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Abstract: Biological sex and aging impact obesity development and type 2 diabetes, changing the
secretion of leptin and adiponectin. The balance between these factors has been propounded as a
reliable biomarker of adipose tissue dysfunction. Our proposal was to study sexual differences and
aging on the adiponectin/leptin (Adpn/Lep) ratio in order to acquire a broader view of the impact of
consuming an high-fat diet (HFD) on energy metabolism according to sex and age. Male and female
C57BL/6J mice were fed a normal chow diet or an HFD for 12 or 32 weeks (n = 7–10 per group) and
evolution of body weight, food intake and metabolic profile were registered. The HFD triggered an
increase in body weight (p < 0.001), body weight gain (p < 0.01) and adiposity index (p < 0.01) in
both sexes at 32 weeks of age, but female mice fed the HFD exhibited these changes to a significantly
lower extent than males. Aged female mice showed an increase (p < 0.01) in the Adpn/Lep ratio,
which was negatively correlated with body weight gain, changes in different fat depots and insulin
resistance. Females were more metabolically protected from obesity development and its related
comorbidities than males regardless of age, making the Adpn/Lep ratio a relevant factor for body
composition and glucose metabolism.
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1. Introduction

Type 2 diabetes (T2D) prevalence is growing worldwide concomitantly with obesity,
emerging as a global international public health issue [1–3]. Obesity is a complex, multifac-
torial and preventable disease; the most relevant factors that influence energy homeostasis
are increased food intake, decreased energy expenditure, fat accumulation and nutrient
absorption [4]. Dietary fat induces obesity and its related comorbidities in both humans
and mice [5]. The distribution of adipose tissue (AT) differs substantially depending on
biological sex, thereby exerting an influence on the development and pathogenesis of
these metabolic diseases. Epidemiological studies have reported relevant sex differences
in insulin resistance incidence, and T2D has a much higher prevalence in men than in
women [6,7].

The C57BL/6 J inbred strain of laboratory mouse is considered a particularly good an-
imal model for mimicking human metabolic disorders since these rodents develop obesity,
hyperinsulinemia, hyperglycemia and hypertension when allowed ad libitum access to an
high-fat diet (HFD) [8]. Male mice resemble humans in that they are more susceptible to
diet-induced obesity (DIO) and exhibit lower insulin sensitivity than female mice, whereas
females are more likely to be protected from the development of these pathologies [9–11].
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However, the underlying mechanisms that drive this sexual dimorphism in metabolism
have not yet been elucidated.

Obesity is also associated with a state of chronic low-grade inflammation with immune
cell infiltration in AT. Immunophenotype alterations derived from aging constitute an
important contributory factor to the pathogenesis of the metabolic disorders of obesity, most
notably insulin resistance, steatosis, and generalized dyslipidemia. Healthy or young AT
exhibits an adequate metabolic response, with the infiltrated immune cells being responsible
for maintaining homeostasis through the secretion of anti-inflammatory cytokines. The
proinflammatory immune cells present in obese or aged AT promote its dysfunction,
contributing to the development of insulin resistance [12].

Both biological sex and aging change the secretion of hormones and cytokines related
to energy metabolism, including leptin, adiponectin or insulin, contributing to the develop-
ment of obesity-related diseases. In this sense, adiponectin and leptin have a shared origin,
as they are mainly secreted by adipocytes in white AT (WAT), but their activities are quite
different. Adiponectin possesses insulin-sensitizing, anti-inflammatory and antiatherogenic
properties and its plasma levels are negatively associated with percent body fat and insulin.
Leptin is principally responsible for the regulation of feeding behavior and energy balance
as it is involved in physiological functions that include hematopoiesis, angiogenesis and
reproduction, among others; it is produced in proportion to body fat stores [13–15]. The
balance between these AT- derived factors, the adiponectin/leptin (Adpn/Lep) ratio, has
been proposed as a reliable biomarker of the AT dysfunction and inflammation, corre-
sponding more closely with insulin resistance than adiponectin and leptin separately and
decreasing with the augmented number of metabolic risk factors [16,17]. Both sex and
age differences impact biological processes, but it is not yet known the extent to which
the aging-related increase in AT and the simultaneous effect of sex in a model of DIO pro-
motes metabolic homeostasis alterations. In this sense, although the association between
aging and increased prevalence of T2D has long been recognized [18,19], the potential
contribution of sex-dependent mechanisms to aging-associated insulin resistance remains
unexplored. We hypothesized that females are more likely to be protected from developing
obesity and its related comorbidities with aging than males, with the Adpn/Lep ratio
constituting a significant factor as well as a relevant marker of metabolism. To that end,
we analyzed the effect of aging and sexual differences on the Adpn/Lep ratio in order to
gain a broader view of AT function according to sex and age. We have compared cohorts
of male and female C57BL/6J mice under standard chow diet and HFD conditions for 12
or 32 weeks to observe the effect of both variables together with the impact of an HFD on
energy homeostasis.

2. Materials and Methods
2.1. Experimental Animals

Male and female C57BL/6J mice pups were weaned between 21 and 23 days of age,
housed (2–3 animals per cage) and maintained at room temperature (22 ± 2 ◦C), with
a relative humidity (50 ± 10%), artificial light–dark cycle (lights on from 8:00 am) and
under pathogen-free conditions. The mature adult mice ranged in age from 3 to 6 months
(12 to 24 weeks), so they were not yet affected by senescence. After six months, mice
are considered middle aged and some age-related changes may be present [20]. For this
purpose, a cohort of male and female mice aged 12 weeks (“mature”) and 32 weeks (“aged”)
were selected. Animals had free access to tap water and were fed ad libitum either a normal
diet (ND) (2014S Teklad Global 14% Protein Rodent Maintenance Diet, Harlan, Barcelona,
Spain) or an HFD (D12451 Research Diets, Inc., New Brunswick, NJ, USA, 45% kcal fat)
(n = 7–10 per group). Evolution of body weight (BW) and food intake were registered twice
weekly during the experimental period (12 and 32 weeks). Calculations were made based
on the average food intake of each cage, standardized to the individual body weights. The
food efficiency ratio (FER) was calculated as a ratio of BW (grams) gained per week divided
by total energy (kilocalories) consumed over this period. Rectal thermoprobe was used
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to measure body core temperature in mice (YSI 4600 Series Precision Thermometers, YSI
Temperature, Dayton, OH, USA).

2.2. Blood and Tissue Collection

12- and 32-week-old mice were sacrificed by CO2 euthanasia in a fasting condition.
Heart puncture was used for blood collection, and sera were obtained by cold centrifuga-
tion (4 ◦C) at 700× g for 15 min and stored at −20 ◦C. Gonadal, subcutaneous, perirenal
and brown fat depots were carefully excised. Tissue and plasma samples were immedi-
ately stored at −80 ◦C for subsequent assays. Total body fat was measured as the sum of
gonadal, perirenal and subcutaneous fat pad weights. The adiposity index was determined
as (total body fat/final BW) × 100 (Supplementary Figure S1). All experimental proce-
dures conformed to the European Guidelines for the Care and Use of Laboratory Animals
(directive 2010/63/EU). The study was approved by the Ethical Committee for Animal
Experimentation of the University of Navarra (042/03, 041/08).

2.3. Blood Measurements

Serum concentrations of free fatty acids (FFA) (Wako Chemicals, GmbH, Neuss, Ger-
many) were determined by enzymatic methods using commercially available kits [21].
Insulin, adiponectin and leptin were determined by ELISA (Crystal Chem, Inc., Chicago,
IL, USA) as formerly indicated [14,22]. Intra- and inter-assay coefficients of variation for
measurements were 4.5% and 5.4%, 3.5% and 6.3%, and 5.6% and 7.2%, respectively. To esti-
mate insulin resistance, the Homeostatic Model Assessment (HOMA) index was calculated
as fasting insulin concentration (µU/mL) × fasting glucose concentration (mmol/L)/22.5.
The quantitative insulin sensitivity check index (QUICKI), an indirect measure of insulin
sensitivity, was determined as follows: 1/(log(fasting insulin µU/mL) + log(fasting glucose
mg/dL)). The adipose tissue insulin resistance index (Adipo-IR), a surrogate measure of
adipocyte dysfunction, was calculated as fasting FFA (mmol/L) × fasting insulin (pmol/L).

2.4. Oral Glucose Tolerance Tests

Blood glucose was measured in conscious male and female mice before (baseline) and
15, 30, 60 and 120 min after the administration of a D-glucose solution (2 g/kg of BW) by
oral gavage after 12 h of fasting. Glucose was measured by glucometer (Ascensia Elite,
Bayer, Barcelona, Spain) from whole blood samples collected by puncturing the tail vein.
The area under the curve (AUC) was calculated from the oral glucose tolerance test (OGTT)
curve by the trapezoidal method.

2.5. Intraperitoneal Insulin Tolerance Test

Male mice were fasted for 5 h before intraperitoneal injection with insulin (0.5 units/kg).
Glucose concentrations were determined by glucometer (Ascensia Elite) before and 15,
30, 60 and 120 min after the insulin administration from whole blood samples collected
by puncturing the tail vein. The area under the curve (AUC) was calculated from the
intraperitoneal insulin tolerance test (IPITT) curve by the trapezoidal method.

2.6. Statistical Analysis

Data are mean ± Standard Error of the Mean (SEM) of 7–10 animals per group.
Normality was assessed by the Kolmogorov–Smirnov test. For each group, the control
is the mice of the same sex, fed a ND. Differences between groups were tested by two-
way ANOVA and, in case of interaction between factors (sex and diet), one-way ANOVA
followed by Bonferroni’s post hoc tests were applied. Pearson’s correlation coefficient (r)
was used to analyze the association between variables. Statistics were calculated using the
SPSS/Windows version 15.0 software (SPSS, Inc., Chicago, IL, USA) and the figures were
created using GraphPad Prism version 8.3 (GraphPad Software, Inc., San Diego, CA, USA).
A p value < 0.05 was considered statistically significant.
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3. Results
3.1. Effect of Sexual Differences and Diet on Energy Homeostasis

In order to determine if the time course of DIO is sex divergent, BW and food intake
of both males and females was measured over 32 weeks. Following 12 weeks of HFD, the
BW and total BW gain (%TWG) of female mice was significantly lower (p < 0.001) than
that of male mice (Table 1), although there were no differences in %TWG compared to ND
(Figure 1a,b). After 32 weeks of HFD intake, BW was increased by 19 g in males and 13 g in
females, corresponding to a TWG of 115% in males and a 71% in female mice. HFD-fed
female mice exhibited these changes to a significantly lower extent (p < 0.001) than males
(Figure 1c) in spite of showing increased relative food intake (p < 0.001), expressed as
kcal/100 g of BW (Table 1). Interestingly, 12- and 32-week-old HFD female mice showed
decreased (p < 0.01 and p < 0.05, respectively) rectal temperature as compared to male mice.
However, FER of female mice, a measure of the animal’s efficiency to convert feed into
body mass, was significantly reduced (p < 0.001) as compared with that of male mice at
both 12 and 32-weeks of age.

Table 1. Effect of sex and diet on the body weight, food intake, body composition and homeostasis in
12- and 32-week-old mice.

12 WEEKS
Males Females ANOVA 12 weeks

ND HFD ND HFD Sex Diet Sex*Diet
BW(g) 26.1 ± 0.3 26.4 ± 0.6 21.6 ± 0.3 21.5 ± 0.2 <0.001 0.834 0.618

Relative FI
(kcal/100 g BW) 42.8 ± 2.4 49.3 ± 1.4 54.5 ± 1.5 56.6 ± 1.3 <0.001 0.023 0.246

Rectal temp (◦C) 36.7 ± 0.1 37.5 ± 0.2 b 36.7 ± 0.1 36.8 ± 0.1 e 0.010 0.001 0.010

FER 0.15 ± 0.01 0.17 ± 0.01 0.09 ± 0.01 0.14 ± 0.01 <0.001 <0.001 0.091

BAT (g/100 g BW) 0.31 ± 0.05 0.32 ± 0.02 0.30 ± 0.01 0.30 ± 0.01 0.309 0.691 0.587

GWAT (g/100 g BW) 0.65 ± 0.03 1.04 ± 0.09 c 0.40 ± 0.03 e 0.30 ± 0.03 f <0.001 0.010 <0.001

SCWAT (g/100 g BW) 0.56 ± 0.07 0.88 ± 0.09 c 0.49 ± 0.06 0.45 ± 0.02 f 0.001 0.023 0.004

PRWAT (g/100 g BW) 0.15 ± 0.02 0.33 ± 0.05 c 0.13 ± 0.01 0.12 ± 0.02 f <0.001 0.003 0.002

Adiposity index
(g/100 g BW) 1.35 ± 0.11 2.25 ± 0.23 c 1.02 ± 0.11 0.87 ± 0.07 f <0.001 0.013 <0.001

Leptin (ng/mL) 0.60 ± 0.48 0.91 ± 0.29 0.24 ± 0.06 0.28 ± 0.05 0.132 0.565 0.680

Adpn (µg/mL) 23.1 ± 3.4 22.4 ± 1.4 34.5 ± 4.4 22.8 ± 1.9 0.049 0.042 0.065

32 WEEKS
Males Females ANOVA 32 weeks

ND HFD ND HFD Sex Diet Sex*Diet
BW(g) 32.9 ± 1.2 36.9 ± 1.5 25.3 ± 0.3 27.2 ± 1.0 <0.001 0.016 0.547

Relative FI
(kcal/100 g BW) 33.3 ± 1.5 34.9 ± 1.4 53.60 ± 1.49 47.06 ± 2.03 <0.001 0.046 0.104

Rectal temp (◦C) 36.6 ± 0.1 37.5 ± 0.2 b 37.1 ± 0.1 d 36.8 ± 0.1 d 0.349 0.046 <0.001

FER 0.05 ± 0.00 0.08 ± 0.01 0.01 ± 0.00 0.04 ± 0.01 <0.001 0.011 0.933

BAT (g/100 g BW) 0.44 ± 0.03 0.48 ± 0.04 0.34 ± 0.02 0.36 ± 0.02 <0.001 0.325 0.795

GWAT (g/100 g BW) 1.57 ± 0.15 2.31 ± 0.19 c 0.68 ± 0.06 f 0.81 ± 0.09 f <0.001 0.004 0.038
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Table 1. Cont.

SCWAT (g/100 g BW) 1.26 ± 0.13 1.94 ± 0.17 0.85 ± 0.06 1.02 ± 0.15 <0.001 0.004 0.070

PRWAT (g/100 g BW) 0.50 ± 0.06 0.73 ± 0.05 0.27 ± 0.02 0.50 ± 0.14 <0.001 0.007 0.772

Adiposity index
(g/100 g BW) 3.37 ± 0.34 4.85 ± 0.40 1.80 ± 0.13 2.33 ± 0.34 <0.001 0.004 0.155

Leptin (ng/mL) 1.16 ± 0.14 6.49 ± 1.03 c 1.27 ± 0.33 1.42 ± 0.67 f 0.004 0.002 0.003

Adpn (µg/mL) 36.8 ± 1.9 39.9 ± 2.6 34.9 ± 4.3 36.8 ± 7.1 0.164 0.788 0.820

BW, body weight; BAT, brown adipose tissue; GWAT, gonadal white adipose tissue; HFD, high-fat diet; FER, food
efficiency ratio; FI, food intake, ND, normal diet; PRWAT, perirenal white adipose tissue; SCWAT, subcutaneous
white adipose tissue. Data are presented as the mean ± SEM of 6–8 animals per group. Statistical differences were
analyzed by two-way ANOVA or one-way ANOVA followed by Bonferroni post hoc test if an interaction was
detected. b p < 0.01; c p < 0.001 vs. same sex fed a ND; d, p < 0.05; e p < 0.01; f p < 0.001 vs. male mice fed the same
diet. * interaction between both factors (Sex and Diet). Bold lettering indicates statistically significant values.
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Figure 1. Growth curves of 4–32 week-old-male and female mice fed a normal (ND) or an high- fat
diet (HFD) (a). Bar graphs show the % total weight gain (TWG) of (b) 12- and (c) 32- week-old mice
(n = 10–20). Data are the mean ± SEM. Statistical differences were analyzed by two-way ANOVA. *
interaction between both factors (sex and diet); *** p < 0.001 effect of sex; + p < 0.05 effect of diet. p
values lower than 0.05 are highlighted with bold text.

Both 12- and 32-week-old male mice fed an HFD showed significantly increased
gonadal, subcutaneous, perirenal and total fat pads (p < 0.001 all) compared to their
respective ND controls. Moreover, HFD increased fat mass to a greater extent in 12- and
32-week-old males than females (Table 1). In this sense, the lower TWG observed in HFD
female mice was related to a significant reduction in gonadal, subcutaneous and total fat
depots compared to male mice (p < 0.001 all). No differences in brown adipose tissue (BAT)
were observed among young groups, whereas a significant effect of sex was observed at 32
weeks of age (p < 0.001) (Table 1).

As expected, 32-week-old male mice fed an HFD showed significantly augmented
leptin levels compared to males fed a ND (p < 0.001) and HFD-fed females (p < 0.001). A
positive correlation with the adiposity index was also detected (r = 0.708; p < 0.001). The
12-week-old ND female mice exhibited increased Adpn levels (p < 0.05) as compared to
males, but these differences disappeared with age.
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3.2. Sex and Age-Dependent Differences in Glucose Metabolism

In fasting conditions, 12-week-old male and female mice exhibited no changes in
glycemia by diet, with the basal glucose levels in females significantly lower (p < 0.05) than
in males (Table 2). At 32 weeks of age, however, HFD increased basal glucose levels in both
sexes (p < 0.001), with females exhibiting significantly lower glucose levels (p < 0.01) than
males (Table 2).

Table 2. Effect of sex and diet on glucose metabolism in 12-and 32-week-old mice.

12 WEEKS
Males Females ANOVA 12 weeks

ND HFD ND HFD Sex Diet Sex*Diet
Glucose (mg/dL) 75.2 ± 3.4 81.8 ± 4.7 70.3 ± 3.4 72.4 ± 1.6 0.044 0.212 0.514

Insulin (ng/mL) 0.39 ± 0.04 0.60 ± 0.05 b 0.45 ± 0.05 0.39 ± 0.02 e 0.104 0.106 0.004

HOMA-IR 0.09 ± 0.01 0.14 ± 0.02 a 0.09 ± 0.01 0.08 ± 0.01 d 0.038 0.140 0.019

QUICKI 0.67 ± 0.03 0.58 ± 0.02 0.64 ± 0.01 0.66 ± 0.01 0.282 0.202 0.034

FFA (mmol/L) 0.70 ± 0.06 0.78 ± 0.05 0.83 ± 0.14 0.85 ± 0.14 0.188 0.483 0.704

Adipo-IR 0.08 ± 0.01 0.13 ± 0.01 a 0.11 ± 0.04 0.09 ± 0.01 c 0.748 0.589 0.039

32 WEEKS
Males Females ANOVA 32 weeks

ND HFD ND HFD Sex Diet Sex*Diet
Glucose (mg/dL) 73.0 ± 3.6 86.7 ± 4.4 65.6 ± 3.9 76.4 ± 2.1 0.007 <0.001 0.270

Insulin (ng/mL) 0.97 ± 0.13 0.86 ± 0.13 0.50 ± 0.03 0.48 ± 0.02 0.003 0.612 0.719

HOMA-IR 0.20 ± 0.04 0.23 ± 0.05 0.09 ± 0.01 0.11 ± 0.01 0.014 0.627 0.843

QUICKI 0.54 ± 0.02 0.53 ± 0.02 0.64 ± 0.02 0.61 ± 0.01 <0.001 0.685 0.358

FFA (mmol/L) 0.72 ± 0.06 0.75 ± 0.06 0.91 ± 0.10 0.84 ± 0.07 0.054 0.807 0.521

Adipo-IR 0.20 ± 0.03 0.21 ± 0.05 0.12 ± 0.02 0.12 ± 0.01 0.042 0.864 0.938

Adipo-IR, adipocyte insulin resistance index; Adpn, adiponectin; HFD, high-fat diet; HOMA, homeostasis model
assessment; ND, normal diet; QUICKI, quantitative insulin sensitivity check index. Data are presented as the
mean ± SEM of 6–12 animals per group. Statistical differences were analyzed by two-way ANOVA or one-way
ANOVA. a p < 0.05; b p < 0.01; c p < 0.001 vs. same sex fed a ND; d, p < 0.05; e p < 0.01 vs. male mice fed the same
diet. * interaction between both factors (Sex and Diet). Bold lettering indicates statistically significant values.

Glucose control, examined by OGTT, was also affected in a sexually dimorphic manner.
Male mice on HFD showed worsened glycemia at the end of the OGTT compared to ND-
male and the HFD-female mice at both ages (Figure 2a,b). Glycemia 60 and 120 min after
the glucose load was significantly higher in 12-week-old males fed an HFD than ND-fed
ones (p < 0.01), whereas these differences were not observed in female mice in the same
conditions. Furthermore, male mice displayed significantly higher glycemia than female
counterparts 120 min after the glucose load (p < 0.01) (Figure 2a). These sex differences
were also observed in 32-week-old males fed an HFD compared to females from 30 min to
the end of the experiment (all p < 0.001) (Figure 2b).

Data reveal a statistically significant interaction between sex and diet for the AUC
at both ages (p < 0.01). In this sense, sex did not affect the AUC after the OGTT in mice
fed a ND (Figure 2b,c). The glucose AUC was significantly higher in HFD male compared
to ND male mice at both ages (p < 0.001 for both), whereas HFD female mice showed
significantly lower AUC than males (p < 0.001) (Figure 2c,d), highlighting an impaired
glucose tolerance in males. Furthermore, 12-week-old HFD male mice exhibited decreased
insulin sensitivity as evidenced by the increased concentrations of insulin (p < 0.01), HOMA
and adipo-IR indexes (p < 0.05) (Table 2). These differences, together with a significant
decrease (p < 0.001) in the QUICKI index were also observed at 32 weeks of age (Table 2).
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Figure 2. Oral glucose tolerance test of (a) 12- and (b) 32-week-old mice and area under the curve
of (c) 12- and (d) 32-week-old experimental animals. Data are presented as the mean ± SEM of
6–12 animals per group. Statistical differences were analyzed by two-way ANOVA or one-way
ANOVA followed by Bonferroni post hoc test if an interaction was detected. * interaction between
both factors (sex and diet); ** p < 0.01; *** p < 0.001 vs. male mice fed a ND; $$ p < 0.01; $$$ p < 0.001
vs. female mice fed the same diet. AUC, area under the curve, HFD, high-fat diet; ND, normal diet;
OGTT, oral glucose tolerance test. p values lower than 0.05 are highlighted with bold text.

3.3. Sex-Specific Effect of HFD on Adiponectin/Leptin Ratio

The Adpn/Lep ratio, a functional biomarker of dysfunctional AT, significantly de-
creased (p < 0.05) with the HFD at 12 weeks of age in both sexes. As expected, 32-week-old
female mice exhibited a significantly increased (p < 0.05) Adpn/Lep ratio compared to
males (Figure 3a,b).
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Figure 3. Adiponectin/leptin (Adpn/Lep) ratio of (a) 12- and (b) 32-week-old mice. Data are
presented as the mean ± SEM of 6–8 animals per group. Statistical differences were analyzed by
two-way ANOVA. * interaction between both factors (sex and diet); Adpn, adiponectin; HFD, high-fat
diet; Lep, leptin; ND, normal diet; p values lower than 0.05 are highlighted with bold text.

Focusing on male mice, a negative correlation of the Adpn/Lep ratio with BW
(r = −0.59, p = 0.005) as well as with different fat depots, including GWAT (r = −0.65,
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p = 0.002), SCWAT (r = −0.54, p = 0.011) and total WAT (r = −0.59, p = 0.006) (Figure 4) was
found. No correlation with basal glucose was observed.
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Figure 4. Univariate analysis of the correlations between the adiponectin/leptin (Adpn/Lep) ratio
with (a) body weight (BW), (b) gonadal (GWAT), (c) subcutaneous (SCWAT) and (d) whole-body
fat content of male animal. Adpn/Lep ratio, adiponectin/leptin ratio; BW, body weight; r, Pearson
correlation coefficient; p, significance value. p values lower than 0.05 are highlighted with bold text.

Regarding female mice, a negative correlation between the Adpn/Lep ratio and BW
(r = −0.71, p < 0.001), GWAT (r = −0.67 p < 0.001), SCWAT (r = −0.75, p < 0.001) and total
WAT (r = −0.74, p < 0.001) was also observed. To further reinforce the accuracy of the
Adpn/Lep ratio as an important marker of metabolic improvement, the correlation between
the Adpn/Lep ratio and basal glucose was also analyzed, and a negative correlation
between them was identified (r = −0.44, p = 0.048) (Figure 5).
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Figure 5. Univariate analysis of the correlations between the adiponectin/leptin (Adpn/Lep) ratio
with (a) body weight (BW), (b) gonadal (GWAT), (c) subcutaneous (SCWAT) and (d) whole-body fat
content of female animal, together with the basal glucose (e). Adpn/Lep ratio, adiponectin/leptin
ratio; BW, body weight; r, Pearson correlation coefficient; p, significance value. p values lower than
0.05 are highlighted with bold text.
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4. Discussion

Despite the well-known differences in metabolic physiological systems, diseases and
treatment outcomes among sex, the models used in the study of obesity are limited by the
underrepresentation of females [23–25], as the presence of both sexes in animal as well as
in cell-based studies has been recently considered [26]. In this context, it is necessary to
examine the sex-specific characteristics of glucose metabolism as they are clearly involved
in regulatory mechanisms in clinical pathologies including metabolic syndrome, obesity
and T2D [27,28]. Obesity superimposed on aging drastically alters the inflammatory status,
promoting the development of metabolic diseases, such as T2D, metabolic syndrome and
cardiovascular disease [29]. However, to our knowledge, few publications delve into
the simultaneous metabolic effect of sex and age on the response to an HFD. Since the
strength of the reliability of the Adpn/Lep ratio as a biomarker of AT dysfunction has been
previously described [30], the current study was focused on the age and sex-dependent
effects of DIO on changes in the Adpn/Lep ratio, as well as in body composition and
glucose metabolism.

Globally, many of the main findings that were related to the effect of HFD were in
accordance with those previously published [31–33]. HFD and aging have a wide-ranging
impact on metabolic variables, with a greater effect on male mice than female. Young HFD
female mice showed a decreased body fat mass compared with females fed a ND despite
their hyperphagia, which was probably due to their decreased FER. On the contrary, HFD
induces an increased adiposity index in male mice compared with female ones, being male
mice more prone to metabolic disorders associated with the HFD, even in the absence
of overeating and their increased energy expenditure. The observed lower weight gain
in females when presented with the metabolic challenge is in line with previous studies
and was probably due to estrogens, which protect against increased obesity through their
induced anorectic effects [34], as well as to lipolytic differences [35–37].

Sex- and age-dependent changes in plasma concentrations of adipokines and hor-
mones related to glucose metabolism were also detected. The 12-week-old HFD female mice
exhibited increased insulin sensitivity compared with males, as suggested by the decreased
concentrations of plasma glucose and insulin as well as HOMA and adiposity indexes
according to previous studies in both humans [38] and rodents [39]. Plasma adiponectin
levels, widely described as an insulin sensitizing factor [40], were also increased in female
mice. In this regard, aged HFD female rats showed improved glucose tolerance, suggesting
a healthier serum profile of insulin sensitivity, which could be related with the increase in
the AT insulin resistance index as well as in the Adpn/Lep ratio. We also observed that this
biomarker correlated with body composition and insulin resistance better than adiponectin
or leptin alone. However, these correlations were not observed in young females.

The combination of age and HFD significantly worsened the glucose tolerance of
male mice, with aged male mice who were fed an HFD exhibiting hyperglycemia and
glucose intolerance, thereby confirming their deleterious effects. The significant increase
in serum adiponectin levels shown in aged male mice is interesting, contrasting with
their impaired insulin sensitivity. Controversy related to the effect of an HFD on serum
adiponectin levels exists [41,42], and a paradoxical increased incidence of death with
higher adiponectin levels has been also reported [43]. The increased serum adiponectin
levels observed in aged HFD male mice could be a compensatory mechanism to prevent
insulin resistance, which was not sufficient to avoid the deterioration of systemic insulin
sensitivity. The notion that females have improved insulin sensitivity is reinforced by
the absence of differences as their age influences their glucose metabolism parameters.
Sexual dimorphism with regard to insulin sensitivity has been well documented, and both
clinical and animal studies exhibit a strong correlation between estrogen depletion, insulin
resistance and dysregulation of metabolic homeostasis [44–46]. In this regard, estrogen may
confer a protective role in the maintenance of insulin sensitivity in females [47] since this
sex hormone is known to be a relevant modulator of glucose homeostasis, insulin signaling,
energy balance and body composition [48]. In contrast to the preferential effect of estrogen
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on females, testosterone plays a key role in body composition, as well as in glucose and
lipid metabolism, exerting an inhibitory effect on insulin sensitivity in males [49–51]. In
line with these results, the differences in TWG observed between young males and females
may also be associated with the effect of sex hormones, since testosterone favors muscle
mass accretion [52], and differences disappear with age where testosterone concentrations
are lower. A limitation of the present study is that adipocytes from rodent WAT were
not isolated and cultured in order to study the hormone production related to energy
homeostasis, and further investigations analyzing both the hormones and the mechanisms
related to the improvement of the adipose tissue function in female mice are warranted.

In summary, body composition and glucose metabolism are distinctly regulated in
females and males and, together with age, influence the predisposition to the development
of obesity and its associated comorbidities. In this sense, females are more metabolically
protected against obesity and its associated metabolic disorders than males regardless
of age, indicating that the Adpn/Lep ratio is a relevant biomarker of body composition
and glucose metabolism (Figure 6). This study provides evidence that long-term HFD
induces metabolic alterations during aging in a sex-dependent manner, meaning that sex is
a critical factor to be considered in dietary strategies used to mitigate T2D development.
Changes in body composition related to sex, age and diet of wild type animals might
provide a reference standard to evaluate the effects of dietary factors, genetic manipulation
or pharmacological treatments, constituting critical parameters for the potential application
against metabolic diseases in humans.
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