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Abstract: Weed control is among the most challenging issues for crop cultivation and turf grass
management. In addition to hosting various insects and plant pathogens, weeds compete with
crop for nutrients, water and sunlight. This results in problems such as the loss of crop yield, the
contamination of food crops and disruption in the field aesthetics and practicality. Therefore, effective
and efficient weed detection and mapping methods are indispensable. Deep learning (DL) techniques
for the rapid recognition and localization of objects from images or videos have shown promising
results in various areas of interest, including the agricultural sector. Attention-based Transformer
models are a promising alternative to traditional constitutional neural networks (CNNs) and offer
state-of-the-art results for multiple tasks in the natural language processing (NLP) domain. To this
end, we exploited these models to address the aforementioned weed detection problem with potential
applications in automated robots. Our weed dataset comprised of 1006 images for 10 weed classes,
which allowed us to develop deep learning-based semantic segmentation models for the localization
of these weed classes. The dataset was further augmented to cater for the need of a large sample set of
the Transformer models. A study was conducted to evaluate the results of three types of Transformer
architectures, which included Swin Transformer, SegFormer and Segmenter, on the dataset, with
SegFormer achieving final Mean Accuracy (mAcc) and Mean Intersection of Union (mIoU) of 75.18%
and 65.74%, while also being the least computationally expensive, with just 3.7 M parameters.
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1. Introduction

Global population growth has resulted in an increase in food demand. To meet the
anticipated demand, the agricultural produce needs to increase by approximately 70% [1].
The farm output and its quality, along with crop cultivation, are, however, adversely
affected by a number of factors. Among these issues is the growth of weeds, which occurs
simultaneously with crop growth. A variety of weed plants exist that spread quickly and
thus negatively impact crop yield. These weeds directly compete with crops for resources
such as water, nutrients and sunlight, which leaves the crops prone to a number of diseases.
Studies show that the vegetable yield decreases by 45% and up to 95% in the case of weed–
vegetable confrontation [2]. This extends even beyond crop cultivation; weed growth is also
a problem in turfed surfaces such as those of football and golf, residential lawns, parks and
sports fields. In order to tackle the issue of weed gardening, appropriate means must be
taken. The focus of this paper is weed control for the latter case of turf grass management,
but the same technology might be used for the former case of crop cultivation.

Weed control is a very challenging task. Various strategies can be employed by farmers
for weed reduction in targeted areas. These methodologies can be divided into five main
categories: (a) preventative—prevent weed growth preemptively; (b) mechanical—mowing,
hand weeding and mulching; (c) cultural—maintaining field hygiene; (d) biological—
utilizing weeds’ natural adversaries, such as insects, grazing animals, etc.; (e) chemical—
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spraying herbicides [3]. All of these approaches entail a few drawbacks. These can be either
in terms of the required costs/time and crop or environment contamination. As a result,
the optimal solution for economic and environmental interests is the development of a
vision-based system for the automatic removal of weed plants.

Over the past few years, deep learning (DL) has made huge advancements in multiple
domains, including those of vision, audio and text. Object detection and segmentation
models designed with the deep learning approach have exhibited high precision in the
identification of target objects. As mentioned, weed detection is a very daunting problem,
owing to the semantic similarities between weeds and their surrounding background.
Common challenges faced during weed detection are similarities in color and texture,
occlusion and visual similarities between different weeds. However, advancement in
vision-based intelligent machines have made it possible to design an accurate system for
the detection of weeds under such complex background conditions.

The target of this work is to propose a deep learning-based model that is able to classify
and localize the weed area precisely on grassy fields, i.e., perform weed segmentation,
using Visual Transformer [4]. In contrast to weed detection in a crop-filled setting, this
work focuses more on detecting weeds in a grassy environment. Owing to the success
of the Transformer model in NLP, recent studies have focused on importing it into the
visual domain, where it has shown great potential. In the context of weed detection,
Youjie et al. [5] have already established the effectiveness of the attention mechanism for the
precise segmentation of weeds of varying shapes, and Visual Transformer is an extension
of the non-local attention technique.

In this work, we explore the applications of the Transformer model in the context of
weed detection and localization. The successful implementation of such a system would
greatly reduce the required time and effort for weed identification and removal. This
DL-based system should also be robust to a variety of real-life visual challenges, such as
deformation, different illumination conditions, occlusion, etc. Such a detection system can
be deployed within an autonomous wheeled robot, capable of performing surveillance
in the entirety of the grass field and identifying weeds using solely vision. An actuator
function similar to weeding by hand might be used to mechanically pull the detected target
weeds. Conversely, we can also have sprinklers acting on the exact location of the weed
to remove it with a minimum amount of chemicals, making the system eco-friendly and
cost/time efficient.

Following our experiments, we report the results of three different types of Transformer
architectures, including Swin Transformer [6], SegFormer [7] and Segmenter [8], on our in-
house weed dataset. The weed dataset consisted of 1006 images that allowed us to segment
10 types of weeds in grass. The dataset was further augmented to cater for the needs of
a large sample set of Transformer models. To increase the trainable sample size in terms
of its quality and quantity, we performed a range of different augmentation techniques.
The results from these trained models were reported using different metrics. SegFormer
achieved the best result on our dataset, with final mAcc and mIoU of 75.18% and 65.74%,
respectively. Swin Transformer showed comparable performance to SegFormer, albeit
with a much higher number of network parameters. Thus, it may be inferred that the
SegFormer-based system would be the most suitable for the automation of weed removal
from grassy surfaces.

The keys contributions are two-fold:

1. Predicting accurate segmentation masks for weeds using Transformer-based architec-
tures for the purpose of automatizing weed control with a focus on turf management.

2. We investigate a range of recent Transformer models using our weed dataset and
make detailed comparisons in terms of performance and complexity.

In Section 2, we provide a detailed review of previously designed methods for similar
purposes. Section 3 contains information about the Transformer model architectures
employed in the study. Section 4 contains details about our dataset, along with the applied
augmentations and evaluation metrics. Subsequently, in Section 5, we provide the details of
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our experiments, the comparison of different models and the extracted conclusions. Finally,
in Section 6, we provide a brief summary of the work performed.

2. Related Studies

In this section, we provide a brief overview of the Transformer model and its use in
computer vision, along with a review of previously proposed vision-based automatic weed
detection methods.

2.1. Transformer Architecture

Originally introduced in the context of machine translation, Transformer models are
now used to solve a wide variety of tasks in multiple domains. In the context of natural
language processing, recurrent or convolutional neural network (CNN) models based
on encoder and decoder architectures were common before the inception of Transformer
models. The Transformer gets rid of the recurrent and convolution layers and proposes a
simple model based entirely on the attention mechanism. Transformer models employ the
self-attention mechanism, where each word attends to every other word in the same input
sequence. As a result, the Transformer model takes significantly less time to train than its
counterparts while achieving more parallelization [4].

Building upon the original Transformer architecture, researchers have tried import-
ing the architecture into the domain of computer vision [9–12]. However, that results
in a quadratic cost with reference to the number of pixels, since self-attention in images
treats each pixel as a separate token and attends to every other pixel in the image. This,
in turn, makes the direct application of self-attention to images practically unfeasible,
given the huge number of pixels present in a single image. Various techniques have been
designed to mitigate the issue of the quadratic cost of Vision Transformer models. Dosovit-
skiy et al. [12] applied a pure Transformer block on a sequence of image patches termed
Visual Transformer (ViT). In that study, the input image was split into fixed-sized patches,
each treated as a single token. The patches were then flattened and underwent trainable
linear projection. Positional embedding vectors were added to each input patch, and these
patches were then feed-forwarded through a Transformer encoder for classification. Unlike
CNNs, in this architecture, the authors did not include any explicit inductive bias about
the 2D structure of images, except in the patch extraction and resolution adjustment step.
Stand-Alone Self-Attention (SASA) [10] is a fully self-attentive model that replaces all the
local convolution operations with self-attention instead of employing self-attention just
as an augmentation over convolutions. This substitution operation is performed on the
ResNet architecture. Vaswani et al. [13] introduced a new series of self-attention models
called HaloNets that are built around the concept of blocked local self-attention, similar
to SASA [10]. Swin Transformer [6] is another self-attention-based approach for visual
detection. It involves splitting the image into windows of varying sizes between different
layers, where self-attention is applied inside these shifted windows. Experiments exploring
different locality patterns of the self-attention modules have also been performed [14–16].

2.2. Deep Learning (DL) Models for Weed Detection and Transformer Models in the
Agricultural Sector

Machine learning (ML) has proved to be very effective for the development of au-
tomatic weed detection and classification systems for deployment in a wide range of
circumstances [17]. Here, we provide a brief overview of previously performed research in
this context.

Historically, various image processing techniques were used for the classification of
weeds and crops [18,19]. Different shape features are extracted, and the feature vectors
are then evaluated using a single-layer perceptron classifier. In contrast to ML techniques
that require substantial domain expertise to properly design feature extractors, DL allows
the machine to automatically extract the most characteristic features of objects from raw
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images. DL is more robust, compared with traditional ML models, to different variations in
the input images, leading to better classification results.

Espejo-Garcia et al. [20] performed crop (tomato and cotton)/weed (Black nightshade
and velvetleaf) identification using a combination of pre-trained convolutional neural
networks with traditional machine learning classifiers. Jin et al. [21] identified weeds in a
vegetable plantation setting. Contrary to other weed detection systems, their work focused
on training a CenterNet model that was first used to detect vegetable and draw bounding
boxes around them. Afterwards, the remaining, green-colored objects that fell out of the
bounding boxes were classified as weeds. The detection of a large variation in weed species
is feasible using this methodology. In their work, the weeds were further extracted from the
background using color-index-based segmentation. Vaidhehi et al. [22] developed a model
for weed and paddy detection using regional convolutional neural networks (R-CNNs).
The results from the R-CNNs were compared with conventional CNN models and other
segmentation models. Wang et al. [22] investigated an encoder–decoder based network for
the semantic segmentation of crops and weeds. The network was optimized using different
input representations. In their experiments, the inclusion of NIR information significantly
improved the segmentation accuracy. Youjie et al. [5] combined several techniques with a
dilated CNN model to enhance the performance of weed segmentation. They employed
hybrid dilated convolution, UFAB (Universal Function Approximate Block), drop-block
techniques in the network backbone, bridge attention blocks to link the encoder to the
decoder and SPRB (Spatial Pyramid Attention Block) to refine the segmentation result.

Visual Transformer can be treated as an extension of such non-local attention technique.
Reedha et al. [23] explored the application of Visual Transformer (ViT) to weed and crop
recognition. For this study, the images were collected using a high-resolution camera
mounted on an unmanned aerial vehicle (UAV). The UAV was deployed in beet, parsley
and spinach fields for dataset collection. Experiments were conducted to compare the
effect of varying training and test set sizes. Similarly, Liang et al. [24] used ViT for the
classification of soybean and weeds.

Although not directly related to weed detection, there exist studies where ViT models
were applied to a diverse set of agricultural problems. In the quest of applying the Trans-
former model to plant pathology, P. S. Thakur et al. [25] proposed a model named PlantXViT.
The proposed model combines the capabilities of traditional convolutional neural networks
with Vision Transformer to efficiently identify a large number of plant diseases in several
crops. W. Zhu et al. [26] proposed a method to fuse local and global features of images for
feature analysis. They introduced the Transformer encoder as a convolutional operation
into the improved model, thereby establishing dependencies between long-distance fea-
tures and extracting the global features of disease images. The center loss was introduced as
a penalty term to optimize the common cross-entropy loss, thus expanding the inter-class
differences of crop disease features and narrowing their intra-class gaps. Y. Shen et al. [27]
applied Transformer to the field of the semantic segmentation of agricultural aerial images
in an attempt to account for the drawback regarding inadequate long-range information
utilization associated with fully convolutional networks. A hybrid Transformer (MiT) is
employed in the encoder stage to enhance the field anomaly pattern recognition capability,
and a squeeze and excitation (SE) module is utilized in the decoder stage to improve the
effectiveness of key channels. In order to solve the problems of complex crop disease
background and small disease area, [28,29] proposed a lightweight ConvViT model, which
combines the convolutional structure and the Transformer structure, and modified the
patch embedding method to retain more image edge information for the purpose of facili-
tating patching information exchange between them. R. Reedha et al. [23] studied ViT for
plant classification in unmanned aerial vehicle (UAV) images, demonstrating the potential
of ViT for remote sensing image analysis tasks.

The aim of our study is to find the best model for the precise localization and classifi-
cation of weeds so as to minimize weed removal efforts. To this end, this paper explores
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the application of recent ViT-based segmentation models, which include Swin Transformer,
SegFormer and Segmenter, for the aforementioned purpose.

3. Methods

For our experiments, we selected three high-performing Transformer-based segmen-
tation models, Swin Transformer, SegFormer and Segmenter. Public implementations
were used for network training. A brief description of each model is provided in the
following sections.

3.1. Swin Transformer

Swin Transformer is built by replacing the standard multi-head self-attention (MSA)
module in a Transformer block with a module based on shifted windows, whereas the other
layers are kept the same. As illustrated in Figure 1b, a Swin Transformer block consists of a
shifted window-based MSA module, followed by a 2-layer Multilayer Perceptron (MLP)
with GELU nonlinearity in between. A LayerNorm (LN) layer is applied before each MSA
module and MLP, and a residual connection is also applied after each module. In addition,
Swin Transformer also uses the hierarchical feature map constructed by the Patch Merging
block to compute the representation of the input. The process of Patch Merging is shown in
Figure 2.
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Figure 2. Process of Patch Merging.

As shown in Figure 1, the architecture alternates between Patch Merging and Swin
Transformer blocks. Starting off from an input image of size H × W, the initial Patch
Splitting module splits the image into non-overlapping patches, each of which is then
treated as a ‘token’ in the input sequence of the split patches. Each patch size is 4 × 4,
with a feature dimension of 4 × 4 × 3 = 48. A linear embedding is applied on these raw-
pixel valued vectors in order to project it into an arbitrary dimension C. Within the whole
architecture, the Patch Merging module builds hierarchical feature maps by concatenating
the features of each group of 2 × 2 neighboring patches, where the 2 × 2 features within
each patch are placed in the channel dimension. This results in a 2× downsampling of
resolution. So, the H/4×W/4 number of tokens, or patches, is reduced to H/8×W/8. The
number of tokens is further reduced in the subsequent modules as visualized in Figure 1.

The features coming from the Patch Merging modules are passed through a Swin Trans-
former block that applies Self-Attention to the partitioned image. The input sequence length
is preserved after the application of the attention blocks. Self-attention is implemented in
two steps, Window-based Self-Attention (W-MSA) and Shifted Windows Self-Attention
(SW-MSA), where these two modules are placed in a sequential manner. In W-MSA,
self-attention is applied locally within each window, which leads to a linear increase in
complexity with reference to the number of windows or patches. This is an improvement
over the previous ViT model, where attention was calculated between each patch/token,
which resulted in quadratic complexity with reference to the number of tokens. The SW-
MSA approach introduces connections between neighboring non-overlapping windows
coming from the previous layer by means of shifting the window configuration slightly.

3.2. SegFormer

SegFormer is an efficient semantic segmentation framework based upon the en-
coder and decoder concepts. The encoder outputs multi-scale features, and a simple
All-MLP decoder aggregates this multi-scale information from different layers, combin-
ing both local and global attention to compute rich representations in order to perform
semantic segmentation.

Figure 3 shows the proposed architecture of SegFormer, which is divided into two
sections, the encoder and the decoder. The input image is first divided into 4 × 4 patches,
unlike ViT, which uses a patch size of 16 × 16. This results in better performance in dense
prediction tasks. The Transformer block in the encoder is composed of three sub-modules:
(a) Efficient Self-Attention, (b) Mix-Feedforward Network (FFN) and (c) Overlapping Patch
Merging. Efficient Self-Attention is similar to the multi-head self-attention in the original
Transformer model; however, it employs a sequence reduction process, as introduced in [7],
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that results in the reduction in the sequence length using a reduction ratio. This helps
to lower the computational cost of the self-attention process. ViT uses fixed resolution
Position Encodings (PEs) in order to incorporate positional information, which reduces
the performance in the case in which the test and the training resolution differ, since the
positional code has to be interpolated for the new resolution. To solve this, SegFormer
uses a 3 × 3 Conv in the feed-forward network for data-driven positional encoding. Lastly,
the Overlap Patch Merging block is used to reduce the feature map size throughout the
architecture. This results in hierarchical feature representation comprising high-resolution
coarse features and low-resolution fine-grained features. Hierarchical feature maps of sizes
1/4, 1/8, 1/16 and 1/32 of the original image resolution are obtained as such.
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The decoder modules contain a full-MLP layer, which takes the features from the
encoder module and aggregates them together. The process is performed in four steps:
(a) Multi-level features from the encoder go through an MLP layer to be unified in the
channel dimension. (b) The features are then upsampled to 1/4 of their sizes and concate-
nated together. (c) An MLP layer then concatenates the upsampled features. (d) Lastly,
an MLP takes these fused feature maps to predict the final segmentation mask of size
H/4 ×W/4 × N resolution, where N refers to the number of categories.

3.3. Segmenter

Segmenter is also a Transformer-based image segmentation model built upon the
original Vision Transformer (ViT) that allows modeling global dependencies early on in the
architecture. The decoder module of Segmenter is based on the Transformer framework. It
adds K learnable class embeddings to Mask Transformer, which is input to Transformer as
a patch embedding; then, a multiplication operation is performed between the class and
the patch embedding, followed by softmax application and 2D feature conversion, with
a restoration of the original input image size after upsampling in the end. The final class
labels are obtained from these embeddings using a Point-wise Linear decoder or a Mask
Transformer decoder. The structure of Segmenter is shown in Figure 4.
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The input image, x ∈ RH×W×C, is first split into a sequence of patches. The raw RGB
values are then flattened; then, these vectors are passed through a linear embedding for
producing a sequence of patch embeddings. A learnable position embedding is added to
the sequence of patches individually for incorporating the location information. These
semantic embeddings are then passed through standard Transformer blocks consisting
of multi-head self-attention and feed-forward layers to obtain contextualized encoding
containing rich semantic information.

This sequence of embeddings is then passed to the decoder, which learns to map these
patch-level encodings to patch-level class scores, which are then upsampled using bilinear
interpolation to obtain pixel-level scores. This can be performed using a Point-wise Linear
decoder or a Mask Transformer decoder. For the Point-wise Linear decoder, a Point-wise
Linear layer is applied to the encoder outputs to produce patch-level class logics. This
sequence is reshaped into a 2D shape and upsampled to the original image size. Final
segmentation maps are obtained by applying softmax to the class dimension. For the Mask
Transformer decoder, a set of K learnable class embeddings, where K refers to the number
of classes, are introduced. These are all assigned to a specific semantic class and are used
to predict the class map. These class embeddings are processed together with the output
embedding of the encoder. The decoder is a Transformer encoder by design that generates
K masks by computing the scalar product between L2-normalized patch embeddings and
the aforementioned class embedding. A set of mask sequences are obtained, which are then
reshaped into a 2D mask and upsampled to the original image size. The final segmentation
map is obtained after the application of softmax followed by LayerNorm.

4. Dataset

As part of the evaluation, we constructed a weed dataset that could be used to assess
the model’s performance. The dataset included 10 categories of weeds: clover (Trifolium
repens), common ragweed (Ambrosia artemisiifolia), crabgrass (Digitaria), dandelion
(Taraxacum), ground ivy (Glechoma hederacea), lambsquarter (Chenopodium album), pig-
weed (Amaranthus), plantain (Plantago), tall fescue (Festuca arundinacea) and unknown
weed. The unknown weed category contained weeds with features different from those of
other classes for general weed detection. An example case of every category is visualized
in Figure 5, where we can see diverse colors, textures and weed shapes on grassy back-
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grounds. Note that the density and the colors of grass in the images are different in the
cluttered background.
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Figure 5. Examples of original images in the weed dataset. From left to right: The first row contains
clover, common ragweed, crabgrass, dandelion and ground ivy; the second row contains lamb-
squarter, pigweed, plantain, tall fescue and unknown weed. (In the sample shown in Figure 5, each
picture has only one category of weed, but each picture in the actual collected dataset may have the
appearance of multiple types of weeds).

The dataset contained 1006 images in total, as shown in Table 1. All images were taken
by lab members using cell phone cameras in Jeonju and Wanju, Jeonbuk Province, in South
Korea. As the images were taken in real fields instead of a laboratory, they involved a num-
ber of visual challenges, including complex background conditions, differing illumination
settings, etc. In addition, the density or the grass growth state varied between different
fields. Furthermore, there also existed intra-class variations for each weed class in terms
of their color, texture and shape. In Figure 5, we can see complex backgrounds for clover
and unknown weed and different illuminations between crab grass and lambs quarter,
along with various stages of grass growth in most of the images. In Figure 6, we can find
examples of intra-class variations. All these challenges should be dealt with properly to
achieve accurate weed segmentation.

Table 1. Image dataset of weeds.

Name of Class No. of Instances

Clover 717
Common ragweed 105

Crabgrass 219
Dandelion 205
Ground ivy 70

Lambsquarter 55
Pigweed 92
Plantain 451

Tall fescue 175
Unknown weed 93

Total 2184
Table 1: The table shows the total number of weeds contained in the 1006 weed dataset. It can be inferred that the
distribution of weed species is not even.
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Note that such diversity in a training dataset may help to train a model with high
robustness, on the condition that its sample size is above a certain threshold. That is part of
the reason why the training data should be augmented to enhance the diversity. For our
training, we split the dataset into 805 and 201 images for training and testing, respectively.

4.1. Data Augmentation

Data augmentation is used to increase the training data to evade overfitting and
develop powerful models with limited amounts of initial training samples. However, the
results of augmentation should look similar to the images captured in real fields. For
augmentation, we used multi-scale training and geometric transforms, including random
cropping, random flipping and random rotation, along with photometric distortions,
including brightness and contrast changes. Figures 7 and 8 shows some examples of
augmented images using geometric transforms and photometric distortions.

In multi-scale training, an original image with size 512 × 512 is randomly changed
to a scale of 512–2048 during training. Multi-scale training increases the robustness of the
model by training it on images of different sizes.

4.2. Evaluation Metrics

We evaluated the semantic segmentation results in terms of two metrics, the pixel
accuracy and IoU (Intersection of Union). It is important that the metrics reflect the purpose
of weed segmentation. Since the segmentation results can be utilized to control a robot
manipulator or to drive a weedicide spray nozzle, the exact localization of the weed area is
important in order not to damage any healthy grass.
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4.2.1. Pixel Accuracy (PA) and Mean PA (mPA)

The pixels belonging to a class are specified by the target mask, which can be compared
with results from test data. The pixel accuracy in a class can be calculated as the ratio of the
number of correctly classified pixels to the total number of pixels as

PA = ∑i nii/ ∑i ti (1)

The class-wise PA can be averaged over all classes of weed objects to calculate the Mean
Average Precision (mAP). Because the exact mask of ground truth for weeds is impossible
to specify due to their complicate boundary, the PA can be treated as an approximate to
measure the weed area.

4.2.2. Intersection over Union (IoU) and Mean IoU (mIoU)

The IoU is the area of overlap between the predicted segmentation mask and the
ground truth divided by the area of union between the predicted segmentation mask and
the ground truth. In segmentation, the area is calculated with the number of pixels in a
segment. In addition, the object-wise IoUs can be averaged over all objects included in an
image to produce the mIoU. From the point of view of its implementation, the IoU for weed
objects is important to properly remove the weed using a robot or weedicide to exactly
localize the end effector.



Sensors 2023, 23, 65 12 of 15

In this study, we focused on the weeds that needed to be removed, but the area of
background grass is usually much wider than the sparse weed areas, resulting in the mIoU
being larger than the IoU of each weed object.

5. Results
5.1. Implementation Details

For every experiment, we used pre-trained ImageNet weights. For the comparisons,
each model implemented in the experiments was the smallest version from its respective
family, i.e., Swin Transformer-tiny, SegFormer_mit-b0 and Segmenter_vit-tiny. In Segmenter
implementation, the best results were produced using two classes for semantic embeddings,
namely, background and weed.

We used a single 2080ti GPU for training with the same training parameters. The
AdamW [30] optimizer was chosen with an initial learning rate of 6 × 10−5 and a weight
decay of 0.01. The scheduler took the linear learning rate decay with a linear warm-up of
1500 and 160 k iterations. For augmentation, we adopted the default settings of random
horizontal flip MMSegmentation [31], random rescaling in the ratio range of [0.5, 2.0],
random rotation in the range of [0, 360] and random photometric distortion.

5.2. Prediction Analysis

The overall segmentation result of each Transformer is summarized in Table 2, whereas
the expanded results can be found in Table 3. As shown in Table 2, SegFormer reported
the best performance, with the smallest number of parameters, in terms of mIoU and
pixel accuracy. On the other hand, Swin Transformer also displayed results comparable
to SegFormer.

Table 2. Experimental results.

mIoU mAcc Param

Swin Transformer 65.41 72.73 29 M
SegFormer 65.74 75.18 3.7 M
Segmenter 59.24 69.31 6 M

Table 3. Experimental results.

Class
Swin SegFormer Segmenter

IoU Acc IoU Acc IoU Acc

Background 90.63 97.47 91.74 95.56 90.13 95.13
Clover 78.61 92.28 78.4 91.06 73.36 87.05

Common ragweed 79.15 88.54 82.47 92.53 74.95 83.78
Crabgrass 32.48 34.79 44.26 62.48 40.11 53.76
Dandelion 73.09 82.29 68.91 76.26 63.64 71.79
Ground ivy 86.65 89.05 90.42 97.43 90.75 97.69

Lambsquarter 82.93 88.35 73.86 88.53 76.54 83.76
Pigweed 32.45 36.81 36.1 46.28 22.91 35.29
Plantain 68.71 72.77 63.79 67.57 63.0 68.97

Tall fescue 55.64 72.53 55.41 82.34 51.28 80.12
Unknown weed 39.12 45.14 37.8 42.54 4.9 5.05

Table 2 shows the results of each model for every class individually. The weeds,
including clover, common ragweed, dandelion, and lambs, had high IoU and pixel accuracy.
In contrast, the results on crabgrass and dandelion were comparatively low.

Figure 9a shows the prediction for lambsquarter, where Swin Transformer and Seg-
Former produced almost perfect segmentation masks, except for the shadowy region,
while Segmenter made a mistake on the boundary of the leaf. In Figure 9b, both crabgrass
and tall fescue are included in one image. The Swin Transformer and SegFormer made
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precise masks for the weeds, unlike Segmenter, which failed to produce accurate results. In
addition, the segmentation results tried to follow the zigzagged boundary of weed, and
even the ground truth mask was smoothly approximated. As shown in the figure, Swin
Transformer provided the best result. In Figure 9c, the image contains clover and plantain
weeds, and small areas of clover were not included in the ground truth. The results of
SegFormer showed that it found out the missing clover areas in the ground truth mask,
but Segmenter could not. The results showed that the generalization ability of SegFormer
was better than that of Segmenter. In Figure 9d, the ground truth mask only contained
ground ivy with a small portion of dandelion towards the lower-left image boundary. Swin
Transformer successfully found the dandelion bit that others did not. In general, the object
around the boundary is hard to locate or identify, because only limited context information
is available to make a proper inference. Swin Transformer was the best in terms of this
generalization property with limited context information on the image boundary.
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In conclusion, SegFormer produced the best results in terms of IoU and pixel Accu-
racy of weed objects with the smallest number of parameters, but Swin Transformer was
comparable to or better than SegFormer in terms of the generalization ability, while having
almost 5× the number of parameters of SegFormer.

6. Conclusions

The removal of weeds is essential to successful turf grass management and crop
cultivation. Towards this goal, we developed deep learning-based Transformer models to
autonomously detect and localize 10 classes of weeds. The dataset introduced in this study
includes weed images taken under variable environmental conditions. Case studies were
performed on the dataset using three Transformer models, Swin Transformer, SegFormer
and Segmenter. The Segmenter model achieved final Mean Accuracy (mAcc) and Mean
Intersection of Union (mIoU) of 75.18% and 65.74%. The natural succession to this work is
the successful incorporation of the trained models in automated robots for deployment.
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