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Abstract: Aqueous zinc-ion batteries (ZIBs) represent an attractive choice for energy storage. How-
ever, ZIBs suffer from dendrite growth and an irreversible consumption of Zn metal, leading to
capacity degradation and a low lifetime. In this work, a zinc–alginate (ZA) hydrogel–polymer
electrolyte (HGPE) with a non-porous structure was prepared via the solution-casting method
and ion displacement reaction. The resulting ZA-based HGPE exhibits a high ionic conductivity
(1.24 mS cm−1 at room temperature), excellent mechanical properties (28 MPa), good thermal and
electrochemical stability, and an outstanding zinc ion transference number (0.59). The ZA-based
HGPE with dense structure is proven to benefit the prevention of the uneven distribution of ion
current and facilitates the reduction of excessive interfacial resistance within the battery. In addition,
it greatly promotes the uniform deposition of zinc ions on the electrode, thereby inhibiting the growth
of zinc dendrites. The corresponding zinc symmetric battery with ZA-based HGPE can be cycled
stably for 800 h at a current density of 1 mA cm−2, demonstrating the stable and reversible zinc plat-
ing/stripping behaviors on the electrode surfaces. Furthermore, the quasi-solid-state ZIB with zinc,
ZA-based HGPE, and Ca0.24V2O5 (CVO) as the anode, electrolyte, and cathode materials, respectively,
show a stable cyclic performance for 600 cycles at a large current density of 3 C (1 C = 400 mA g−1),
in which the capacity retention rate is 88.7%. This research provides a new strategy for promoting the
application of the aqueous ZIBs with high performance and environmental benignity.

Keywords: hydrogel–polymer electrolyte; zinc-ion battery; zinc–alginate (ZA); dendrite-free

1. Introduction

The demand for energy is constantly increasing with the rapid growth of the popu-
lation. The production of energy from fossil fuels is no longer desirable and is gradually
declining, not only because of the depleting global mineral reserves but also the corre-
sponding serious environmental problems [1]. In recent decades, considerable efforts have
been made to pivot energy supplies from traditional fossil fuels to renewable resources
such as solar, wind, tidal, and geothermal energies [2]. Among them, rechargeable batter-
ies, e.g., lithium-ion batteries (LIBs), occupy a unique and important position as energy
storage systems [3], owing to their excellent energy density, good cycling performance,
and high theoretical specific capacity [4].However, despite their extended applications, the
flammable organic-liquid-electrolyte-based LIBs face numerous issues, e.g., environmental
pollution, limited lithium resources, high cost, and potential safety problems, which limit
their further development and motivate people to explore alternatives with high security,
low cost, and environmental friendliness [5]. Aqueous rechargeable batteries are one of
the most promising substitutes for grid-scale energy storage due to their high operational
safety, environmental benignity, and high electrochemical performance [6,7]. Until now,
various aqueous rechargeable batteries with different chemistries have been proposed,
including alkali metal cations (e.g., Na+ and K+) [8] and multivalent charge carriers (e.g.,
Mg2+, Zn2+) [9].
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With the continuous research and in-depth exploration of aqueous systems, aqueous
zinc-ion batteries (ZIBs) have been identified as a promising choice [10]. The virtues
of Zn anodes include low cost; high theoretical capacity (820 mAh g−1); mild, neutral-
pH electrolyte; and feasible redox potential (−0.78 V vs. standard hydrogen electrode);
etc. [11–13]. Previous studies regarding aqueous ZIBs have been primarily focused on their
active materials, and fruitful achievements have been made, such as manganese- [14,15],
vanadium- [16,17] and Prussian-based cathodes [18], as well as metallic zinc anodes [19,20].

As a pivotal component, the electrolyte also plays a vital role in battery chemistry
since it is in charge of providing a basic operating environment, transporting ions, and
connecting the two electrodes. However, traditional aqueous electrolytes confront plenty
of challenges, such as notorious side reactions, liquid leakage, the continuous consumption
of active zinc, and an irregular growth of zinc dendrites, which could cause severe safety
problems such as a short circuit or cathode dissolution and corrosion, hindering their
practical applications [21]. In recent years, increasing attention has been paid to electrolyte-
improvement strategies [22]. Many effective approaches have been developed to eliminate
the aforementioned issues, including the addition of functional additives [23], solvent
optimization [24], and the development of gel/solid-state electrolytes [25], etc. Weina et al.
introduced diethyl ether (Et2O) as an additive to improve the coulombic efficiency of a
Zn–MnO2 battery [26], in which a high capacity-retention of 97.7% was obtained after
4000 cycles at 5 A/g; the highly-polarized Et2O molecules were found to suppress dendrite
formation. Huayu et al. reported an acetamide-Zn (TFSI)2 eutectic electrolyte for ZIBs
to assist in the formation of a stable, solid electrolyte interphase on a Zn anode [27]; the
corresponding anode enabled reversible and dendrite-free zinc plating/stripping, even at
high rate. Nevertheless, these approaches usually require complex fabrication processes
and do not conform to the low-cost property of ZIBs.

A hydrogel–polymer electrolyte (HGPE) for ZIBs is a swollen polymer structure ob-
tained by mixing zinc salt solutions with polymeric matrixes to achieve good Zn2+ diffusion
as well as kinetic and high ionic conductivity [25]. With the restriction of water molecules,
the water-induced side reactions such as hydrogen evolution can also be largely inhib-
ited. In addition, HGPEs possess reasonable mechanical properties and can optimize
the diffusion of Zn2+ so as to restrain the dendrite formation [28]. Qin et al. proposed a
steric molecular combing strategy to synthesize a gel polymer electrolyte with a dynamic,
self-adaptive interface [29]; theoretical simulations and experimental characterizations
were conducted to reveal its strength in promoting the interfacial contact between the
electrolyte and anode surface, as well as to determine the cycling lifespan of the battery. In
our group’s previous study [30], a nylon-based composite gel membrane was fabricated via
sequential, layer-by-layer electrospinning; the composite electrolyte had a high ionic con-
ductivity, wide electrochemical window, and low activation energy, resulting in reversible
ion dissolution/deposition behaviors.

Herein, a non-porous HGPE with zinc–alginate (ZA) as its matrix was prepared
via the solution-casting method and ion displacement reaction. Alginic acid is a natural
polysaccharide existing in the cytoderm of brown algae with characteristics such as an
abundant yield, good biocompatibility, and easy degradation [31]. Additionally, it can
interact with different metal ions (calcium, sodium, zinc, etc.) to form salt and absorb
water molecules through plentiful hydroxyl groups, making it a potential material for
use as an HGPE. The ZA-based polymer membrane shows a high uptake to the water
electrolyte, high mechanical properties, good thermal stability, suitable ion conductivity,
and a remarkable Zn2+ migration number. The ZA-based HGPE with a dense structure is
proven to benefit the prevention of uneven ion migration and the reduction of excessive
interfacial resistance. Moreover, it greatly promotes the uniform deposition of Zn2+ on the
electrode surfaces, thereby inhibiting the growth of Zn dendrites. By adopting the prepared
HGPE, the Zn symmetric battery shows a reversible zinc plating/stripping behavior (up to
800 h) at a current density of 1 mA cm−2 and a capacity of 1 mAh cm−2. The Zn dendrite
suppression is further demonstrated in Zn/CVO cells with a superior cycling stability and
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a high reversible capacity. This research provides a new strategy for developing novel
hydrogel–polymer electrolytes for aqueous ZIBs with good electrochemical performance,
high security, and low cost.

2. Materials and Methods
2.1. Materials

A.R. (analytical reagent)-grade solidum alginate, CaCl2, V2O5, poly tetra fluoroethy-
lene (PTFE), and butyl alcohol (CH3(CH2)3OH) were obtained from Aladdin (Shanghai,
China). A.R.-grade zinc sulfate heptahydrate (ZnSO4·7H2O) was supplied by Macklin
(Shanghai, China). Acetic acid (CH3COOH), Zn metal foil (≥99.99%), and acetylene black
were acquired from Sinopharm Chemical Reagent (Shanghai, China). The glass-fiber sep-
arator (GF/F) was purchased from Whatman (Shanghai, China). All chemical materials
were used as received without further purification.

2.2. Preparation of ZA-Based HGPE

The ZA membrane was prepared using the solution-casting method. First, 0.4 g of
solidum alginate powder was completely dissolved in 40 mL of ultrapure water and stirred
at 500 rpm to form a homogenous solution. The homogenous solution was placed for 4h to
remove the residual bubbles after stirring. Afterwards, the solution was poured into a glass
Petri dish and dried on a hot plate at 50 ◦C for 6 h to evaporate the solvents. The achieved
solidum alginate membrane was tailored to circular pieces (d = 19 mm). The obtained circular
pieces were then immersed in a ZnSO4-based electrolyte (ZnSO4 aqueous solution, 3 mol L−1)
to conduct the displacement reaction. After standing overnight, the sample was rinsed with
ultrapure water and then dried to finally obtain a ZA membrane with an average thickness
of about 25 µm. The ZA membranes were saturated with a ZnSO4-based electrolyte for 24 h.
Further measurement could be carried out with the obtained ZA-based HGPE.

2.3. Synthesis of Ca0.24V2O5·0.83H2O Nanobelt (CVO) Electrode

The detailed procedures are the same with the reported literature [32]. A mass of
356 mg of commercial V2O5 and 111 mg of commercial CaCl2 were first dissolved in
30 mL (1.17 M) of an aqueous solution of acetic acid to form a homogeneous solution. The
solution was then transferred into a 50 mL Teflon-lined autoclave, which was put in a
constant-temperature oven and maintained at 200 ◦C for 72 h. After cooling, the sample
was collected and rinsed with ethanol and water. It was then dried in a vacuum at 50 ◦C
for 6 h. Finally, the CVO electrode was constructed by placing the mixture of 70 wt% active
material, 20 wt% acetylene black, and 10 wt% PTFE on the stainless-steel mesh and drying
it at 60 ◦C for 12 h in the oven.

2.4. Physical Characterization

The following measurements were performed at room temperature unless other-
wise stated.

The surface and cross-section morphology of the ZA polymer membrane and com-
mercial glass-fiber separator were observed using a scanning electron microscope (SEM,
Phenom ProX, Shenzhen, China) after being gold-sprayed. The samples were submerged in
liquid nitrogen for the cross-section observation. The mechanical properties of the materials
were tested by utilizing a Sansi UTM4304 (Shenzhen, China) electronic universal-testing
machine at a speed of 5 mm min−1 [33]. Thermogravimetric analysis (TGA) and differen-
tial thermal analysis (DTA) of the membranes were carried out in a NETZSCH-STA409
instrument (Selb, Germany) to determine the thermal stability.

After the dried ZA membrane or glass-fiber separator were immersed in n-butanol for
more than 12 h, the porosity (P) was calculated according to Equation (1):

P =
m2 − m1

ρV
(1)
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where m1 and m2 represent the weights of the ZA membrane and glass-fiber separator before
and after absorption of n-butanol, respectively; ρ is the density of n-butanol (0.8098 g cm−3

at 25 ◦C), and V is the volume of the membrane or separator, which is calculated with the
radius and the thickness of the samples.

The uptake to the ZnSO4 electrolyte (η) of the membranes was measured via Equation (2):

η =
Wt − W0

W0
× 100% (2)

where W0 and Wt represent the mass of the ZA membrane and glass-fiber separator before
and after the absorption of the liquid electrolyte, respectively.

2.5. Electrochemical Measurement

The following measurements were performed with a CHI660C electrochemical work-
ing station (Chenhua, Shanghai, China) at room temperature unless otherwise indicated.

Using the blocking-type cells with stainless steels (SS) as electrodes, the electrochemical
impedance spectroscopy (EIS) of the ZA-based HGPE or wet glass-fiber separator was
examined at different temperatures (25–75 ◦C) in the frequency range of 1–100 kHz (step
potential: 5 mV). Based on the results of EIS, the ionic conductivity of the electrolytes was
calculated according to Equation (3):

σ =
l

Rb A
(3)

where σ represents the ionic conductivity, l denotes the thickness of the ZA-based HGPE
or glass-fiber separator, Rb represents the bulk resistance from EIS, and A is the contact
area of the stainless-steel electrode that is in contact with the ZA-based HGPE or glass-fiber
separator.

Based on Evans’ technique [34], the Zn2+ ion migration number of the ZA-based HGPE
or wet glass-fiber membrane was estimated. The tZn

2+ was calculated by Equation (4):

tZn2+ =
Is(∆V − I0R0)

I0(∆V − IsRs)
(4)

where I0 and Is are the currents at the initial and steady states, respectively; R0 and RS
represent the cell resistance before and after polarization; and ∆V is the step potential.

The electrochemical stability windows of the electrolytes were measured on the
Zn/ZA-based HGPE or wet glass-fiber separator/SS cells by linear sweep voltamme-
try (LSV), which was carried out in the potential range of 0–2.1 V (vs. Zn2+/Zn) with a
scan rate of 2 mV S−1.

A galvanostatic cycling test was performed with the symmetric cells (Zn/ZA-based
HGPE or wet glass-fiber separator/Zn) to evaluate the Zn2+ plating/stripping stability
between the Zn/electrolyte interface. The symmetrical cells were cycled at a constant
current density of 1.0 mA cm−2 and an areal capacity of 1.0 mAh cm−2.

The electrochemical performance of the ZA-based HGPE was investigated using
CR2025-type button cells (Kejing, Hefei, China) on a Land battery test system. The coin
cells were assembled by sandwiching the ZA between the Zn metal anode and the CVO
cathode. To study the cyclic behaviors, the cells were charged and discharged at a current
density of 0.2 and 3 C (1 C = 400 mA g−1) constantly between 0.6 V and 1.6 V (vs. Zn2+/Zn).
For the rate evaluation, the cells were run for five cycles under the current densities of 0.2 C,
0.5 C, 1 C, 2 C, 3 C, 5 C, and 10 C, and then back to 0.2 C.

3. Results and Discussion

The photographs of the prepared ZA membrane and the commercial glass-fiber sep-
arator are shown in Figure 1. The surface of the ZA membrane is transparent and dense
(Figure 1a). As can be observed in Figure 1c, the surface of the ZA membrane is flat, and no
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obvious porous structure appears. This is distinctly different to the surface of glass-fiber
separator, which has a large number of interlaced glass-fiber filaments (Figure 1e). The
nonporous and compact structures of the ZA membrane are also proved by the porosity
(0.03%) calculated via Equation (1). The nonporous surface of the ZA membrane can
maintain a good interface contact with the Zn metal anode to assure uniform zinc-ion flux
distribution; therefore, Zn dendrite formation and the pulverization of Zn metal can be
restrained by the gel membrane. As the one of widely applied commercial separators, the
glass-fiber separator owns uniform pore distribution to ensure even current densities in
batteries. The porosity of the glass-fiber membrane is calculated by the porosity test to be
58.1%. By observing the cross-section of the ZA membrane (Figure 1d), it is found that its
thickness is about 25 µm, which is much thinner than the glass fiber separator (Figure 1f,
approximately 290 µm).
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Figure 1. The photographs of (a) the prepared ZA membrane and (b) the glass-fiber separator. SEM
images of (c) the surface of the ZA membrane, (d) the cross-section of the ZA membrane; (e) the
surface of the glass-fiber separator, and (f) the cross-section of glass-fiber separator.

Solid-state electrolytes with excellent mechanical strength are confirmed to benefit
stable Zn deposition and suppress metal dendrite growth [35,36]. Additionally, the GPEs
or separators should have the appropriate tensile strength to meet the requirements of
assembly and improve the security of batteries [37]. The mechanical properties of the ZA
membrane and the glass-fiber separator are obtained through the tensile test and the results
are shown in Figure 2a. The tensile strength and the breaking–elongation ratio of the ZA
dry membrane are 28 MPa and 1.75%, respectively. Correspondingly, those of the dry
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glass-fiber separator are 1 MPa and 1.5%, respectively. The mechanical properties of the ZA
membrane and the glass-fiber membrane after absorbing the ZnSO4-based electrolyte are
shown in Figure 2b. The tensile strength and the breaking elongation ratio of the ZA-based
HGPE are 13.5 MPa and 2.1%, respectively. On the contrary, the mechanical properties of
the wet glass-fiber separator hardly changed after absorbing the electrolyte. Consequently,
the obtained HGPE far exceeds the glass-fiber separator in terms of its mechanical strength,
which has a better mechanical inhibition effect on the growth of zinc dendrites on the metal
anode as well as fulfills the requirements of ZIB manufacturing and application.
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Figure 2. Stress–strain curves of the as-prepared ZA membrane and the glass-fiber separator (a) before
and (b) after soaking in the ZnSO4 electrolyte.

The thermal stability of the separator is directly related to the operating tempera-
ture, the electrochemical performance, and the safety of ZIBs. The thermal stability of
the ZA membrane and the glass-fiber separator was evaluated by thermogravimetric
(TG) and differential thermal analyses (DTA) at a temperature-rising rate of 10 ◦C min−1

from 25 to 600 ◦C under N2. As is shown in Figure 3a, the first thermal decomposition of
the ZA occurs between 50 ◦C and 200 ◦C, which corresponds to a 10% weight loss. The
mass loss of the ZA is obvious beyond 200 ◦C, and there is a sharp exothermic peak at
200 ◦C in Figure 3b, indicating that the ZA material is gradually decomposing. When it
reaches 600 ◦C, the remaining mass is 36.4%. As is shown in Figure 3c,d, the ZA-based
HGPE and the glass-fiber separator immersed in ZnSO4 electrolyte (i.e., the wet glass fiber)
are also tested through TG and DTA. It can be observed that the ZA-based HGPE starts to
volatilize the solvent slowly at 60 ◦C. When the temperature reaches 160 ◦C, the solvent
is completely volatilized, and the weight loss is 59%. On the other hand, the wet glass-
fiber separator starts to volatilize the solvent from 35 ◦C, and the solvent is completely
volatilized when the temperature gradually rises to 125 ◦C, with a remaining mass of
45%. The solvent evaporation process of the ZA-based HGPE is slower than that of the
commercial glass-fiber separator, which indicates that it has a better electrolyte-retention
capacity due to the existence of many hydrogen bonds as well as the improved thermal
stability of the system.

Ionic conductivity is regarded as one of the most crucial parameters for evaluating
the performance of electrolytes. The ionic conductivity of GPEs highly depends on the
uptake of liquid electrolytes [38]. The high porosity (58.1%) of the glass-fiber separator
ensures a high liquid absorption rate (179%). In contrast, the proposed ZA membrane
is non-porous and compact; however, its liquid absorption rate can still reach up to 79%
(Equation (2)). This is mainly because the large number of hydroxyl groups in the ZA
molecule chain are capable of building hydrogen bonds with water molecules, forming
the hydrogel–polymer electrolyte. The ionic conductivity of a ZA-based HGPE at room
temperature is calculated to be 1.24 mS cm−1, and that of the liquid-electrolyte-glass-fiber
separator system is 15.6 mS cm−1. The low ionic conductivity of the ZA-based HGPE can
be attributed to two aspects: the ZA membrane has a relatively lower electrolyte uptake due
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to its non-porous, dense structure; in addition, the thickness of the ZA membrane is about
25 µm, approximately 1/12 that of glass-fiber separator, leading to a lower conductivity
(Equation (3)).
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The ionic conductivities of the ZA-based HGPE and wet glass-fiber separator at
different temperatures from 25 ◦C to 75 ◦C are further measured, as is illustrated in Figure 4,
in which the insets are the impedance plots of the two separators. The bulk resistances of
the ZA-based HGPE and wet glass fiber can be acquired from the intercept of the straight
line on the real axis of EIS shown in the insets of Figure 4 [39]. The ionic conductivities of
the ZA-based HGPE and the wet glass-fiber separator increase with the temperature, which
can be reasonably explained by the Arrhenius ion-conduction mechanism. According to
the Arrhenius formula (σ = Aexp(−Ea/RT)), the approximate linear relationship between
Logσ and 1000/T for both separators can be achieved. The activation energy, Ea, of the ZA-
based HGPE is 12.54 KJ mol−1, and that of the wet glass-fiber separator is 6.671 KJ mol−1,
suggesting that the movement of Zn2+ ions in the HGPE requires more energy than in
the liquid electrolyte. The slightly larger Ea is due to the comparatively lower electrolyte
absorption of the ZA membrane, as well as its semi-solid state.

According to the space charge field theory, the contribution of Zn2+ cations to the
overall ionic conductivity can be assessed by the ion transference number (tZn

2+); when
tZn

2+ in the electrolyte is closer to one, the concentration polarization inside the battery
becomes smaller, leading to an improved charge–discharge capacity and a reduced growth
of zinc dendrites [40]. Chronoamperometry profiles of the zinc-symmetric cells with two
different electrolytes are displayed in Figure 5 to measure tZn

2+, in which the insets illustrate
the alternating impedance spectroscopy of the cells before and after the battery polarization.
The tZn

2+ values of the ZA-based HGPE and wet glass-fiber separator are calculated to be
0.59 and 0.21, respectively, according to Equation 4. The high Zn2+ transference number
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in the ZA-based HGPE can be explained by the formation of a hydrogen bond between
the hydroxyl groups of ZA and water molecules which greatly decreases the polarization
effects in the electrolyte, enhances the interfacial compatibility, and reduces the interfacial
impedance between the electrolyte and Zn anode. Therefore, even though it requires more
activation energy, most of the current is used to drive the transportation of Zn2+ ions,
leading to a larger tZn

2+ when compared to the wet glass-fiber separator. In other words,
the proposed ZA-based HGPE is more preferable for the migration of Zn2+ cations than the
SO4

2− anions and water molecules [41–43].
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The electrochemical stability of the electrolyte determines the charge/discharge volt-
age window and energy density of the batteries. From the liner sweep voltammograms
shown in Figure 6, no noticeable oxidative current is observed within the range of 0–1.5 V
(vs. Zn2+/Zn) for both ZA-based HGPE and the wet GF separator due to be saturated by
the same aqueous electrolyte, indicating that their electrochemical stability windows are
similar (being 1.5 V, suitable for the applications in ZIBs). The water in the ZnSO4-based
aqueous electrolyte begins to decompose to oxygen and hydrogen when the voltage is
larger than 1.5 V (vs. Zn2+/Zn) and the oxidative current appears in the LSV.
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The practical utilization of the Zn anodes in ZIBs has been hampered by the dendrite
formation during cycling. The nonuniform Zn2+ plating/stripping between the electrolyte
and Zn-anode surface is believed to be the dominating factor for Zn dendrite growth [44],
which could eventually pierce through the separator, resulting in internal short circuits.
To evaluate the reversibility of the Zn plating/stripping, the galvanostatic cycling test
is conducted using the Zn/ZA-based HGPE or wet separator/Zn symmetric cells at a
current density of 1 mA cm−2 and an areal capacity of 1.0 mAh cm−2. The obtained
time-dependent voltage profiles of the symmetric cells are shown in Figure 7. The initial
polarization voltage of the Zn/ZA-based HGPE/Zn symmetric battery is about 30 mV, and
the cycle life is 800 h. During the deposition and stripping period, the voltage curve is
relatively stable, and the polarization voltage is stable at about 15 mV at 800 h (Figure 7d),
which fully shows that Zn2+ ions can be deposited/stripped uniformly and stably on zinc
metal. On the contrary, the initial polarization voltage of Zn/wet glass-fiber separator/Zn
symmetric battery is about 70 mV. During 450 h of charge and discharge, the polarization
voltage experienced a process of decreasing and then increasing, mainly because of the poor
adhesion between the zinc metal and the separator. This uneven deposition of zinc leads to
the growth of zinc dendrites and the thickening of the SEI layer. At 443 h, the polarization
voltage curve begins to show relatively large fluctuations (Figure 7c) and the polarization
voltage becomes unstable, which is mainly due to the fact that the grown zinc dendrites
pierce the separator, short-circuiting the battery. The outstanding dendrite suppression of
the proposed ZA-based HGPE is further confirmed by the SEM morphology of the zinc
electrodes after long cycles. The Zn/ZA-based HGPE or wet glass-fiber separator/Zn cells
are disassembled after 400 h of cycling to investigate the surfaces of the metal zinc anodes,
as is shown in Figure 7f,g. The dense and uniform SEI (solid electrolyte interface) with a
relatively smooth and flat morphology can be observed in the surface of the zinc electrode
of the Zn/ZA-based HGPE/Zn symmetric battery, whereas irregular and broken dendrites
grow on the surface of zinc electrode in the Zn/wet glass fiber/Zn symmetric battery due
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to the uneven deposition and dissolution of Zn2+. These results prove that the ZA-based
HGPE can achieve more stable and reversible zinc deposition because of its excellent
mechanical properties, outstanding ion transference number and ionic conductivity, and
good interfacial compatibility with metal anode, resulting in the inhibition of the growth of
zinc dendrites.
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Figure 7. Electrochemical performance of Zn/ZA-based HGPE/Zn and Zn/wet glass-fiber separa-
tor/Zn symmetrical cells: (a) Zinc-ion plating/stripping voltage profiles of two symmetric cells at a
current density of 1 mA cm−2 and a capacity of 1 mAh cm−2. Detailed plating/stripping voltage
profiles at the (b) 90th–100th, (c) 440th–450th cycles, and (d) 790th–800th cycles. The SEM image of
(e) the pristine Zn electrode and the Zn metal surfaces after 400 cycles in (f) Zn/ZA-based HGPE/Zn
and (g) Zn/wet glass fiber separator/Zn cells.

For further assessing the performances of the ZA-based HGPE in ZIBs, the Zn/ZA-
based HGPE /CVO and Zn/glass fiber saturated by ZnSO4 liquid electrolyte/CVO cells
are assembled. The CVO materials are synthesized based on Section 2.3. Figures S1 and S2
illustrate the XRD pattern and the SEM morphology of the as-prepared CVO cathode mate-
rial, demonstrating its crystal structure and the typical nanobelt microstructure. Figure S3
compares the cyclic voltammetry (CV) curves of the Zn/ZA-based HGPE/CVO and
Zn/glass fiber saturated by the ZnSO4 liquid electrolyte/CVO cells. Multiple pairs of
redox peaks are observed, proving the multistep reaction mechanism associated with Zn2+

insertion/extraction, so that the CVO can be used as a compatible, cathode-active material
in the ZIB system. Figure S4 exhibits the CV curves of the CVO electrode at different scan
rates from 0.1 to 0.5 mV s−1. With increasing scan rates, the CV curves maintain a similar
shape with slight shifting of redox peaks.
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Figure 8 shows the rate performances (0.2 C, 0.5 C, 1 C, 2C, 3 C, 5 C, 10 C, and
0.2 C) of the batteries using ZA-based HGPE and wet glass fiber at room temperature
(1 C = 400 mAh g−1). The discharge specific capacities of the two cells at different C-rates
are separately 274.6 mAh g−1 vs. 259.4 mAh g−1 (0.2 C), 251.2 mAh g−1 vs. 246.8 mAh g−1

(0.5 C), 247.9 mAh g−1 vs. 227.3 mAh g−1 (1 C), 204 mAh g−1 vs. 189.1 mAh g−1 (2 C),
167.7 mAh g−1 vs. 145.7 mAh g−1 (3 C), 132.9 mAh g−1 vs. 105.2 mAh g−1 (5 C), and
40.2 mAh g−1 vs. 25.3 mAh g−1 (10 C). The discharge capacities of cells gradually decrease
with the increased C-rates, and later recover to their original values when the currents return
to 0.2 C. Moreover, the overpotential differences between the charging and discharging
curves in the cell with ZA-based HGPE are obviously lower than those in the wet glass-fiber
cell, especially at large C-rates. This is due to the excellent interfacial compatibility between
the HGPE and the zinc anode. On the contrary, although the wet glass-fiber separator has a
smaller internal resistance (Figure 4), this should be attributed to the movements of both
the Zn2+ cations and the SO4

2− anions. However, the transportation of the SO4
2− anions

will not benefit the rate performances of the ZIBs. As a result, the batteries using ZA-based
HGPE could deliver better rate performances and have higher reversible capacities at
various rates.

Acoustics 2022, 4 FOR PEER REVIEW  12 
 

 

and later recover to their original values when the currents return to 0.2 C. Moreover, the 

overpotential differences between the charging and discharging curves in the cell with 

ZA-based HGPE are obviously lower than those in the wet glass-fiber cell, especially at 

large C-rates. This is due to the excellent interfacial compatibility between the HGPE and 

the zinc anode. On the contrary, although the wet glass-fiber separator has a smaller in-

ternal resistance (Figure 4), this should be attributed to the movements of both the Zn2+ 

cations and the SO42- anions. However, the transportation of the SO42- anions will not ben-

efit the rate performances of the ZIBs. As a result, the batteries using ZA-based HGPE 

could deliver better rate performances and have higher reversible capacities at various 

rates. 

 

Figure 8. Electrochemical performances of the Zn/ZA-based HGPE/CVO and the Zn/wet glass-fiber 

separator/CVO at room temperature: (a) rate performances; charge–discharge curves of the 

Zn/CVO cells using (b) the ZA-based HGPE and (c) the wet glass-fiber separator. 

 

Finally, the cyclic properties of the ZIBs assembled with a ZA-based HGPE are inves-

tigated. As is shown in Figure 9a, the Zn/ZA-based HGPE/CVO cell retains 83.8% of the 

initial capacity after 150 cycles at a current density of 0.2 C, and the coulombic efficiency 

remains at approximately 100 %. In contrast, the Zn/wet glass-fiber separator/CVO cell 

retains only 60% of its initial capacity after 145 cycles, and, due to overcharge, the cou-

lombic efficiency drops to 45.64% at 142 cycles and is only 5.34% after 145 cycles. Similarly, 

as is shown in Figure 9b, the Zn/wet glass-fiber separator/CVO cell can only stably cycle 

for 370 cycles at a current density of 3 C, after which the capacity decays to 82.3% of the 

initial capacity and the coulombic efficiency drops sharply to only 30.7% at 379 cycles. 

However, the coulombic efficiency and capacity retention of the Zn/ZA-based HGPE 

/CVO cell are about 100% and 88.7%, respectively, after 600 cycles of charge and discharge 

at 3 C, demonstrating the high cycle reversibility of zinc ions in the cell. Figures 9c and 9d 

show the charge and discharge curves of the Zn/ZA-based HGPE/CVO and the Zn/wet 

glass-fiber separator/CVO cells at different cycles at 0.2 C and 3 C. These phenomena can 

be explained by the fact that, on one hand, the ZA-based HGPE has a denser structure and 

Figure 8. Electrochemical performances of the Zn/ZA-based HGPE/CVO and the Zn/wet glass-fiber
separator/CVO at room temperature: (a) rate performances; charge–discharge curves of the Zn/CVO
cells using (b) the ZA-based HGPE and (c) the wet glass-fiber separator.

Finally, the cyclic properties of the ZIBs assembled with a ZA-based HGPE are investi-
gated. As is shown in Figure 9a, the Zn/ZA-based HGPE/CVO cell retains 83.8% of the
initial capacity after 150 cycles at a current density of 0.2 C, and the coulombic efficiency
remains at approximately 100%. In contrast, the Zn/wet glass-fiber separator/CVO cell
retains only 60% of its initial capacity after 145 cycles, and, due to overcharge, the coulombic
efficiency drops to 45.64% at 142 cycles and is only 5.34% after 145 cycles. Similarly, as is
shown in Figure 9b, the Zn/wet glass-fiber separator/CVO cell can only stably cycle for
370 cycles at a current density of 3 C, after which the capacity decays to 82.3% of the initial
capacity and the coulombic efficiency drops sharply to only 30.7% at 379 cycles. However,
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the coulombic efficiency and capacity retention of the Zn/ZA-based HGPE /CVO cell
are about 100% and 88.7%, respectively, after 600 cycles of charge and discharge at 3 C,
demonstrating the high cycle reversibility of zinc ions in the cell. Figure 9c,d show the
charge and discharge curves of the Zn/ZA-based HGPE/CVO and the Zn/wet glass-fiber
separator/CVO cells at different cycles at 0.2 C and 3 C. These phenomena can be explained
by the fact that, on one hand, the ZA-based HGPE has a denser structure and better compat-
ibility with the metal anode, leading to the uniform deposition of zinc on the anode surface
and the inhibition of zinc dendrites; the corresponding Zn metal surface after 300 cycles
shows a relatively smooth and flat morphology, as is illustrated in Figure S5a. On the other
hand, the formation of irregular dendrites on the surface of the zinc and the formation of
dead zinc in the ZIB assembled with the wet glass-fiber separator, as is shown in Figure S5b,
damages the separator, causing the short-circuit of the battery. It is worth noting that the
capacities increase in the initial stage of the 3 C cycling process, mainly due to the activation
process and gelation process of the positive electrode material. The activation process lasts
from the first circle to 35 cycles, and the discharge specific capacity reaches the peak value
of 173 mAh g−1. After this, the cycle curves tend to be stable.
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0.2 C and (d) 3 C.

4. Conclusions

In this paper, a zinc–alginate membrane is prepared by casting method, and a ZnSO4
aqueous electrolyte is used to plasticize hydrogel–polymer electrolytes with compact
structure, extremely thin thickness, and high mechanical properties. The zinc–alginate
hydrogel–polymer electrolyte exhibits high ionic conductivity (1.24 mS cm−1 at room tem-
perature), high mechanical strength (28 MPa) and an excellent zinc-ion migration number
(0.59). The zinc–alginate hydrogel with a dense structure is proven to benefit the prevention
of the uneven distribution of ion current and the reduction of excessive interfacial resistance
within the battery. Additionally, it greatly promotes the uniform deposition of zinc ions
on the electrode, thereby inhibiting the growth of zinc dendrites. Consequently, when
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compared with wet glass-fiber separator, it has a better cycle performance and rate perfor-
mance. Based on the above advantages, the zinc–alginate hydrogel–polymer electrolyte
also exhibits good zinc-dendrite-inhibition ability during long cycles, and the zinc symmet-
ric battery using the hydrogel electrolyte can be cycled stably for 800 h. This experimental
work provides a simple method for the preparation of hydrogel–polymer electrolytes for
zinc-ion batteries with good electrochemical performance, high security, and low cost.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/polym15010212/s1, Figure S1: The XRD pattern of the CVO cathode; Figure S2: The SEM
micrograph of the CVO cathode; Figure S3: Cyclic voltammetry curves of the Zn/ZA-based HGPE/CVO
and the Zn/wet glass-fiber separator/CVO cells, scan rate: 0.2 mV s−1; Figure S4: Cyclic voltammetry
curves of Zn/ZA-based HGPE/CVO cell at different scan rates: 0.1–0.5 mV s−1; Figure S5: SEM
micrographs of the Zn metal surfaces after 300 cycles at 3 C in (a) Zn/ZA-based HGPE/CVO cell and (b)
Zn/wet glass-fiber separator/CVO cell.
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