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Abstract: Ulcerative colitis (UC) is a chronic and recurrent inflammatory bowel disease, and the
intestinal barrier is an important line of defense against intestinal disease. Herein, we investigated
the effect of Lactobacillus gasseri JM1 at different doses (1 × 106, 1 × 107, 1 × 108 CFU/day) on
colitis mice and explored the possible mechanism. The results showed that L. gasseri JM1 alleviated
DSS-induced colitis in mice, with reductions in disease activity index (DAI), histological scores and
myeloperoxidase activity as well as alleviation of colonic shortening. Furthermore, L. gasseri JM1
regulated the levels of inflammatory cytokines TNF-α, IL-6, IL-1β, and IL-10; restored the expression
of Claudin-3, Occludin, ZO-1, and MUC2; and increased the number of goblet cells and acidic mucin.
The 16S rDNA sequencing results indicated that intervention with L. gasseri JM1 balanced the gut
microbiota structure by elevating the abundance of beneficial bacteria (Oscillospira, Clostridium and
Ruminococcus) and decreasing that of harmful bacteria (Shigella and Turicibacter). Meanwhile, the
contents of short-chain fatty acids (SCFAs) increased. In conclusion, L. gasseri JM1 could alleviate
intestinal barrier damage in colitis mice by modulating the tight junction structures, intestinal mucus
layer, inflammatory cytokines, gut microbiota, and SCFAs. It can be considered a potential preventive
strategy to alleviate colitis injury.

Keywords: Lactobacillus gasseri JM1; intestinal barrier; gut microbiota; intestinal mucus; inflammatory
bowel disease; ulcerative colitis

1. Introduction

The gastrointestinal tract (GIT) is not only an important organ for digestion and absorp-
tion of nutrients, but it also protects the host from toxins and pathogens, thus maintaining
environmental homeostasis. In addition, as the first line of defense against external threats,
the intestinal barrier effectively separates the luminal contents from the host tissues, which
is essential for the health of animals and humans [1,2]. It consists of a mucus layer secreted
by goblet cells, a single layer of epithelial cells, and a mucosal lymphatic system containing
complex immune cells [3]. When the intestinal barrier is damaged, it may lead to changes
in intestinal permeability, causing intestinal diseases, such as inflammatory bowel disease
(IBD), irritable bowel syndrome (IBS), food allergies, and obesity [4]. IBD is a disease
of unknown origin characterized by chronic inflammation of the GIT, including Crohn’s
disease (CD) and ulcerative colitis (UC), with clinical manifestations of persistent diarrhea,
usually accompanied by blood and mucus [5]. Although the pathogenesis of IBD is still
unclear, accumulated data have suggested that the disease is the result of a combination of
genetic and environmental factors that could alter the balance of the intestinal environment
and cause intestinal barrier dysfunction [6]. It has been demonstrated that all the tight
junction proteins, mucous layer, and gut microbiota were altered [2,7–9]. Drug treatments,
including aminosalicylates and steroids, are still commonly used for IBD, but long-term
administration may cause side effects. New treatments are being researched, such as
probiotics, prebiotics, and some microbial metabolites [10,11].
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Lactic acid bacteria (LAB), including several Lactobacillus gasseri (L. gasseri), are po-
tential probiotics that can maintain gut homeostasis and contribute to the health of the
host when given in sufficient amounts [12,13]. In addition, L. gasseri is one of the major
species for early intestinal colonization, which is widely present in humans as a commensal
bacterium [14]. Recent studies have also demonstrated that the use of LAB can alter the
composition of gut microbiota, reduce intestinal damage, alleviate intestinal inflammation,
ameliorate type 2 diabetes, and enhance immunomodulatory effects from in vitro and
in vivo models [15–19]. Therefore, using probiotics to regulate gut microbiota is considered
to be a way to promote health and treat certain diseases.

Recent evidence suggested that different probiotics have a direct or indirect positive
effect on animals in experimental models of IBD. In different mouse models, dextran sulfate
sodium (DSS)-induced colitis has been widely used in the study of IBD because of its
simplicity and many similarities with UC patients. In vivo studies have shown that probi-
otics such as probiotic mixture VSL#3, L. fermentum, L. reuteri, and L. rhamnosus improved
the intestinal barrier by alleviating intestinal inflammation, decreasing intestinal barrier
permeability, and enhancing mucosal integrity in mice with colitis [1,7,20,21]. Meanwhile,
L. gasseri was used to evaluate the protective effect of the intestinal barrier in colitis, and
the results showed that the levels of the inflammatory cytokines were restored and mu-
cosal damage was avoided [14,19]. Although many promising results have been achieved
with probiotics in alleviating DSS-induced colitis, how probiotics affect the GIT and their
underlying mechanisms are unclear and need to be further elucidated.

Previously, we conducted in vitro studies on the environmental tolerance, adhesion,
and immunomodulatory activity of L. gasseri JM1 isolated from the feces of healthy infants.
The results showed that L. gasseri JM1 could survive better in a high acid and high bile salt
environment, better adhere to Caco-2 cells, and alleviate LPS-induced inflammation in Caco-
2 cells [22]. Therefore, based on the previous study and combined with the current research
on probiotics to improve the intestinal barrier, we proposed to continue to investigate
the effects of L. gasseri JM1 on the regulation of intestinal mucosal damage, mucus layer
characteristics, and gut microbiota in mice with colitis.

2. Materials and Methods
2.1. Bacterial Strains and Culture Conditions

L. gasseri JM1 (GenBank accession number CP044412-CP044414) was isolated from
the feces of healthy infants and cultured in Man Rogosa Sharp broth (Qingdao Hope Bio-
Technology Co., Ltd., Qingdao, China) at 37 ◦C under aerobic conditions for 18 h. The
precipitate was collected by centrifugation at 5000× g for 5 min, resuspended in skim
milk, and freeze-dried. Then, the viable count of L. gasseri JM1 after freeze drying was
determined, and the freeze-dried power of L. gasseri JM1 was dissolved to 5 × 106, 5 × 107,
and 5 × 108 CFU/mL when applied to gavage.

2.2. Mouse Model and Experimental Design

The male C57BL/6 mice (6–7 weeks old, n = 48) were from Vital River Laboratory
Animal Technology Co., Ltd. (Beijing, China). They were raised in cages at room temper-
ature of 22 ± 2 ◦C and humidity of 55 ± 5% with a light/dark cycle of 12 h. Then, all
mice were divided into six groups (n = 8 per group) and fed standard chow and sterile
water. Figure 1 showed the experimental design with modifications to the previous descrip-
tion [23]. The mice had free access to water and food for the first week to acclimatize to the
environment. Those in the control and DSS groups were intragastrically fed 200 uL of skim
milk daily, and others were intragastrically fed 200 uL of L. gasseri with 5 × 106, 5 × 107,
5 × 108 CFU/mL (1 × 106, 1 × 107, 1 × 108 CFU/day) and 200 uL of mesalazine (10 mg/mL)
that resuspended in skim milk for the second week. After 7 days, mice were administered
3% DSS (w/v, MP Biomedicals, LLC, Irvine, CA, USA) in their drinking water to induce
colitis in all groups except the control mice. Meanwhile, mice in the control and DSS
groups were intragastrically fed 200 uL of skim milk daily while mice in the L. gasseri and
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mesalazine groups were intragastrically fed 200 uL of L. gasseri with 5 × 106, 5 × 107, 5 × 108

CFU/mL (1 × 106, 1 × 107, 1 × 108 CFU/day) and 200 uL of mesalazine (10 mg/mL) for one
week, respectively.
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Figure 1. Grouping and intragastric administration in animal experiments.

2.3. Histological Analysis for Colitis

During the DSS intervention, the changes in the body weight, fecal viscosity, and fecal
occult blood were determined every day according to the previous studies [20,24]. The
fecal occult blood of fecal samples from each mouse was determined by the fecal occult
test kit (Nanjing Jiancheng Co., Ltd., Nanjing, China). Then, the disease activity index
(DAI) was scored as previously described [25]. DAI = (Weight Loss Score + Fecal Traits
Score+ Hidden Blood Score)/3. After the mice were sacrificed, serum and colon samples
were collected. Colonic tissues were collected under sterile conditions and the entire colon
length (from the cecum to the anus) was determined by a ruler. Next, the colonic tissues
were placed in formalin for one day and then sectioned, and 5 mm thick sections were
stained with hematoxylin-eosin (HE) and analyzed for histological features according to
the previous method [26]. The remaining colon, serum, and fecal samples were collected
for subsequent procedures.

2.4. Determination of Myeloperoxidase (MPO) Activity

The serum was obtained from mouse blood by centrifugation at 3000× g for 10 min.
The level of MPO activity in serum was assessed by a commercial MPO assay kit (Nanjing
Jiancheng Co., Ltd., Nanjing, China), and all procedures were performed by the manufac-
turer’s instructions.

2.5. Determination of Inflammatory Cytokines

To investigate the expression of targets, colonic tissues of mice and sterile phosphate
buffer solution were placed in glass mills at a ratio of 1:9 and centrifuged at 3000× g
for 20 min. The supernatants were collected to determine the concentrations of anti-
inflammatory cytokines (IL-10) and proinflammatory cytokines (IL-1β, IL-6 and TNF-α) by
commercial ELISA kits (Nanjing Jiancheng Co., Ltd., Nanjing, China).

2.6. Determination of Mucin and Goblet Cells

Fixed colonic tissues were embedded in paraffin and cut into 5 µm sections. The
distribution of mucin in the colon was investigated by Alcian blue and periodic acid–Schiff
(AB-PAS) staining as previously described with modifications [27]. Periodic acid–Schiff
(PAS) staining was used to evaluate the number of goblet cells as previously described [28].
Specifically, the distribution of different mucus and the number of goblet cells were deter-
mined with Image-pro Plus 6.0 (Media Cybernetics, Inc., Rockville, MD, USA).

2.7. Reverse Transcription (RT) and Quantitative Real-Time PCR (qPCR)

To investigate the expression of tight junction protein-related genes (Occludin, Claudin-
2, ZO-1, Claudin-3) and the MUC2 gene, the total RNA of every colonic tissue was isolated
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by Simple P Total RNA Extraction Kit (Bioer Technology Co., Ltd., Hangzhou, China)
as previously described with modifications [29]. The concentration of the RNA and the
value of A260/A280 were determined by QuickDrop (Molecular Devices Corporation,
San Jose, CA, USA), and the quality was assessed by agarose gel electrophoresis. The
cDNA was synthesized by PrimeScript™ RT Reagent Kit (TaKaRa Bio, Dalian, China)
with modifications as previously described [29]. All procedures were performed by the
manufacturer’s instructions. The mRNA levels were determined by the QuantStudio® 3
Real-Time PCR system (Applied Biosystems, Foster City, CA, USA) with TB Green® Premix
Ex Taq™ II (TaKaRa Bio, Dalian, China). The specific RT-qPCR primers for target genes are
shown in Table 1. The changes in gene levels were expressed as the fold of the control.

Table 1. The specific RT-qPCR primers for target genes.

Type Gene Base Sequence (5′→3′) a

Reference gene β-actin F: CCACTGTCGAGTCGCGTCC
R: GTCATCCATGGCGAACTGGTG

Tight junction protein

Occludin F: CACACCTCGTCGCTAGTGC
R: AGATAAGCGAACCTGCCGAGC

ZO-1 F: GGAGATGTTTATGCGGACGG
R: CCATTGCTGTGCTCTTAGCG

Claudin-2 F: GGTTCCTGACAGCATGAAATTT
R: GCCATCATAGTAGTTGGTACGA

Claudin-3 F: TCGGCCAACACCATCATCAG
R: CTCAGACGTAGTCCTTGCGG

Mucoprotein MUC2 F: GCTGACGAGTGGTTGGTGAATG
R: GATGAGGTGGCAGACAGGAGAC

a: F represented the forward sequence and R represented the reverse sequence.

2.8. Gut Microbiota Sequencing and Analysis

The contents of cecum from mice were collected to assess the changes in the compo-
sition of gut microbiota. The total DNA was obtained using the most suitable extraction
method. PCR amplification of the V3-V4 region of the 16S rRNA gene was performed
using primers (F: ACTCCTACGGGAGGCAGCA R: GGACTACHVGGGTWTCTAAT) as
described previously [30]. DNA samples were sequenced by Illumina MiSeq. Bacterial
diversity analysis of the sequence data was conducted after sequencing.

2.9. Determination of Short-Chain Fatty Acids (SCFAs)

The contents of cecum (0.8000 ± 0.010 g) were accurately weighed, and 10% suspension
was prepared. The suspension (500 µL) was added to crotonic acid metaphosphate solution
(100 µL), frozen at −30 ◦C for 24 h, and then centrifuged at 8000 rpm for 3 min to remove
impurities, such as protein. The supernatant was filtered by 0.22 µm water filters, and the
contents of SCFAs were quantitatively analyzed by gas chromatography [31].

2.10. Statistical Methods

SPSS software was used for one-way ANOVA, and Excel and GraphPad Prism 8.02
were used for graph production. All experiments were repeated three times, and the results
were expressed as mean ± standard deviation (Mean ± SD). p < 0.05 indicated that the
results were significantly different.

3. Results
3.1. Effects of L. gasseri JM1 on Physiological Indicators

DSS-induced colitis is the most widely used animal model of UC in the study [32].
The changes in body weight, DAI index, and colonic length were determined during the
experiment, as shown in Figure 2. The control group showed a slight upward trend in body
weight (Figure 2a), and the DAI index remained at 0 (Figure 2b). There were extremely
significant differences in the rate of weight loss in other groups compared to the control
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group (p < 0.001). Nevertheless, L. gasseri JM1 (107 and 108) and mesalazine groups slowed
down the weight loss in mice with colitis. The DAI index was the highest in the DSS
group while the intervention with different concentrations of L. gasseri JM1 reduced the
DAI index in a dose-dependent manner. The length of the colon is one of the important
indicators for the evaluation of colitis [33]. The length of the colon was 6.23 ± 0.37 cm
(Figure 2c) in the control group with normal reddish and granular feces (Figure 2d). In
comparison, the length of the colon in DSS-induced mice was 4.68 ± 0.36 cm, accompanied
by colonic edema, intestinal wall hemorrhage, and irregular stools. Intervention with
L. gasseri JM1 and mesalazine could significantly prevent the shortening of the colon, which
was consistent with the results of the DAI index.
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**** p < 0.0001 represent significant difference between groups.

3.2. Effects of L. gasseri JM1 on the Histological Analysis of Colitis

After HE staining, pathological changes were observed under microscope and pho-
tographed. The tissues of mice were expressed as 50 µm and 200 µm (Figure 3a), and
histological scores were evaluated (Figure 3b). The results indicated that the histological
score of the control group was 0.625 ± 0.744, with intact epithelial cells in the mucosal layer,
abundant intestinal glands, and many goblet cells, and no necrosis or inflammatory infiltra-
tion were seen. However, accompanied by diffuse infiltration of inflammatory cells, there
was extensive necrosis in the intestinal mucosal layer with fibrous tissue hyperplasia and
severe crypt injury in the DSS group. The histological score (11.00 ± 0.603) was significantly
different from that of the control group (p < 0.01), which was consistent with the results of
HE staining. L. gasseri JM1 groups with different concentrations ameliorated the mucosal
injury of colonic tissues in mice to varying degrees in a dose-dependent manner. The most
pronounced alleviation was observed in the 108 L. gasseri JM1 group, accompanied by a
large number of goblet cell proliferation, which was similar to the control group. Colon
histological scores also confirmed these results. Therefore, L. gasseri JM1 could effectively
alleviate tissue damage and maintain the integrity of the mucosal structure in colitis mice
induced by DSS.
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3.3. Effect of L. gasseri JM1 on Serum MPO Activity in Colitis

Changes in MPO activity were related to the degree of neutrophil infiltration in the rele-
vant tissues [34]. Therefore, MPO can be considered one of the essential indicators of inflam-
mation in colitis. As shown in Figure 4, MPO activity in the DSS group (0.318 ± 0.09 U/mL)
was significantly higher than that in the control group (0.179 ± 0.03 U/mL, p < 0.01). On
the contrary, the MPO activity of the L. gasseri JM1 and mesalazine groups showed a down-
ward trend with statistical significance compared with the DSS group (p < 0.05, p < 0.01),
which was close to that of the control group. The results showed that L. gasseri JM1 and
mesalazine could significantly reduce inflammation in mice with colitis by decreasing
serum MPO activity to varying degrees.
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3.4. Effect of L. gasseri JM1 on Inflammatory Cytokines Expression in Colitis

Disturbance of intestinal immune regulation is an essential factor in the pathogenesis
of IBD, in which proinflammatory cytokines TNF-α, IL-6, IL-1β and anti-inflammatory
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cytokine IL-10 are the key indicators reflecting the degree of inflammation in the model
of colitis [35]. As shown in Figure 5, the levels of TNF-α, IL-6, and IL-1β were increased
compared with the control group (p < 0 0.001, p < 0.01) while the level of IL-10 was also
increased in the DSS group, which may be related to autoimmune regulation of mice in
response to external stimuli. Meanwhile, compared with the DSS group, the levels of
TNF-α, IL-1β, and IL-6 decreased, and the level of IL-10 significantly increased (p < 0.001)
after mesalazine intervention. In addition, the levels of TNF-α, IL-1β, and IL-6 in L. gasseri
JM1 groups all decreased to varying degrees in a dose-dependent manner with significant
upregulation of IL-10 (p < 0.001). The results showed that mesalazine and L. gasseri JM1
could regulate inflammatory cytokines, thereby alleviating intestinal inflammation in mice.
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3.5. Effect of L. gasseri JM1 on the Staining of the Colonic Mucus Layer and Goblet Cells in Colitis

Colonic goblet cells, usually located in the mucosal epithelium, are typical mucus-
secreting cells that continuously secrete mucus and play an essential role in the intestinal
barrier. Microscopic observation of mouse colonic tissue after PAS staining (Figure 6a)
and counting of goblet cells (Figure 6b) showed that goblet cells and the structure of the
mucus layer in the DSS group were significantly damaged or almost destroyed. Specifically,
the number of goblet cells decreased to 4.38 ± 1.69/glandular fossa with an extremely
significant downward trend compared with the control group (10.63 ± 1.30/glandular fossa,
p < 0.001). Compared with the DSS group, the number of goblet cells significantly increased
in the mesalazine group, reaching 9.88 ± 2.00/glandular fossa (p < 0.001). L. gasseri JM1
intervention significantly increased the number of goblet cells dose-dependently. Especially
in the high-dose group (108 L. gasseri JM1 group), L. gasseri JM1 intervention significantly
improved the destruction of the mouse mucus layer in mice with an orderly arrangement
of goblet cells and an increased coverage of intestinal mucus.
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AB-PAS can show neutral mucin and acidic mucin of intestinal mucus better. Specifi-
cally, neutral mucin appeared red or purplish-red, and acidic mucin appeared blue while
mixed mucin appeared blue–purple or violet–blue after staining [36,37]. As shown in
Figure 6c–d, AB-PAS staining results of the control group were blue and purple, pre-
dominantly blue, and the percentage of acidic mucin reached 66.88%, indicating that the
intestinal mucin layer was rich in mucin and mainly acidic mucin. On the contrary, the
secretion of both neutral and acidic mucin was significantly reduced in the DSS group with
the percentage of acidic mucin decreasing to 39.13% and the percentage of neutral mucin
increasing to 60.87%. However, intestinal mucus secretion was restored, and acidic mucus
secretion significantly increased in the mesalazine and L. gasseri JM1 groups.

3.6. Effect of L. gasseri JM1 on the Expression of Tight Junction Protein-Related Genes and MUC2
Gene in Colitis

The epithelial barrier structure in DSS-induced colitis mice usually shows disruption
of tight junction proteins and changes in intestinal permeability, increasing the probabil-



Nutrients 2023, 15, 139 9 of 18

ity of antigen invasion in the intestinal lumen [38]. Therefore, it is particularly crucial
to determine the effect of L. gasseri JM1 on the mRNA expressions of intestinal tight
junction proteins (Claudin-2, Claudin-3, Occludin and ZO-1) in mice with colitis. The
results (Figure 7a–d) showed that the gene expression of Claudin-2 increased significantly
(p < 0.001) while those of ZO-1, Claudin-3, and Occludin decreased to some extent in the
DSS group. However, these trends were reversed after mesalazine intervention, similar to
the control group. In addition, compared with the DSS group, the mRNA expression levels
of ZO-1 and Occludin increased and that of Claudin-2 decreased, but that of Claudin-3
showed an upward trend without significant difference in L. gasseri groups. These results
suggested that different doses of L. gasseri JM1 regulated the transcriptional level of tight
junction protein-related genes.
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The main component of mucus was MUC2. As shown in Figure 7e, the expression of
the MUC2 gene significantly decreased in the DSS group compared with the control group
(p < 0.05), which was consistent with the staining results and the reduction of goblet cells.
However, compared with the DSS group, the expression of the MUC2 gene significantly
increased after mesalazine, 107, and 108 L. gasseri JM1 interventions, and it increased in the
106 L. gasseri JM1 group without statistical difference. These results indicated that different
doses of L. gasseri JM1 increased mucus secretion by increasing the transcriptional level
of MUC2 in dose dependence and played a role in protecting the mucus barrier in mice
with colitis.

3.7. Effect of L. gasseri JM1 on the Composition of Gut Microbiota in Colitis

Changes in gut microbiota are also indispensable factors in the pathogenesis of colitis.
We analyzed whether the alleviating effect of L. gasseri JM1 in mice with colitis could
be related to the improvement of gut microbiota. Alpha diversity analysis (Figure 8a–c)
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showed an increase in community composition after the intervention of L. gasseri JM1
and mesalazine, indicating an increase in microbial diversity and homogeneity. Beta
diversity analysis was assessed (Figure 8d–f), including principal coordinates analysis
(PCoA), nonmetric multidimensional scaling (NDMS) analysis, and hierarchical clustering
analysis using the unweighted pair-group method with arithmetic means (UPGMA). PCoA
and NDMS showed the distance and affinity of microbial communities and evaluated the
differences in microbial communities between samples. UPGMA hierarchical clustering
analysis presented the similarity of microbial communities between samples in the form of
hierarchical trees. These showed that the community structure of samples in the control
group and the 108 L. gasseri JM1 group were clustered respectively while those of the
samples in the DSS group were dispersed, confirming that DSS could change the diversity
and stability of intestinal microbiota in colitis mice, and it gradually improved after the
intervention of L. gasseri JM1 at different doses.

As shown in Figure 8g, the gut microbiota of mice in different groups was analyzed
at the phylum level. It could be seen that the composition of gut microbiota in the six
groups was similar, but the abundance of microorganisms was greatly different. Generally,
the dominant gut microbiota at the phylum level was Firmicutes, Bacteroidetes, and
Proteobacteria, accounting for about 80%. Compared with the control group, the abundance
of Firmicutes (54.27% vs. 71.92%) and Bacteroidetes (5.19% vs. 17.04%) in the DSS group
decreased while that of Proteobacteria (37.86% vs. 2.44%) increased. On the contrary,
compared with the DSS group, the abundance of Proteobacteria decreased in the L. gasseri
JM1 and mesalazine groups, and the abundance of Bacteroidetes increased, especially in
the 108 L. gasseri JM1 group. In addition, it is noteworthy that 107 L. gasseri JM1 could
maintain the abundance of Firmicutes in the intestinal tract (51.59% vs. 54.27%), and
mesalazine intervention had a similar effect on the gut microbiota of mice with colitis as
that of 107 L. gasseri JM1 intervention. At the family level and genus level (Figure 8h–j),
compared with the control group, the abundance of gut microbiota showed an increase
in Shigella, Turicibacter, Parabacteroides, and Staphylococcus and a decrease in Bacteroides,
Lactobacillus, Alistipes, Ruminococcus, Dorea, and Akkermansia in the DSS group. However,
these trends were reversed after L. gasseri JM1 and mesalazine intervention. Among them,
Mucispirillum, Allobaculum, and Bifidobacterium were enriched considerably in individual
samples. In general, different samples from the control group clustered together, indicating
that the community structure of gut microbiota in the control group was highly similar
whereas that in the DSS group was severely damaged with specific differences. After the
intervention of L. gasseri JM1, the gut microbiota structure also had a high similarity but
was significantly different compared with the DSS group. Meanwhile, the community
composition analysis at the genus level combined with cluster analysis further confirmed
the results of beta diversity analysis.

3.8. Effect of L. gasseri JM1 on SCFAs in Colitis

Current studies have shown that the levels of SCFAs were reduced in mice with colitis,
and some probiotics have been shown to regulate the production of intestinal SCFAs [39,40].
Therefore, we determined to explore the effect of L. gasseri JM1 on the contents of SCFAs
in the cecum of mice. As shown in Figure 9a–f, the contents of SCFAs in the DSS group
significantly decreased compared with the control group (p < 0.05). However, compared
with the DSS group, the contents of all five SCFAs, except valeric acid, were increased in a
dose-dependent manner after the intervention of L. gasseri JM1. Specifically, the contents
of propionic acid, isobutyric acid and isovaleric acid significantly increased in the 108 L.
gasseri JM1 group (p < 0.05, p < 0.01), higher than those in the mesalazine group. Further,
the correlation analysis between SCFAs and differential bacterial genus (Figure 9g) showed
that acetic acid was positively correlated with Lactobacillus and Adlercreutzia; butyric acid
and valeric acid were positively correlated with Lactobacillus, Ruminococcus, Adlercreutzia,
and Dorea; and in addition, butyric acid was also positively correlated with Akkermansia.
Simultaneously, the abundance of the above microbiota increased after the L. gasseri JM1
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intervention. It could be seen that L. gasseri JM1 could exert its probiotic regulation effect
when entering the intestinal tract, significantly regulating the intestinal metabolic function
of mice with colitis and increasing the content of SCFAs by improving gut microbiota,
among which, 108 L. gasseri JM1 could play a more prominent role.
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index, (b) Simpson Index, (c) Shannon Index, (d) PCoA analysis of groups, (e) NMDS analysis
of groups, (f) UPGMA hierarchical clustering analysis of microbiology in groups, (g) microbial
composition at the phylum level of the cecal contents, (h) microbial composition at the family level of
the cecal contents, (i) microbial composition at the genus level of the cecal contents, and (j) heatmap
of genus composition combined with cluster analysis at the genus level. A stands for control group,
B for DSS group, C for DSS + 106 L. gasseri JM1 group, D for DSS + 107 L. gasseri JM1 group, E for
DSS + 108 L. gasseri JM1 group, and F for DSS + mesalazine group.
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4. Discussion

In recent years, the increasing incidence of IBD has made it one of the critical diseases
affecting human health. The use of microorganisms to regulate colitis has become a research
hotspot. Many studies have shown that probiotics can alleviate colitis in animal models
or clinical IBD patients to varying degrees by enhancing the mucosal barrier, regulating
immune response, and improving the composition of gut microbiota [41–43]. The results
of this study showed the effect of L. gasseri JM1 on the intestinal mucosal injury, intestinal
barrier, and intestinal metabolites in UC mice and explored the mechanism of its alleviation
of UC.

In this study, the acute UC model was induced with 3% DSS drinking water for one
week. The DSS group began to show symptoms, such as weight loss, lethargy, loss of
appetite and loose stools, on the second day of modeling followed by watery stools and
gradual deterioration on the fifth day of model construction, indicating the successful
establishment of the acute UC model. The degree of inflammation increased with the
increase of modeling time, resulting in weight loss. However, the reason for the slight
upward trend in body weight on the fourth day of modeling was tentatively speculated to
be that the mice were also gavaged with L. gasseri JM1 at the initial stage of inflammation,
and the inflammation continued to cause weight loss in mice, which gradually regained
weight on the fourth day after adaptation [44]. No remission trend was observed in the
106 L. gasseri JM1 group, presumably due to inadequate dosage of probiotics. The higher the
DAI index, the higher the degree of inflammation. With probiotic and drug interventions,
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the DAI index increased more slowly than that in the DSS group, and the symptoms of loose
stools and bloody stools were relatively reduced. In addition, the length of the colon was an
important indicator related to the degree of inflammation. We found the length of the colon
was recovered and edema was improved to some extent with the intervention of L. gasseri
JM1 and mesalazine. In addition, Yang et al. found that the colonic length was recovered in
DSS-induced colitis after the intervention of Bifidobacterium breve CCFM683 [26], which was
similar to the result of this study. Similarly, the pathological analysis of the colon showed
consistent results that L. gasseri JM1 reversed the degree of intestinal mucosal injury in
mice, indicating it was more effective at higher doses.

Intestinal inflammation is the pathological manifestation of colitis caused by DSS.
MPO has been shown to be a local mediator of tissue injury and resultant inflammation and
can also enter the extracellular fluid to participate in circulation [34]. It was found that both
L. gasseri JM1 and mesalazine could effectively reduce the activity of serum MPO, indicating
that L. gasseri JM1 could reduce inflammatory cell infiltration and inflammatory response in
the mucosa. MPO is also associated with oxidative stress levels, and the increase of it leads
to oxidative stress in mice [45]. It was observed that the activity of MPO was decreased
under the action of L. gasseri JM1, and oxidative stress in mice may be partially alleviated,
but further studies are still needed. Mesalamine, a gold treatment for colitis, is also a free
radical scavenger and antioxidant that is considered to be the most effective [46]. In this
study, the effectiveness of mesalamine was also confirmed, and the comparison between
L. gasseri JM1 and mesalamine indicated that L. gasseri JM1 had some alleviating effect.

The regulation of LAB in the host immune system has always been one of the hot topics
of research. Immune factors, including proinflammatory, anti-inflammatory, and growth
factors, have important relationships with inflammation. For example, TNF-α is a critical
proinflammatory cytokine causing intestinal inflammation and in the central position of
many inflammatory cytokines, which can increase the secretion of inflammatory cytokines
such as IL-1β and IL-6, leading to aggravation of intestinal mucosal damage [47]. In turn,
the increased secretion of IL-6 further stimulates multiple targeted cells (APCs, T cells) to
enhance the inflammatory response, and IL-1β is highly expressed in the inflammatory state,
which is positively correlated with the degree of inflammation [7,35]. However, conversely,
IL-10 has anti-inflammatory properties by inhibiting pro-inflammatory cytokines and
chemokines with negative feedback regulation, thus acting as a downregulator of the
inflammatory response. However, it was noteworthy that although the expression level of
IL-10 in the DSS group was not significantly different from that in the control group, it also
showed an upward trend, which may be related to the regulation of the nonspecific immune
system activated by intestinal inflammation [9]. Similarly, we also found that the levels of
TNF-α, IL-1β, and IL-6 were effectively reduced, and the level of IL-10 increased by L. gasseri
JM1 intervention, indicating that L. gasseri JM1 exerted its immunomodulatory function
to stimulate the organism to generate a cascade response and produce anti-inflammatory
cytokines, which could play an immunomodulatory role in DSS-induced colitis.

Intestinal barrier dysfunction with increased intestinal permeability is another charac-
teristic symptom of IBD pathophysiology. We found similar results to those of Chen [23].
Specifically, goblet cells were stained purple by PAS staining, indicating that the interven-
tion of L. gasseri JM1 significantly increased the number of goblet cells and the secretion
of mucin, presumably because L. gasseri JM1 colonized and reproduced in the intestine,
which stimulated the development of immune tissues and immune response to promote
the growth of goblet cells. Furthermore, highly glycosylated mucins are classified into
neutral and acidic mucins according to glycol-branched chain components [48]. Compared
with neutral mucus, acidic mucins better protect against bacterial translocation because
particularly sulfated mucins appear less degradable by bacterial glycosidases and host
proteases [49]. L. gasseri JM1 increased the secretion of mucus and the proportion of acidic
mucin, presumably due to the colonization and reproduction of the strain in the intestinal
tract to exert a regulatory effect, resistance to the adhesion and migration of pathogenic
bacteria, and recovery of the intestinal microenvironment. MUC2, the main component of
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colonic mucus, is predominantly expressed in a healthy colon. However, the expression
of MUC2 was low in colitis due to the impaired goblet cells and reduced secretion of
mucus [48,50]. Yang et al. found that the mRNA expression level of MUC2, which was
significantly downregulated under DSS induction, could be restored to normal after the
intervention of Bifidobacterium [26]. Correspondingly, L. gasseri JM1 and mesalamine im-
proved the damage degree of goblet cells and increased the number of goblet cells, MUC2
gene expression, and mucin secretion as well, which ultimately promoted the formation of
the tight mucus layer and thus alleviated colitis by resisting to the invasion of bacteria and
other antigens. These were consistent with the staining results of PAS and AB-PAS.

Tight junctions between intestinal epithelial cells are the most important mode of
attachment and are a highly diversified structure composed of transmembrane and cyto-
plasmic proteins [38]. The Claudins family of proteins is an essential component of tight
junctions. Claudins are a quad transmembrane protein with functions as a “fence” and
“barrier”, which form tight junction chains by polymerization within the plasma membrane
and secondary assembly with Claudins attached to the cell to cross the extracellular space
and produce paracellular closure [38,51]. Occludin was the first important transmembrane
protein to be identified. If it is damaged, it would lead to an increase in the permeability of
paracellular to macromolecules. In addition, ZO-1 plays a role in connecting multiple types
of tight junction proteins to maintain the integrity of the tight junction complex. Dou et al.
found that L. casei ATCC 393 and its metabolites increased the expression levels of occludin,
ZO-1, and Claudin-1 [52], and Din et al. found Bifidobacterium bifidum ATCC 29,521 also
could increase the expression levels of ZO-1, MUC-2, and Claudin-3 [53]. In addition, it
has been shown that DSS-induced colitis in mice was accompanied by an increase in the
pore-forming protein Claudin-2 [54]. We found few relevant studies with simultaneous
changes in Claudin-2 and Claudin-3, and the results showed that the extremely significant
increase of Claudin-2 in the DSS group might increase the intercellular pores while the
decrease of Claudin-3 would reduce the intercellular sealing ability. After intervention with
L. gasseri JM1 and mesalazine, this phenomenon was alleviated in mice with colitis, and
the mRNA expression levels of both Occludin and ZO-1 were effectively increased, which
prevented the destruction of the intestinal barrier to maintain barrier integrity.

It is well-known that physiological disturbances induced by IBD are bound to cause
changes in gut microbiota diversity, composition, and structure [55]. It was found by
detailed analysis of taxonomic composition that the abundance of Proteobacteria at the
phylum level, Enterobacteriaceae, Peptostreptococcaceae, and Turicibacteraceae at the family
level, and Shigella and Turicibacter at the genus level all increased significantly, which were
the result of gut microbiota dysregulation after DSS. It was worth noting that the increased
abundance of Proteobacteria, including many pathogenic bacteria, could exacerbate the
microecological imbalances in the intestine [56]. The intestinal pathogen Shigella was a
major factor in diarrhea in children under five years of age [57]. Studies found that the
abundance of intestinal microorganisms Shigella was significantly higher in UC patients
than in healthy individuals [58]. Turicibacter significantly increased in this study, which
was consistent with Munyaka’s results [59]. However, there are few studies on Turicibacter
at present, and its association with inflammation needs to be further investigated. When
L. gasseri JM1 intervened, the abundance of Bacteroides, Mucispirillum, Oscillospira, Clostrid-
ium, Parabacteroides, Alistipes, and Ruminococcus increased on the basis of a reduction in the
pathogenicity-associated flora mentioned above. Among them, Clostridiaceae belonging to
Firmicutes is a kind of human-friendly bacteria, which are involved in various metabolic
processes in the host. In particular, Clostridium has been shown in several studies to be a
butyric acid-producing bacterium that can alleviate the condition of colitis in mice, induce
Treg cell differentiation, and reduce inflammation [60]. It has been suggested that Mu-
cispirillum was a resident bacterium in the intestinal mucosa and could also be associated
with immunity, as manifested by the generation of Treg cells and IgA. However, there
was still much controversy regarding the function of Mucispirillum, and follow-up studies
would be needed. Moreover, Federica and others found that the content of Oscillospira was
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proportional to health, and the abundance of this genus decreased when the body was
inflamed [61]. Additionally, Ruminococcus, which belongs to Ruminococcaceae, was a crucial
group of gut microbiota in UC that could decompose cellulose, especially fermenting resis-
tant starch to produce metabolites [62]. In this study, it was observed that the abundance
of Ruminococcus increased, suggesting that it may play a role in alleviating inflammation
through the production of SCFAs.

Microbial-derived SCFAs, which are metabolites of gut microbiota, are beneficial to
the host and have important functional effects, such as maintaining the water–electrolyte
balance, reducing intestinal infections, lowering pH, and improving intestinal function [63].
Combined with the analysis of gut microbiota, it was found that the contents of SCFAs in
the intestine significantly reduced in the DSS group while they increased dose-dependently
after the L. gasseri JM1 intervention. This may be due to the fact that L. gasseri JM1 exerted
its probiotic regulatory effect in the intestine, regulating the composition of gut microbiota,
decreasing the abundance of harmful bacteria, and increasing the abundance of acetic and
propionic acid-producing Bacteroides and Ruminococcus as well as butyric acid-producing
Clostridium and Lactobacillus. This result was consistent with Bian, but unfortunately, F.
prausnitzii, the typical butyric acid-producing strain, was not found in this study, and
further research is still necessary [64].

5. Conclusions

Taken together, intervention with L. gasseri JM1 alleviated impaired barrier structure
by decreasing the expression of Claudin-2 and increasing the expression of Claudin-3,
Occludin, and ZO-1. In addition, it also increased the number of goblet cells, improved
the secretion of acidic mucin, and maintained the integrity of the mucus layer in mice with
colitis. In addition, intervention with L. gasseri JM1 achieved anti-inflammatory effects by
regulating pro- and anti-inflammatory cytokines. Meanwhile, it increased the abundance
of short-chain fatty acid-producing strains, such as Clostridium and Ruminococcus, and
decreased the abundance of harmful bacteria, such as Shigella and Turicibacter. Further, the
contents of acetic acid, propionic acid, and butyric acid increased after intervention with L.
gasseri JM1. Overall, both 107 and 108 L. gasseri JM1 were effective in reducing the damage
caused by DSS-induced colitis, with 108 L. gasseri JM1 having a more pronounced effect.
Thus, it showed that the intervention with L. gasseri JM1 could protect the intestinal barrier
through a combination of multiple actions, thereby preventing organismal damage caused
by DSS-induced UC. The present study provided a theoretical basis for the microbiology-
based prophylaxis of UC and provided relevant ideas for the application of this strain in
the prevention of UC.
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