Skip to main content
. 2022 Dec 27;23(1):297. doi: 10.3390/s23010297
Algorithm 1 Learning Rate Update Algorithm
  • 1. 

    Input: Learning rate lr; minimum learning rate min_lr; initial learning rate init_lr; maximum number of iterations τ; warm-up iterations τ *

  • 2. 

    β = 1

  • 3. 

    while Termination conditions are not met, do

  • 4. 

    if β < τ *

  • 5. 

     One-dimensional linear interpolation g = [0,τ *]

  • 6. 

     Update lr = g

  • 7. 

     β = τ *

  • 8. 

     else

  • 9. 

     Update lr = min_lr + (init_lr-min_lr)*((1 + cos(πβτ))/2)

  • 10. 

     end if

  • 11. 

     β = β + 1

  • 12. 

     end while

  • 13. 

    Output: Update learning rate lr *