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Abstract
Paclitaxel (PTX) is a frequently used anticancer drug that causes peripheral neuropathy. Transient receptor potential ankyrin 
1 (TRPA1), a plasma membrane calcium channel, has been associated with PTX toxicity and with other chemotherapy 
agents such as oxaliplatin and vincristine. However, the effect of PTX on the functional expression and calcium currents of 
TRPA1 has not been determined. The present study shows the effect of PTX on TRPA1 activity in a neuronal cell line (SH-
SY5Y). The effect of PTX on the expression of TRPA1 was assessed through quantitative PCR and Western blot analyses 
to determine the relative mRNA and protein expression levels. To assess the effect on calcium flux and currents, cells were 
exposed to PTX; simultaneously, a specific agonist and antagonist of TRPA1 were added to evaluate the differential response 
in exposed versus control cells. To assess the effect of PKA, PKC and PI3K on PTX-induced TRPA1 increased activity, 
selective inhibitors were added to these previous experiments. PTX increased the mRNA and protein expression of TRPA1 
as well as the TRPA1-mediated Ca2+ currents and intracellular Ca2+ concentrations. This effect was dependent on AITC 
(a selective specific agonist) and was abolished with HC-030031 (a selective specific antagonist). The inhibition of PKA 
and PKC reduced the effect of PTX on the functional expression of TRPA1, whereas the inhibition of PI3K had no effects. 
PTX-induced neuropathy involves TRPA1 activity through an increase in functional expression and is regulated by PKA 
and PKC signaling. These findings support the role of the TRPA1 channel in the mechanisms altered by PTX, which can be 
involved in the process that lead to chemotherapy-induced neuropathy.

Keywords  Transient receptor potential A1 channel · Calcium transients · Chemotherapy-induced peripheral neuropathy · 
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Introduction

Paclitaxel (PTX) is an antineoplastic and cytotoxic agent 
that exhibits high efficiency in treating ovarian, breast and 
lung cancers [1] by affecting the polymerization of micro-
tubules in the cytoplasm and, thus, axonal transport [2]. 
PTX is associated with nervous system disorders includ-
ing neuropathic pain, peripheral neuropathy [3, 4], acute 
pain syndrome [5, 6] and cognitive impairment [7]; these 
side effects are mostly dose-dependent, have a prevalence 
between 44 and 98% [8, 9] and cause frustration and dis-
ability in patients [10]. It is well known that the mechanism 

by which PTX causes peripheral neurotoxicity is different 
from its therapeutic action [2]. Although the exact under-
lying mechanisms are not well known, processes such as 
mitochondrial dysfunction, oxidative stress, inflammation 
and transient receptor potential (TRP) channel hyperactivity 
have been reported to be involved [11]. Furthermore, PTX-
induced central neurotoxicity is associated with microtubule 
dysfunction, impaired neurogenesis, neuroinflammation, and 
apoptosis [11]. Altered intracellular Ca2+ signaling is a com-
mon factor among the molecular mechanisms involved in 
neurotoxicity [12].

Different preclinical models have shown the involvement 
of transient receptor potential ankyrin 1 (TRPA1) channels in 
cancer pain [13, 14] and chemotherapy-induced neuropathic 
pain [15–17]. TRPA1 is a homo or heterotetrameric nonselec-
tive cation channel that is mainly permeable to calcium (Ca2+) 
[18]. TRPA1 is mainly expressed in small-diameter C or A 
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delta-fibers of sensory neurons, such as dorsal root ganglion 
(DRG) [19] and trigeminal neurons [20], and it sometimes 
coexpressed with TRPV1 channels [21]. Additionally, TRPA1 
expression and function have been demonstrated in the rodent 
spinal dorsal horn and somatosensory cortex [22, 23]. The 
primary function of TRPA1 is to be a nociceptive sensor of 
various chemical compounds, which are also involved in ther-
mosensation and mechanotransduction [24, 25]. The TRPA1 
channel is activated by allyl isothiocyanate (AITC) [26] and 
inhibited by selective antagonists such as HC-030031 (HC-
030) [17] and A-967079 [27]. Given its sensitivity to vari-
ous compounds and stimuli, TRPA1 is involved in different 
physiological responses such as pain [17], itching [28], and 
inflammation [29].

Several studies have demonstrated the participation of 
TRPA1 channels in chemotherapy-induced peripheral neu-
rotoxicity (CIPN). Antagonism of TRPA1 produces an 
antinociceptive effect in rodent models of cancer pain [13, 
14]. Moreover, activation of TRPA1 in cancer pain models 
increases production of hydrogen peroxide (H2O2), which 
maintains TRPA1 activation/sensitization and these H2O2 
levels may be caused by an augmented activity of NADPH 
oxidase and superoxide dismutase as well [14]. Although it has 
been reported that ROS are associated with CIPN, a specific 
receptor gated by reactive compounds involved in cancer pain 
remains unknown [30]. Early treatment with TRPA1 inhibitors 
prevents the mediation of CIPN mediated by oxidative stress 
byproducts, including those generated by PTX [17].

PTX treatment generates activation of Toll-like receptor 
4 (TLR4) [31–33], leading to the release of tumor necrosis 
factor-α (TNF- α) from satellite glial cells in the DRG, which 
increases the expression of TRPA1 channels in these neurons 
[31]. In contrast, chronic exposure of DRG cultures to PTX 
inhibits calcitonin gene-related peptide (CGRP) release medi-
ated by TRPA1 agonists [34]. In the PTX-induced neuropathic 
pain model, TRPA1 channels are regulated by phosphoryla-
tion through proteinase-activated receptor 2 (PAR2) activa-
tion [15]. Inhibition of TRPA1 channels reduces cold and 
mechanical allodynia induced by PTX, which involves reac-
tive oxygen species (ROS) formation [16]. Thus, ROS activate 
TRPA1 channels to increase the excitability of spinal dorsal 
horn neurons [35].

In the present study, we investigated the effects of PTX on 
TRPA1 channel expression and function in human neuroblas-
toma cells as a neuronal model for PTX-induced neurotoxicity.

Methods

Chemicals and Reagents

All chemicals and solutions were obtained from Sigma-
Aldrich (St. Louis, MO, USA), unless otherwise stated. 

PTX, Fura-2-AM, AITC, HC-030, H89 and wortmannin 
were dissolved in DMSO as stock solutions (0.01–1 M). 
Chelerythrine was dissolved and stored in sterile water.

Culture of Human Neuroblastoma Cells

SH-SY5Y cells were obtained from the European Collection 
of Authenticated Cell Cultures (ECACC), were cultured in 
DMEM/F12 medium (1:1, v/v; Gibco-Invitrogen) supple-
mented with 10% fetal bovine serum, 100 U/ml penicillin, 
and 100 µg/ml streptomycin. Cultured cells were maintained 
at 37 °C in a 95% humidified atmosphere with 5% CO2. The 
culture medium was changed every other day. The morpho-
logical characteristics were monitored to assure the differen-
tiation of the cells. When cell confluence reached 80%, cells 
were detached by TripLE Express (1X) and seeded in 6-well 
and 96-well plates based on the experimental requirements. 
The cells were employed in the subsequent experiments 
without any additional treatment.

Quantitative RT‑PCR

For detection of the human TRPA1 gene, total RNA from 
cell cultures was extracted with an RNeasy Mini Kit based 
on the manufacturer's protocol and quantified using a Multis-
kan TM Microplate Spectrophotometer (Thermo Scientific). 
The expression was assessed using the respective probes for 
TRPA1 (Hs00175798_m1) and for β-actin (Hs01060665_
g1). PCR was performed with the TaqMan® RNA-to-CT 
TM 1-Step Kit based on the manufacturer’s protocol. The 
following thermocycler protocol was applied: initial dena-
turation at − 50 °C (30 min) and 95 °C (15 min) followed by 
40 cycles of 95 °C (15 s) and 60 °C (60 s). The fluorescence 
was obtained for each amplification cycle and the data were 
analyzed using the 2−ΔΔCt method for the relative quantifica-
tion of expression.

Western Blotting

Cells were seeded in 6-well plates at a density of 2 × 106 
cells/well. After reaching 80% confluence, cells were washed 
with ice-cold PBS, harvested in Pierce™ RIPA Lysis Buffer 
(Thermo Scientific) and scraped off. The lysate was cen-
trifuged at 14,000×g for 30 min at 4 °C. The supernatant 
was collected, and the protein concentration was determined 
using a Pierce™ BCA Protein Assay Kit (Thermo Scien-
tific). Cell lysates containing 20 µg of protein were sepa-
rated by SDS-PAGE followed by electrophoretic transfer 
onto PVDF membranes. Membranes were blocked in 5% fat 
free milk in PBS containing 0.05% Tween 20. Membranes 
were then incubated with the following primary antibod-
ies overnight at 4 °C: anti-TRPA1 (NB110-40763SS Novus 
BIOLOGICALS) and anti-β-actin (MA1-140 Thermo Fisher 
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Scientific). After incubation with anti-rabbit IgG, HRP-
linked antibody (Cell Siganling, ref: 7074S) for 2 h at room 
temperature, the bands were visualized by a ChemiDoc™ 
MP system (Bio-Rad Laboratories, Inc, USA).

Electrophysiological Recordings

The whole-cell patch clamp technique was used to record 
the membrane currents (voltage clamp) and membrane 
potential (current clamp) in cultured SH-SY5Y cells. Cells 
were placed in a recording chamber attached to an inverted 
microscope (Nikon, Tokyo, Japan). Patch pipettes (Clark 
PG150T glass, Harvard Apparatus Ltd, Edenbridge, Kent, 
UK) were pulled and polished (P-97, Sutter Instrument, 
Novato, CA, USA) to resistances of 5–10 MΩ. After a seal 
of resistance greater than 5 GΩ was obtained, membrane 
currents were recorded using an Axopatch 200B amplifier 
with a CV203BU headstage (Axon Instruments Inc., Union 
City, CA, USA). Voltage clamp signals were generated by 
a Digidata 1440A interface (Axon Instruments Inc.). Mem-
brane currents were filtered at 2 kHz and digitized at a sam-
pling rate of 10 kHz. The signals were acquired and analyzed 
using pCLAMP 10.0 (Axon Instruments Inc.). At the begin-
ning of each experiment, the junction potential between the 
pipette solution and bath solution was electronically adjusted 
to zero. The macroscopic current values were normalized 
as pA/pF.

Single TRPA1 channel activity was investigated using 
inside-out patch clamp recordings [36]. Single channel uni-
tary current (i) was determined from the best fit Gaussian 
distribution of amplitude histograms. Channel activity was 
analyzed using the following equation: NPo = I/i, where I is 
the mean total current in a patch and i is the unitary current 
at this voltage. Where appropriate, open probability (Po) was 
calculated by normalizing NPo to the total number of esti-
mated active channels (N) in the patch. To increase accuracy 
in the measurement of Po, only patches containing fewer than 
three channels were used. All experiments were performed 
at room temperature (20 °C).

The standard external solution contained (mM) 30 NaCl, 
4 KCl, 2 CaCl2, 1 MgCl2, 10 HEPES, 10 glucose and 180 
mannitol with the pH adjusted to 7.4 at 25 °C using 1 M 
NaOH. The standard pipette solution contained (mM) 25 
KCl, 5 K-gluconate, 5 NaCl, 4 CaCl2, 4 MgCl2, 10 HEPES, 5 
glucose, 20 BAPTA and 180 mannitol with the pH adjusted 
to 7.1 at 25 °C using 1 M NaOH. The osmolarity of these 
solutions was adjusted to 290 mOsm/L using 5 M mannitol. 
The free Ca2+ concentration was estimated using ‘Maxchela-
tor’ software (Dr C. Patton, Stanford University) and a value 
of 102 nM was derived for the intrapipette solution using 
this software. In the Na+-free solutions, Na+ was replaced 
with NMDG+ in equimolar concentrations. EGTA (1 mM) 
was added to the Ca2+-free solutions to chelate contaminant 

traces of this ion. For the Cl−-free intrapipette solutions, 
NaCl and KCl were replaced by Na-gluconate and K-glu-
conate, respectively. The osmolarities of all solutions were 
measured using an Advanced Model 3320 Micro-Osmome-
ter (Advanced Instruments, Norwood MA, USA). The solu-
tions were switched using the cFlow V2.x flow controller 
(Cell Microcontrols, Norfolk, VA, USA).

Measurement of Intracellular Calcium Concentration 
Ca2+

Before exposure to PTX, AITC, and HC-030, cultured 
SH-SY5Y cells were loaded with Fura-2-AM (5 µmol/L) 
by incubation in HBS (mM, 145 NaCl, 5 KCl, 2 CaCl2, 
15 HEPES and 10 glucose with the pH adjusted to 7.4 at 
25 °C using 1 M NaOH) for 30 min at 20 °C, followed by 
15 min at 37 °C. The cell suspension was then centrifuged, 
and cells were resuspended in the appropriate experimental 
medium before being transferred to a cuvette. Fluorometer 
measurements were made for 300 s at 37 °C with magnetic 
stirring (FP-6500 spectrophotometer, Jasco, Tokyo, Japan) 
during the measurements. The dye was alternately excited 
at 380 nm and 340 nm, and the fluorescence emission was 
measured at 510 nm. The 380 nm/340 nm signal ratio was 
calibrated before every experiment using a previous method 
[37]. Briefly, the fluorescence ratio was measured in HBS 
without CaCl2 and supplemented with EGTA (1 mmol/L) 
as well as in a 2 mmol/L Ca2+ HBS supplemented with 
ionomycin (300 nmol/L), a concentration of Ca2+ at which 
Fura-2 is saturated. Maximal and minimal ratios (Rmax and 
Rmin) were obtained under these two conditions, and the 
[Ca2+]i values were derived using the following equation:

where Kd is the dissociation constant for Fura-2 
(224 nmol/L), R is the experimentally measured ratio; Sf2 
is the fluorescence measured at 380 nm under Ca2+-free con-
ditions; and Sb2 is the fluorescence measured at 380 nm with 
saturating Ca2+ (2 mmol/L).

Statistical Analysis

Data analysis was performed using the analysis tools avail-
able in pCLAMP 10.0 software and in GraphPad Prism 9.0. 
The results are shown as the mean ± standard error of the 
mean [38], where n is the number of cells tested. Each exper-
imental observation was repeated in at least six different 
cells. An unpaired Student´s t-test analysis was performed, 
when it was suitable; otherwise, the corresponding nonpara-
metric test was used. All statistical tests were performed 
with two-tailed tests and a p value < 0.05 was considered 
significant.
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Results

Expression of TRPA1 and Effects of PTX on Protein 
Levels

To determine the functional expression of the TRPA1 
gene, qPCR and Western blotting (WB) experiments were 
performed in SH-SY5Y cells in the presence and absence 
of PTX (1 µM). In qPCR experiments, PTX significantly 
increased the relative expression of TRPA1 by 1.55-fold 
(n = 3, p = 0.028). In WB experiments, the expression of 
TRPA1 was confirmed by the identification of a band at 
127 kDa, as expected for TRPA1 in other cell types, under 
basal conditions. The expression of β-actin was used as a 
control. After PTX pretreatment for 6 h, the TRPA1 pro-
tein levels significantly increased compared to the control 
group (Fig. 1).

Effects of PTX on TRPA1 Currents

Using the whole-cell patch clamp technique, a descending 
ramp protocol was applied, in which the membrane potential 
was stepped from a − 60 mV holding potential to + 100 mV 
for 100 ms and then ramped to − 100 mV over 2 s. Stimula-
tion with AITC (300 µM), a potent TRPA1 agonist, elicited a 
predominantly inward current, which exhibited outward rec-
tification. The current was decreased by the specific inhibitor 
HC-030031 (HC030, 50 µM), which confirmed that it was a 
TRPA1-mediated current (Fig. 2).

To assess the acute effect of PTX on the TRPA1 cur-
rent, PTX (1 µM) was added to the extracellular solution 
before the ramp protocol in the presence of AITC and the 
current–voltage relationships were derived. After 1-min 
exposure, PTX increased the magnitudes of the inward and 
outward current densities compared to control cells. The 
effect of PTX on the AITC-induced current was reversed 
when it was washed out from the extracellular solution. 
When cells were treated with PTX only, this drug failed to 
elicit any electrophysiological change indicating that the 
effect of PTX occurred only on the open channel.

To evaluate the role of protein kinase A (PKA), protein 
kinase C (PKC) and phosphoinositide 3-kinase (PI3K), a 
specific inhibitor of each kinase was added to the extracel-
lular solution after the administration of PTX and activation 
of AITC-induced current. The inhibition of PKA (10 µM 
H89, a selective PKA inhibitor) and PKC (10 µM cheler-
ythrine, a selective PKC inhibitor), decreased the magni-
tudes of the inward and outward current densities compared 
to PTX-stimulated cells, and the inhibition of PI3K (1 µM 
wortmannin, a selective inhibitor at this concentration) did 
not elicit changes in the current densities (Fig. 5A and B).

To determine the direct effects of PTX on the TRPA1 cur-
rent, we recorded ionic currents with inside-out configura-
tions from SH-SY5Y cells, assessing the effect at − 60 mV. 
Before recording the currents, PTX (1 µM) was added to 
the extracellular solution followed by the addition of AITC, 
and the Po and current–voltage relationships were derived. 
PTX significantly increased TRPA1 Po and the inward and 
outward conductances (Fig. 3).

Effects of PTX on TRPA1‑Mediated Ca2+ Increase

We first measured changes in [Ca2+]i following the AITC 
treatment of SH-SY5Y cells. AITC evoked a significant 
concentration-dependent increase in intracellular calcium 
in these cells (Fig. 4). To verify that the observed increase 
in [Ca2+]i was mediated by TRPA1, we treated SH-SY5Y 
cells with AITC in the presence of HC-030. In these experi-
ments, AITC completely failed to evoke an increase in 
[Ca2+]i, confirming TRPA1 as the pathway responsible for 
Ca2+. To test the hypothesis that PTX activates the TRPA1 
channel, we evaluated the ability of PTX (1 µM) to evoke 
Ca2+ responses in cultured SH-SY5Y cells (Fig. 4). The 
AITC-induced Ca2+ increase was enhanced by PTX. Addi-
tionally, we explored the effect of kinase inhibition on the 
TRPA1- Ca2+ flux increased by PTX. The inhibition of PKA 
(10 µM H89) or PKC (10 µM chelerythrine) attenuated the 
effect of PTX on AITC-induced Ca2+, and the inhibition of 

Fig. 1   A Representative Western blot showing the expression of 
TRPA1 protein in SH-SY5Y cells under basal conditions and fol-
lowing a 6-h PTX treatment. Human β-actin was used as a control. 
Note the different protein levels in both conditions. B Comparative 
levels of TRPA1 expression in SH-SY5Y cells normalized to lev-
els of β-actin expression (n = 5). *Denotes a significant increase 
(p = 0.0001) compared to the control
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PI3K (1 µM wortmannin) did not modify the PTX effects 
on TRPA1 (Fig. 5C).

Discussion

The present study provides evidence for the expression and 
regulation of TRPA1 channels by PTX in SH-SY5Y cells. 
These effects may help to understand the underlying mecha-
nism by which PTX induces neurotoxicity and subsequent 
neuropathy.

The expression of TRPA1 channels is mainly observed 
in sensory neurons from the DRG, as well as trigeminal and 
nodose ganglia [19]. In addition, TRPA1 channel expres-
sion in large cortical vessels [39], cerebral cortex [23], and 
hippocampus [40] has been reported. In the present study, 

we demonstrated the expression of TRPA1 channels at both 
the gene and protein levels in SH-SY5Y cells. Previously, 
TRPA1 activity has been reported in these cells [36], but 
TRPA1 expression was not evaluated.

The present study found that PTX increased [Ca2+]i via 
TRPA1 activation in SH-SY5Y cells and that PTX increased 
TRPA1 expression. Therefore, these data suggested that 
TRPA1 expression and function are affected by PTX and 
interaction with PKA and PKC, and lead to propose com-
plex calcium-mediated neurotoxicity with a convergence of 
kinase activation as the mechanism for TRPA1 modulation 
by phosphorylation [41].

In the PTX-induced peripheral neuropathy (PIPN) model, 
the TRPA1 channel is regulated by PKA and/or PKC phos-
phorylation through PAR2 cleavage and activation; the latter 
is mediated by the release of tryptase, which ends in CIPN 

Fig. 2   A Typical I-V recording of the current obtained in a SH-
SY5Y cell, elicited by a ramp protocol from − 100 mV to + 100 mV 
and activated by AITC in control conditions and the presence of 
PTX and HC-030. B Typical I–V relationship of the AITC-induced 
current in SH-SY5Y cells in control conditions and the presence of 
PTX and HC-030. *Denotes significant differences. C Typical cur-

rent (I) recording at − 60 mV in the presence of AITC, AITC + PTX 
and AITC + PTX + HC030, as indicated. D Comparison between the 
mean maximal normalized current recorded at − 60 mV and + 60 mV 
under the same conditions. n = 8 in all cases. *Denotes significance 
(p = 0.02)
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Fig. 3   Recordings of single-channel activity and corresponding 
amplitude histogram of single-channel currents measured at − 60 mV 
in inside-out patches from SH- SY5Y cells under basal conditions 
(A), in the presence of AITC (B), and in the presence of AITC and 
PTX (C). D Comparison of the mean open probability (Po) in 8 dif-
ferent patches in the conditions described in A–C, as indicated. 
*Denotes significant increase (p = 0.01) in comparison to basal con-

ditions. **Denotes a significant increase (p = 0.01) in comparison to 
the control. E Comparison of the mean inward and outward conduct-
ances in 8 different patches in the conditions described in A–C, as 
indicated. Conductances were calculated from linear regressions of 
the corresponding I–V relationships. *Denotes significant increase 
(p = 0.01) in comparison to inward current control or to outward cur-
rent control

Fig. 4   A Representative recordings of intracellular Ca2+ concen-
tration in Fura-2-loaded SH-SY5Y cells under steady-state condi-
tions and following AITC treatment in the presence of PTX and 
PTX + HC-030. Fluorescence was recorded for 150 s. The arrow indi-
cates the moment in which AITC was added to the external solution. 

B Comparison between the mean maximal AITC-induced intracel-
lular Ca2+ increase percentage in Fura-2-loaded SH-SY5Y cells, in 
the presence of PTX and PTX + HC-030. n is indicated in each case. 
*Denotes a significant decrease (p = 0.01) in comparison to the con-
trol
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and is characterized by mechanical, heat, and cold hypersen-
sitivity [15]. In vivo studies have shown that inhibition of 
PKA activity reduces mechanical and thermal hyperalgesia 
induced by PTX [15, 42]. CIPN is associated with increased 
TRPA1 activity, a mechanism mediated by PKA. This 

regulatory mechanism of TRPA1 has been demonstrated in 
different models of neuropathic pain. For instance, endothe-
lin 1 produces sensitization of TRPA1 channels via PKA 
activation in DRG neurons [43]. Furthermore, TRPA1 cur-
rents and membrane translocation are increased upon noci-
ceptive signals in these cells, a process regulated by PKA 
and phospholipase C (PLC) signaling pathways [44, 45]. 
PKC is associated with mechanical hyperalgesia induced 
by PTX in an acute and chronic PIPN model [42]; and PKC 
is linked to neuropathic pain induced by vincristine [46]. 
Independently, G-protein coupled receptors (GPCRs), such 
as the B1 kinin receptor, has been shown to regulate TRPA1 
in nociceptive transmission in the spinal cord, and inhibition 
of B1 decreases TRPA1 activity [42]. This effect has been 
demonstrated with other GPCRs of the bradykinin family 
(PAR2, PAR4, B1, and B2) that involve the PLC and PKC 
signaling pathways. Apparently, TRPA1 serves as an inte-
grator of inflammatory signaling secondary to the activation 
of GPCRs [47, 48]. PTX treatment involves the induction 
of oxidative stress, specifically the accumulation of H2O2 
[36], thereby releasing and the CGRP sensory neuropeptide 
[19]. Furthermore, inhibition of TRPA1 channels reduced 
cold and mechanical allodynia induced by PTX [19], which 
suggests a strong interaction of PTX and kinase signaling, 
thus involving TRPA1 activity in the mechanisms of inflam-
matory pain [41, 49].

It is well known that PTX produces an alteration in 
[Ca2+]i in central and peripheral models of neurotoxicity. 
For instance, PTX induces axonal degeneration by reducing 
the expression of the antiapoptotic protein Bcl-2, thereby 
altering inositol trisphosphate receptor (IP3R) activity, 
and intracellular Ca2+ homeostasis [50]. Furthermore, the 
microtubule stabilization effect induced by PTX prevents 
the association of stromal interaction molecule 1 (STIM1) 
with Orai1 and TRPC channels [51], which are essential 
mediators of store-operated Ca2+ entry (SOCE). Interest-
ingly, TRPA1 channels prevent the STIM1/Orai1 associa-
tion, leading to SOCE attenuation [52]. Apparently, SOCE 
alterations mediated by TRPA1 channels and/or microtu-
bule stabilization are mechanisms involved in PTX-induced 
neurotoxicity.

PTX increases the binding capacity of neuronal Ca2+ 
sensor-1 (NCS-1) to IP3R, a Ca2+ channel expressed in 
the endoplasmic reticulum, inducing the release of Ca2+ 
from intracellular stores and increasing [Ca2+]i which then 
activates calpain, a Ca2+-dependent protease [53, 54]. The 
activation of calpain leads to the degradation of NCS-1 
and the subsequent decrease in intracellular Ca2+ [54, 55]. 
This initial increase in [Ca2+]i can be further enhanced via 
TRP channels, such as TRPA1. Similar to DRG neurons 
[31, 56], we found that PTX treatment upregulated TRPA1 
expression in SH SY5Y cells, as evidenced by WB and 
RT-PCR analyses. We hypothesized that PTX produces 

Fig. 5   A Typical current (I) recording at − 60 mV in the presence of 
AITC + PTX and H89, chelerythrine (CHE) or wortmannin (WOR), 
as indicated. B Comparison between the mean maximal normalized 
current recorded at − 60 mV and + 60 mV under the same conditions 
described in A. n = 8 in all cases C. Comparison between the mean 
maximal intracellular Ca2+ increase percentage in Fura-2-loaded SH-
SY5Y cells, in the presence of PTX + AITC under the same condi-
tions described in A and B. n is indicated in each case. *Denotes a 
significant decrease (p = 0.01) in comparison to the control
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an increase in TRPV4 and TRPA1 channel expression 
and activity as a potentiating mechanism to maintain the 
[Ca2+]i elevation previously generated by IP3R, and proba-
bly SOCE disruption, leading to Ca2+-dependent protease-
induced cell death and neuronal damage. Further studies 
need to be conducted to test this hypothesis.

PTX increased TRPA1 currents and calcium influx 
in SH-SY5Y cells, as evidenced by conductance and Po 
enhancement of the channel. Remarkably, these effects 
were exerted only in the presence of AITC, a specific 
TRPA1 agonist, indicating that the opening of the chan-
nel is required for the PTX effect. In addition, the chemo-
therapeutic agent modified TRPA1 permeability as dem-
onstrated by the changes in the magnitude of conductance. 
These results demonstrated that the neurotoxic effects of 
PTX share similar characteristics on some TRP chan-
nels and the interaction among them needs to be further 
characterized. The present study demonstrated that PTX 
increased TRPA1 channel expression and activity in SH-
SY5Y cells, which may support the role of TRPA1 chan-
nels in the mechanism involved in PTX-induced peripheral 
neurotoxicity. This evidence suggests a promising field to 
evaluate the clinical effectiveness of TRPA1 antagonism in 
preventing or treating PIPN. However, preclinical models 
and phase 1 studies involving TRPA1 antagonists alone or 
in combination with other TRPA1 modulators should be 
addressed to assess the feasibility of this approach. 
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