 46% of the variance in the NCP. The causal 
parameters g1 and g2 explain around 40% of the variance in 
the NCP in the AE models, Table 3. In practice, we found 
high power (> 0.8, alpha = 0.05, Nmz = Ndz = 1000) in a 
variety of situations with a range of positive and negative 
values for b1, b3, g1, and g2 (Table 4 and S1).

Based on design 2, we found that the correlation between 
the instruments (rf, Fig. 2) made little difference to the 
power, as is clear from the R2 in Tables 2 and 3. Also, we 
found that the background correlations, i.e., the ra, rc and 

re parameters, are relatively unimportant to the power in the 
present designs (Tables 2 and 3).

We performed two factorial design analyses (with and 
without C variance), because we wanted to assess how the 
presence of C variance would affect the power. In Table 2, 
which includes C variance, b1 and b3 explain 36% of the var-
iance of the NCP, which is less than the variance explained 
in the absence of C variance in the model (namely, 46% 
R2 in the AE model, Table 2). So, while we see that the 
parameters related to C have little influence on the power, 
the absence of C is beneficial. Needless to say, whether C 
can be omitted in practice will be dictated by the data.

Table 4   Exemplary b1, b3, g1 
and g2 values and the power for 
estimating g1

Based from the same factorial AE design presented in Table 3 and parameters set presented in Table 1. 
Highest power with extreme positive b1, b3, and g1 values. Lowest power with lowest g1 and g2 values. 
Ncpg1, non-centrality parameter for rejecting g1 = 0;powg1, power for rejecting g1 = 0; Ph2_Ph1, R2 of the 
regression of Ph2 on Ph1; PS1_Ph1, R2 of the regression of Ph1 on PS1; PS2_Ph2, R2 of the regression of 
Ph2 on PS2

b1 b3 g1 g2 rf Ph2_Ph1 PS1_Ph1 PS2_Ph2 ncpg1 powg1

0.075 0.075 0.06 0.06 0.00 0.214 0.066 0.066 15.97 0.979
0.075 0.025 0.06 0.02 0.00 0.140 0.068 0.023 15.97 0.979
0.075 0.075 0.06 0.02 0.00 0.138 0.068 0.066 15.97 0.979
0.075 0.050 0.06 0.04 0.00 0.180 0.067 0.045 15.97 0.979
0.075 0.075 0.06 0.04 0.00 0.180 0.067 0.066 15.97 0.979
0.025 0.050 0.06 0.02 0.00 0.334 0.022 0.040 4.71 0.583
0.025 0.075 0.06 0.06 0.00 0.417 0.020 0.059 4.71 0.583
0.075 0.025 0.02 0.02 0.25 0.126 0.070 0.026 4.70 0.582
0.025 0.050 0.02 0.02 0.50 0.465 0.025 0.045 1.13 0.186
0.025 0.050 0.02 0.04 0.50 0.508 0.026 0.045 1.13 0.186
0.025 0.075 0.02 0.02 0.50 0.463 0.026 0.065 1.13 0.186
0.025 0.025 0.02 0.06 0.50 0.539 0.024 0.024 1.13 0.186
0.025 0.075 0.02 0.04 0.50 0.506 0.027 0.065 1.13 0.186

Table 5   Model Identification

Configurations of fixed and free parameters that may identify the model in Fig. 2. Each row shows a com-
bination of fixed or free status for the parameters; the ID column indicates whether the model is locally 
identified. The text ‘fr’ indicates that the parameter is freely estimated, and ‘0’ denotes that the parameter is 
fixed to zero

ID Ph1 Ph2 a1 c1 e1 a2 c2 e2 ra rc re rf b1 b2 b3 b4 g1 g2

FULL 
 No fr fr fr fr fr fr fr fr fr fr fr fr fr fr fr fr fr fr
 No fr fr fr fr fr fr fr fr fr fr fr 0 fr fr fr fr fr fr
 Yes fr fr fr fr fr fr fr fr fr fr fr fr fr 0 fr 0 fr fr

C 
 No fr fr fr 0 fr fr 0 fr fr 0 fr fr fr fr fr fr fr fr
 Yes fr fr fr fr fr fr 0 fr fr 0 fr fr fr 0 fr 0 fr fr

E 
 Yes fr fr fr fr fr fr fr fr fr fr 0 fr fr fr fr 0 fr fr
 Yes fr fr fr fr fr fr fr fr fr fr 0 fr fr 0 fr fr fr fr
 No fr fr fr fr fr fr fr fr fr fr 0 fr fr fr fr fr fr fr

A 
 Yes fr fr 0 fr fr 0 fr fr 0 fr fr fr fr 0 fr 0 fr fr
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We found that differences in the variance components 
of Ph1 and Ph2 (i.e., differences in the parameters a1 vs. a2 
and c1 vs. c2) had little effect on the power. This result is at 
odds with traditional DoC models, in which the statistical 
power depends heavily on these differences (Gillespie et al. 
2003). Strikingly, in the present model, differences between 
the phenotypes in variance decomposition appear unimpor-
tant to the statistical power.

The present results were based on a linear regression 
of the NCPs on the parameters. We investigated possible 
non-linearity by including second order polynomials of the 
parameters. However, we found that the second order terms 
explained 7.1–8.9% of the variance in the NCPs (g1 = 0, 
Tables 2 and 3). From Tables 2 and 3 the R2 ranged from 
90.2% (NCP regressed on all other parameters) in the AE 
model to 94.5% in the ACE model.

In an attempt to put the power analyses in perspective 
to published results, we present the power curves for four 
realistic scenarios (Fig. 3). The factorial design was per-
formed with values for additive and shared genetic vari-
ances based on previous work (see below). The number of 

twin pairs required to achieve an 80% power of rejecting 
g1 = 0 is plotted against an increasing R2 for the instrument 
PS1 (path b1). Environmental variances were dependent 
on shared and additive genetic variances so that e1 was 
specified as 

√

1 − a2
1
− c2

1
 and e2 as 

√

1 − a2
2
− c2

2
 . Additive 

and shared variances were considered as follows: (A) alco-
hol use (a2 49%, c2 10%) (Verhulst et al. 2015) and heart 
disease (a2 22%, c2 0%) (Wu et al. 2014); (B) BMI (a2 
72%, c2 3%) (Rokholm et al. 2011) and major depression 
(a2 37%, c2 1%) (Scherrer et al. 2003); (C) cannabis use 
(a2 51%, c2 20%) (Verweij et al. 2010) and schizophrenia 
(a2 81%, c2 11%) (Sullivan et al. 2003); (D) dyslipidemia 
(LDL) (a2 60%, c2 28%) (Zhang et al. 2010) and again 
heart disease (a2 22%, c2 0%) (Wu et al. 2014) (Fig. 3). 
Figure 3 also includes vertical lines with previously meas-
ured estimations of four PSs: Smoking (Pasman et  al. 
2022), BMI (Furlong and Klimentidis 2020), LDL 
(Kuchenbaecker et al. 2019), and attention deficit hyper-
activity disorder (ADHD) (Demontis et al. 2019). Figure 3 
shows that the power to reject g1 = 0 is quite reasonable 

Fig. 3   Power curve across R² 
values for PS1. Parameters set for 
all groups b3 = g1 = g2 = 

√

0.05 , 
ra = 0.3; rc = 0.25; re = 0.3; rf = 
0.25; Environmental variances 
were dependent on shared and 
additive genetic variances: e1 was 
specified as 

√

1 − a
2

1
− c

2

1
 and e2 

as 
√

1 − a
2

2
− c

2

2
 . Additive and 

shared variances for the groups: 
(A) cannabis use (a2 51%, c2 
20%) (Verweij et al. 2010) and 
schizophrenia (a2 81%, c2 11%) 
(Sullivan et al. 2003); (B) BMI 
(a2 72%, c2 3%) (Rokholm et al. 
2011) and major depression (a2 
37%, c2 1%) (Scherrer et al. 
2003); (C) alcohol use (a2 49%, 
c2 10%) (Verhulst et al. 2015) 
and heart disease (a2 22%, c2 0%) 
(Wu et al. 2014); (D) dyslipi-
demia (LDL) (a2 60%, c2 28%) 
(Zhang et al. 2010) and heart 
disease (a2 22%, c2 0%) (Wu 
et al. 2014). Vertical lines were 
added to represent R2 for four 
PSs reported in recent papers: a, 
smoking (Pasman et al. 2022); b, 
BMI (Furlong and Klimentidis 
2020); c, LDL (Kuchenbaecker 
et al. 2019); d, attention deficit 
hyperactivity disorder (ADHD) 
(Demontis et al. 2019)
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and well within values that appeared in recent 
publications.

Discussion

We presented a new twin model based on the MR-DoC 
twin model (Minica et al. 2018), which we refer to as the 
MR-DoC2 model. Compared to the MR-DoC model, MR-
DoC2 model accommodates full confounding (originating 
in background A, C, and E effects) and bidirectional cau-
sality. The model can be used to investigate the bidirec-
tional causal interrelationship. As usual in twin studies, 
the 2 × 2 phenotypic covariance matrix was decomposed 
into A, C, and E covariance matrices. However, in addi-
tion, phenotypic reciprocal causal paths were specified, 
as well as paths from the PSs to phenotypes Ph1 and Ph2.

The MR-DoC2 is suitable for the study of bidirectional 
causality given A, C, and E confounding, whilst retaining 
reasonable statistical power. While we have assumed no 
direct effects of PS1 on Ph2 and PS2 on Ph1, PS1 is cor-
related with Ph2 and PS2 is correlated with Ph1. Given 
non-zero rf, the correlation between PS1 and PS2, PS1 is 
correlated with Ph2 via the rf path (see Fig. 2). The model 
is based on the assumption that there are no direct effects 
of the PS1 on the outcome Ph2 (and PS2 on Ph1), but there 
are indirect associations with Ph2 from PS1 via rf when 
rf does not equal zero. Pleiotropy also occurs though the 
causal feedback loop if both g1 and g2 are non-zero. As 
shown in Table 5, there are situations in which the paths 
b2 and b4 can be estimated, but these involve other con-
straints. For instance, either b2 or b4 (but not both) can be 
estimated if the unshared environmental correlation, re, 
is fixed to zero.

As expected, statistical power is higher when a larger 
proportion of phenotypic variance is explained by the 
genetic instruments, PS1 and PS2. This is encouraging, 
because the proportion of trait variance accounted for by 
SNPs is likely to increase with greater sample sizes and 
with improvements in the ability to test rare variants’ asso-
ciations with outcomes and their risk factors. We found 
the sign of the causal parameters (g1, g2) to be relevant 
to the power to reject g1 = 0 or g2 = 0. Negative values 
(g1 < 0, g2 < 0) or a combination of negative and positive 
values were associated with high power (Table S1). This 
result is consistent with one previously reported in multi-
variate twin studies (Evans and Duffy 2004), where power 
increases with negative genetic correlation.

In cross-sectional DoC modeling, the statistical power 
to discern direction of causation is greater when the phe-
notypes have different variance component proportions. 
That is to say, if the MZ and DZ correlations for exposure 
equal those for the outcome variable, the model will not 

be able to detect causal direction (Heath et al. 1993). How-
ever, in the present article we have shown that the addition 
of the PSs permit a larger range of genetic decomposition 
scenarios and these components (a1, c1, e1, a2, c2, e2) have 
little effect on the ability to detect causal directionality, 
which is a remarkable advantage over the original DoC 
model. More importantly, this model accommodates A, C, 
and E confounding, improving on previously noted limita-
tions of DoC models (Rasmussen et al. 2019).

We presented a model in which the background covari-
ance structure involved the same sources of variances, i.e., 
ACE or AE. It may happen that the phenotypes differ in this 
respect (e.g., ACE and ADE). This poses no problem with 
respect to model specification. This situation has the advan-
tage of allowing b2 or b4 to be estimated, because the back-
ground confounding is necessarily limited to A and E (i.e., 
ra and re). We did not pursue this here as the combination 
of ACE and ADE phenotypes seems somewhat uncommon, 
in part because of the sample size.

Another scenario that is worth noting is when one con-
siders a PS as an imperfect measure of the additive genetic 
liability, where rf asymptotically tends to ra. We did estab-
lish that a constraint ra = m*rf, with fixed m (e.g., m = 1), 
identified b2 or b4 (direct pleiotropic paths), but not both. 
If the relationship of ra and rf is of interest, a sensitivity 
analysis with varied values of the constant m can be set up to 
evaluate the effect on the causal estimates. In the case m = 1 
it is implied that ra = rf.

We note that in Tables 2 and 3, the R2 values did not sum 
to unity. However, the variances for b1, b3, g1, and g2 account 
for over 88% of the NCP variance, while the remainder are 
due to non-linear effects and interactions. We consider these 
to be too situation-specific and, therefore, of little interest in 
conducting a power analysis. All results are based on simu-
lations of 1000 MZs and 1000 DZs, however, the code is 
available in a repository (https://​github.​com/​lf-​araujo/​mr-​
doc2), so the reader can perform their own power calcula-
tions and include the number of observations that best suits 
their study.

In the standard DoC model, parameter estimates can be 
biased if the reliabilities of the two variables differ (Heath 
et al. 1993). Specifically, the bias in the causal parameters is 
towards the more reliable variable being the cause of the less 
reliable one. In additional simulations, we established that 
unmodeled measurement error (phenotypic reliabilities < 1) 
resulted in bias in the estimates of the parameters e1, e2, and 
re. While the power to reject g1 = 0 and/or g2 = 0 was lower 
in the presence of measurement error, the actual estimates 
of the causal parameters g1 and g2, and the estimates of the 
parameters b1 and b3 were unaffected by unmodeled meas-
urement error.

As seems inevitable when trying to establish causa-
tion in non-experimental settings, some assumptions 

https://github.com/lf-araujo/mr-doc2
https://github.com/lf-araujo/mr-doc2
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are necessary. It is important to emphasize that although 
the model incorporates (indirect) horizontal pleiotropy 
through rf*b3 or through rf*b1, the absence of the direct 
horizontal pleiotropy is a required assumption (i.e., the 
parameters b2 and b4 are zero). It represents a portion of 
the total horizontal pleiotropy (we assume that the total 
horizontal pleiotropy consists of rf*b3 + rf*b1 + b2 + b4). 
Violation of this assumption (b2 and b4 not equal 0) 
results in bias in the causal parameters g1 and g2 and in 
the parameters ra, rc, and re. Specifically, given b2 > 0 
and b4 > 0, the parameters g1 and g2 are overestimated as 
a consequence of fixing b2 = b4 = 0. This overestimation 
increases the false positive rate, i.e., the rate with which 
we incorrectly reject g1 = 0 and/or g2 = 0. Given b2 > 0 
and b4 > 0, the parameters ra, rc, and re  are underesti-
mated, as a consequence of the overestimation of g1 and 
g2. Furthermore, a mismatch between the phenotype in the 
GWAS that generated the PS and the phenotype used in 
MR-DOC2 could alter estimates. As the mismatch between 
the phenotypes in the discovery GWAS used to create the 
PRS and the MR-DoC2 phenotype increases, the b1 and 
b3 paths will become smaller, become weaker instruments, 
and potentially reduce power. The size of this effect was 
not pursued in this paper, and will depend on the nature 
of the mismatch.

The use of instrumental PS is common in Mendelian ran-
domization studies (Burgess et al. 2020; Dudbridge 2021). 
It has been shown that the use of a PS as an instrument is 
mathematically equivalent to a weighted mean of the results 
from individual SNPs (Dudbridge 2021). However, its use 
also comes with challenges. It plays the role of a stronger 
instrument, but it is also a composite of variants that may 
themselves have indirect or direct effects on the outcome. 
Therefore, using a PS increases the risk of (horizontal) plei-
otropy when compared to the use of a single variant. Note 
that the present model does account for several types of plei-
otropy already in the model. First, in Fig. 2, the parameter rf 
represents the correlation between the two PSs, which may 
partially account for a correlation between PS1 (the instru-
ment of Ph1) and Ph2. Second, the bidirectional causal paths 
(parameters between Ph1 and Ph2 also connect PS1 and Ph2 
and PS2 and Ph1. A useful feature of the MR-DoC2 model is 
the inclusion of non-shared (E) confounding (parameter re). 
The constraint re = 0 is considered a drawback of standard 
DoC models (Rasmussen et al. 2019), which also applied 
to the MRDoc model, as presented by Minica et al. (2018).

Multivariate, GxE and DoC approaches have been con-
sidered less practical because they require larger data sets 
to obtain accurate estimates of parameters relating two traits 
(Gillespie et al. 2003). More recently, however, the availabil-
ity of studies with very many participants have made these 
models practical to apply. We have shown that the MR-DoC2 
model has moderate power to test bidirectional causation, 

and therefore is suitable for a range of clinical applications. 
The next steps in model investigation will include extensions 
for longitudinal and multivariate data, to provide corrobora-
tion of potential causal pathways identified by this modeling.
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