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Abstract: Extreme angles in lower body joints may adversely increase the risk of injury to joints.
These injuries are common in the workplace and cause persistent pain and significant financial
losses to people and companies. The purpose of this study was to predict lower body joint angles
from the ankle to the lumbosacral joint (L5S1) by measuring plantar pressures in shoes. Joint angle
prediction was aided by a designed footwear sensor consisting of six force-sensing resistors (FSR)
and a microcontroller fitted with Bluetooth LE sensors. An Xsens motion capture system was utilized
as a ground truth validation measuring 3D joint angles. Thirty-seven human subjects were tested
squatting in an IRB-approved study. The Gaussian Process Regression (GPR) linear regression
algorithm was used to create a progressive model that predicted the angles of ankle, knee, hip, and
L5S1. The footwear sensor showed a promising root mean square error (RMSE) for each joint. The
L5S1 angle was predicted to be RMSE of 0.21◦ for the X-axis and 0.22◦ for the Y-axis, respectively. This
result confirmed that the proposed plantar sensor system had the capability to predict and monitor
lower body joint angles for potential injury prevention and training of occupational workers.

Keywords: foot sensor; joint angle detection; lower body; machine learning; inertial measurement
unit

1. Introduction

Millions of US workers go to work every day with an expectation of returning home
safely at the completion of their shifts. Despite immense efforts in mitigation against
musculoskeletal injury, 26.1 out of every 10,000 workers in the United States experience
a musculoskeletal injury every year [1]. The numbers have been improved through the
National Institute of Occupational Safety and Health (NIOSH) hierarchy of controls [2] for
injury mitigation. As of 2019, injuries remain at 2.6 out of every 100 workers, The Bureau
of Labor Statistics (BLS) reports this number is only down 13% since 2014 [3]. Numbers
have gone down since 2019, which can be attributed to the COVID-19 pandemic and
its subsequent reduction of the workforce. To fully achieve the potential of the current
mitigation efforts, the worker must be able to achieve proper body positioning while
performing their work [4].

Aside from injuries in the workplace, people are constantly bending, twisting, walking,
and lifting things throughout the day. During these movements, a ground reaction force is
created between the ground and the bottom of the feet. This force is then transferred up the
body through the ankles and knees, and then ultimately into the hips and lower back [5].
When the lower extremities perform these tasks in an awkward positioning, the force is
increased in the joints, which in turn increases the risk of injury. Real-time monitoring to
identify these awkward positions allows for directed interventions to improve the body
mechanics people utilize, thus reducing their risk of musculoskeletal injury [6].
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Multiple technologies have been employed to measure joint angles of the human body.
Table 1 summarizes various joint angle detection methods. IMU-based motion capture
systems, body markers, surface electromyography (sEMG), and ultrasonic imaging have
been used primarily to predict full body joint angles and motion. Joint angles are often
measured in a laboratory setting [7–12], providing a highly accurate system with limited
mobility. IMU-based systems [13–15] and sEMG [16–23] systems allow for high accuracy
with reasonable portability. However, these systems may require complex calibration
procedures and are difficult to use in daily life [24,25].

To increase mobility and maintain accuracy for daily use, simpler and practical sensor
systems are required [26,27]. Research into completely mobile systems have demonstrated
the feasibility of achieving both high accuracy and mobility in the same system. Shoe-based
sensor systems present a discrete and accurate solution capable of tracking gait patterns to
measure joint angles [15,26–33]. In our previous study, a force-sensing resistor (FSR)-based
plantar pressure sensor system (P2S2) was developed to predict the ankle angles [27].

Table 1. Literature review of joint angle detection methods.

Author Joint Angle Sensor Angle
Measured Mobility Accuracy RMSE

Jahanandish et al. [7] Lower body Ultrasonic
imaging 3-D Low 100% N/A

Pang et al. [16] Lower Body sEMG 3D Medium 90% N/A

Coker et al. [17] Knee sEMG 3D Medium N/A 0.7

Shi et al. [18] Lower body sEMG 3D Medium N/A 2.0

Dey et al. [9] Knee Body markers 3D High 99.5% N/A

Dey et al. [8] Knee Body markers 3D High N/A 0.97

Sy et al. [14] Lower body IMU 3D High N/A 5.93

Zhu et al. [26] Elbow Resistive fibers 3D Medium N/A N/A

Little et al. [23] Elbow sEMG 3D High N/A N/A

Davarzani et al. [33] Robotic joint Capacitive plate 3D Low N/A 3.63

Choffin et al. [27] Ankle FSR 3D High 93% N/A

When a human body interacts with the ground, it creates a force known as the ground
reaction force. This is a variable force that depends upon the weight and position of the
person. This force is distributed from the foot into the ankle and follows up the rest of
the body. When in contact, the position of the foot relative to the ground influences the
distribution of pressure throughout the body. The sensor system designed for this study
uses six FSR sensors that were placed at common pressure points.

Prediction of the joint angles along the kinematic chain of the lower body can be
accomplished by applying the principles of inverse dynamics presented by Winter [5]. In
this paper, we present a proof of concept of predicting the two-dimensional angles of the
ankle, knee, hip, and at L5S1 in the sagittal plane using a machine learning algorithm
and biomechanical inverse dynamics. Abduction and adduction are tracked consistently
between the Xsens motion capture system and the FSR to expand on this proof of concept,
while rotation about the joints is not addressed.

This system proposes an accurate, wearable mobile platform, which is a relatively
comfortable, non-invasive, cost-effective, and affordable alternative to real-time monitoring
of lower body joint angles.
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2. Materials and Methods
2.1. Footwear Sensor

The common pressure points were determined according to previous studies [34–36],
and our separate internal test was conducted with 40 participants wearing shoe sizes
ranging from size 3 to 15. Two sensors are placed below the talus of the foot, three sensors
are placed along the heads of the metatarsals, and the last sensor is placed on the first
distal phalanges. The sensors are placed under the insole and are difficult to feel for the
wearer. While this is still a prototype and further development is needed, the insoles are
relatively comfortable to wear. When an FSR experiences a mechanical stress perpendicular
to the sensor plane, the resistance changes, following a predictable logarithmic curve. This
variance was used to estimate the force applied to an individual sensor. The resistance of
the sensor varies between 30 k Ω and 10 MΩ, depending on the force applied. The FSR
sensors were designed and manufactured by Tekscan [37].

This sensor system is combined with a commercially available microcontroller equipped
with an added Bluetooth Low-Energy Module (Adafruit Feather M0 Bluefruit LE [38]) and
an SPI-controlled SD card reader [39]. Figure 1 shows a circuit schematic of the proposed
footwear sensor system. The microcontroller used on the Feather M0 is an ATSAMD21G18
ARM Cortex processor. This features a clock frequency of 48 MHz and 3.3 V logic. The
ARM processor features 356 KB of flash memory and 32 KB of RAM. Using the six channel
10-bit analog-to-digital converter (ADC) connected to each FSR, the analog voltages can
be converted to digital values to represent each sensor’s resistance. The Bluetooth LE was
realized using the nRF51822 chipset from Nordic. A communication script was written in
the Arduino IDE to communicate with the controller via a Universal Asynchronous Receiver
Transmitter (UART) connection scheme. This implementation saves pressure-sensing data
to the SD card for post-data processing. A smartphone is used in combination with the
Bluetooth LE chip to control the starting and stopping of tests remotely. Then, 10 KΩ
resistors are used in a pull-down configuration to ground as a reference. The insole itself
uses a flexible substrate composed of cellulose acetate. The wires used are 23 American
Wire Gauge (AWG) solid copper wires, which provide a flexible yet stable connection. An
additional layer of cellulose acetate was used to protect the wires and FSRs from shear
forces that can develop from the shoe’s insole. The data of the insole sensors are recorded
at 50 Hz, then stored on the SD card in real time. The data are then used in post-processing
and feature extraction to predict lower body angles.
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To examine the greatest number of participants possible for our study, two shoes of
different sizes were developed. The shoe sizes used were based upon a cross-reference
study [40], which reported the most common US shoe sizes as 10.5 for males and 8.5 for
females. The complete insole systems inside the shoes are displayed in Figures 2 and 3. The
wires were fed through a slot cut into the shoe and directly attached to the PCB adhered to
the side of the shoe.
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shoes assembled for testing.

2.2. Reference Data Collection System

Reference data of human joint angles are collected using the Xsens motion capture
system [41]. Seventeen IMUs are attached to the participant at the manufacturer’s recom-
mended locations and secured with the appropriate Velcro straps. Calibration of the system
is completed with the participant standing with their feet together and looking forward
with their hands down to their side (i.e., n pose). The participant then walks forward and
returns to the starting position. Following walking calibration, the model is applied to
the participant and all movement is verified with the visualization feature of the Xsens
software program. The orientations of the IMU devices were recorded in the proprietary
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software and transferred as an MVNX file for processing in the Visual 3D ver. 2021x64
software package as three-dimensional (3D) angles [42].

While it is known that accuracy of the IMU system is questionable for abduction/
adduction (y-axis), the movements of flexion and extension (x-axis) have been found
to be relatively accurate [42,43]. For this proof-of-concept study, the Xsens system was
deemed adequate [44–46] by the research team to demonstrate the sensors’ ability to track
movements consistently. To further improve accuracy of this project, validation using skin
markers and an optical camera system will be conducted in the future.

2.3. Experimental Procedure

Squatting is a movement commonly used to lift objects in a work environment [47]. The
squatting motion in this study was performed using a standardized squatting position [48].
The squatting position of this study required the subject to enter a shallow squat that
descended no lower than parallel to the ground. After reaching the bottom of the squat, the
subject would rise and hold a standing position for a moment. Then, they would complete
the motion with a heel raise. This motion was repeated a total of 10 times per participant.
Example data of the squat movement and its accompanying sensor readout are shown in
Figure 4. As the participant raises their heels and the back of the shoe lifts off the ground,
S1 and S2 fall to zero. S3 to S6 rise as the weight shifts to the front of the shoe, then followed
the heels hitting the ground. S1 and S2 both report a significant rise in pressure that then is
reduced as the subject enters into a squat. When the subject returns to a standing position,
S1 and S2 fall, and then proceed to rise. This signals the end of the squat motion. At the
beginning and end of each motion, a heel raise is performed. Body movement manipulation
has proven to be effective at synchronization of independent systems [49,50]. To account
for Bluetooth interference, motion data containing a sampling rate beyond a 50 Hz ± 2 Hz
margin are removed from the dataset.

This study is authorized by the Institutional Review Board (IRB NO. 20−02−3356−A)
at The University of Alabama. In total, 37 participants including 26 females and 11 males
were recruited for the study from the college of nursing and engineering. In total, 26 of the
participants wore a size 8.5 shoe, and they were 1.66 ± 0.049 m in height, 64.3 ± 8.12 kg,
and 21.2 ± 1.79 years in age. The other 13 participants wore a size 10.5 shoe with height
1.80 ± 0.054 m, mass 73.5 ± 8.39 kg, and age 21.4 ± 1.15 years. The sanitized data of all
participants who contributed to the study are displayed in Table 2.

Table 2. Participant information.

Subject Age Sex Height (m) Weight (kg) Shoe Size

1 21 Female 1.6 54 8.5
2 21 Female 1.63 84 8.5
3 21 Female 1.7 59 10.5
4 21 Female 1.7 61 8.5
5 21 Male 1.8 82 10.5
6 21 Female 1.75 77 10.5
7 21 Female 1.73 57 8.5
8 21 Female 1.63 75 8.5
9 21 Male 1.85 77 10.5
10 20 Female 1.7 63 8.5
11 24 Male 1.78 84 10.5
12 21 Male 1.8 77 10.5
13 20 Female 1.7 77 8.5
14 29 Female 1.6 66 8.5
15 23 Male 1.78 79 10.5
16 21 Male 1.85 68 10.5
17 21 Female 1.63 68 8.5
18 23 Female 1.65 70 8.5
19 19 Male 1.85 61 10.5
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Table 2. Cont.

Subject Age Sex Height (m) Weight (kg) Shoe Size

20 21 Male 1.73 73 10.5
21 22 Female 1.73 68 8.5
22 22 Male 1.8 66 10.5
23 22 Female 1.63 75 8.5
24 21 Female 1.78 61 8.5
25 20 Female 1.68 59 8.5
26 21 Female 1.68 63 8.5
27 20 Female 1.68 66 8.5
28 21 Female 1.65 63 8.5
29 22 Male 1.91 86 10.5
30 20 Female 1.57 51 8.5
31 21 Female 1.68 63 8.5
32 21 Male 1.83 66 10.5
33 21 Female 1.68 68 8.5
34 20 Female 1.57 52 8.5
35 20 Female 1.65 52 8.5
36 20 Female 1.68 60 8.5
37 21 Female 1.63 68 8.5
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The testing location selected was The University of Alabama’s Capstone College of
Nursing. Upon arrival, informed consent was obtained from all participants, screening
for COVID-19 exposure was conducted by a registered nurse, and secondary screening for
inclusion was performed by a member of the research team. Participants were included
if they wore shoe sizes of 10.5 or 8.5 and did not have existing musculoskeletal problems
of the lower extremities. Following consent and screening procedures, participants were
fitted with the Xsens motion capture system and the FSR system. Participants were then
asked to complete fourteen movements, one of which was squatting. Collection time for
the study ranged from 45 min to 1 h for each participant.

3. Machine Learning to Predict Lower Extremity Angles

Data gathered during the study contains a level of randomness and nonlinearity due
to the inconsistency of human subject movements. To overcome the human factor, this
study employs a supervised non-parametric Bayesian regression learner, GPR, for better
prediction of human joint angles. Human data do not present isotropic behavior; when
humans step the pressure may be the same, but movements differ. In the proof-of-concept
nature of the research, a more computationally expensive algorithm is utilized. Given a
GPR’s ability to use probability in calculations, this improves the model’s ability to predict
joint angles. Probability allows for the algorithm to determine lower body joint angles
when similar patterns are present. Figure 5 shows the general process diagram of the GPR’s
function. The exponential GPR is chosen based on MATLAB’s regression learning classifier.
MATLAB is beneficial for the creation of machine learning algorithms, as it allows for rapid
design and testing. The GPR creates a collection of finite number time variables. In the
GPR function, data are fed through at each sample containing α number of features. The
features pass through the Gaussian field parameters and estimate the output based on the
features in f. The results of each element are summed together in the form of the output b.
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angles.

All participants’ squat data are gathered and post-processed to extract features. The
feature set changed for each joint angle model; Figure 6 displays the flow chart of feature
design. The features used in the ankle angle prediction model are the six FSR sensor
outputs. Using the bottom-up approach of inverse dynamics, plantar pressure sensor data
can be transformed into lower body joint angles. In other words, the knee joint prediction
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included the initial six FSR sensors’ data and the predicted ankle angle in each axis of
movement. The hip angle follows the same procedure, but also includes the predicted
ankle and knee angles. In L5S1 calculation, the feature set includes FSR sensors’ data and
ankle, knee, and hip angles in each axis.
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The data of 33 participants are used to train the GPR model. The data of four partic-
ipants are completely isolated to validate the machine learning model. A 10-fold cross-
validation is used to train the model and detect instances of overfitting. This results in a
total of 57,480 points used in the training and validation of the model. Further, 4920 data
points are used for testing of the model between four participants. Each test result’s RMSE
is then calculated based on the model-predicted data.

RMSE =

√√√√ n

∑
i=1

(ŷi − yi)
2

n
, (1)

where ŷi is predicted value of the model, yi is the ground truth value from Xsens, and
n is the sample size of the data. The equation outputs the average distance between the
predicted linear regression lines from a line of best fit.

4. Results

The L5S1 joint angle was first predicted by only using the first six insoles to determine
if inverse dynamics were necessary for joint angle detection without the L5S1 joint angle.
For this testing, Participant 25 was removed from the model’s training set. The participant
was selected randomly to reduce researcher bias on data. When tested with purely six
sensors, the models produced an RMSE of 5.61 and showed a poor correlation to the L5S1
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joint. This demonstrates the need to alter the testing approach to include more robust
features.

Figure 7 displays the result of a comparison between the predicted and measured joint
angles. Participant 31’s 10th squat and participant 16’s 4th squat were randomly chosen
to visualize the predicted joint angles. Figure 7a displays the left ankle in both the X and
Y−axes over the duration of the movement. This movement versus the Xsens angle had an
RMSE of 1.133◦ in the X−axis and 1.09◦ in the Y−axis for participant 31; participant 16 had
an RSME of 2.2711◦ for the X−axis and 1.20◦ for the Y−axis. The right ankle angles are
shown below in Figure 7b. This model encountered difficulty in processing the first section
of the squat but tracked well after the first 3 s of the movement. The RMSE of these graphs
was 0.639◦ for the X−axis and 1.13◦ for the Y−axis for participant 31; participant 16 had
an RSME of 2.37◦ for the X−axis and 0.96◦ for the Y−axis. With the ankle angle models
done, the predicted results of the model were placed into the squat data for the next knee
angle prediction. Figure 7c displays the results of the model compared to the measured
knee angle provided by the Xsens. This model achieved an RMSE of 0.81◦ on the X−axis
and 3.77◦ on the Y−axis for participant 31; participant 16 had an RSME of 4.12◦ for the
X−axis and 0.75◦ for the Y−axis. Figure 7d displays the predicted right knee angle over
the duration of the squat versus the actual Xsens angle in X and Y-axes. The right knee had
an RMSE of 3.29◦ on the X−axis and 0.99◦ on the Y−axis for participant 31; participant 16
had a RSME of 4.51◦ for the X−axis and 0.81◦ for the Y−axis.
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Figure 7. Joint angle detection in the X and Y axes from the ankle to the L5S1 joint, which is located
above the pelvis for participants 31 and 16. (a) Left ankle angle actual vs. predicted in the X−axis and
the Y−axis. (b) Right ankle angle actual vs. predicted in the X−axis and the Y−axis. (c) Left knee
angle actual vs. predicted in the X−axis and the Y−axis. (d) Right knee angle actual vs. predicted
in the X-axis and the Y-axis. (e) Left hip angle actual vs. predicted in the X−axis and the Y−axis.
(f) Right hip angle actual vs. predicted in the X−axis and the Y−axis. (g) L5S1 angle actual vs.
predicted in the X−axis and the Y−axis.

These data were added to the squat for hip angle prediction, including the ankle
prediction and FSR sensors’ outputs. Figure 7e shows the predicted hip angle plotted
against the measured angle. The RMSE was 1.41◦ for the X−axis and 0.78◦ for the Y−axis
for participant 31; participant 16 had an RSME of 3.61◦ for the X−axis and 0.73◦ for the
Y−axis. Figure 7f displays an RMSE of 2.93◦ for the X−axis and 0.51◦ for the Y−axis for
participant 31; participant 16 had an RSME of 3.54◦ for the X−axis and 0.79◦ for the Y−axis.
Lastly, the L5S1 was predicted using a combination of all previous predicted angles and
pressure sensor data. Figure 7g displays the L5S1 joint in the X and Y−axis. The RMSE of
the X− and Y-axes was 0.21◦ and 0.22◦, respectively, for participant 31; participant 16 had
an RSME of 0.54◦ for the X-axis and 0.93◦ for the Y-axis.

Figure 7 presents high correlation between the Xsens motion capture system and the
P2S2 prototype with RMSE values ranging from 0.21◦ to 3.29◦ across the X−axis and 0.22◦

to 3.77◦ for the Y−axis. Data were filtered using the MATLAB Signal Analyzer Toolbox,
specifically the smoothing filter with a smoothing factor of 0.2, which increased the overall
accuracy of the joint detection. The effect of the number of subjects on accuracy is shown in
Figure 8. These data were taken from the right foot in the X direction.
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The possibility of the reduction sensor count is examined by activating and deacti-
vating specific sensors during training. Test 1 includes sensors 2 and 5, which measure
linear movement along the flexor digitorum brevis portion of the foot. Test 2 includes
sensors 3, 4, 5, and 6 and represents two-dimensional movement excluding the plantar
aponeurosis. Test 3 includes sensors 1, 3, 4, and 6, providing linear movement without
the flexor digitorum brevis portion of the foot. Test 4 includes sensors 1 and 2 combined,
which simulates a linear motion along the plantar aponeurosis. Test 5 utilizes all sensors
except sensor 4 and represents motion from the second dorsal interosseous muscle. Test
6 utilizes all six sensors, showing two-dimensional movement in the mid foot and heel
portion of the foot. The testing of each model was conducted on the same squatting motion
of participant 25. Table 3 displays a summary of tests completed and their respective RMSE
values.

Table 3. Number of FSR sensors and their effect on RMSE.

Test Sensors On Sensors Off Total Sensors L5S1 RMSE

1 S2, S5 S1, S3, S4, S6 4 3.21
2 S3, S4, S5, S6 S1, S2 8 2.30
3 S1, S3, S4, S6 S2, S5 8 2.15

4 S1 and S2
combined None 10 1.83

5 S1, S2, S3, S5, S6 S4 10 0.95

6 S1, S2, S3, S4, S5,
S6 None 12 0.30

5. Discussion

The proposed footwear-based pressure system with six FSRs was presented to predict
the lower body angles from the ankle to the L5S1. This sensor system and the application
of inverse dynamics could predict participants’ lower body joint angles with high accuracy
relative to the Xsens motion capture system when performing the squat movement. While
it is known that the accuracy of the IMU-based system for the abduction and adduction
movements of the lower extremities is questionable during dynamic movements [42,43], the
capability of the P2S2 to track movements consistent to the commercially available system
was the purpose for this proof-of-concept study. The research team used the IMU system
to identify the orientation of body segments to build a model within a second software
package, Visual 3D, to ensure consistent data processing [42]. However, the rotation of the
joints was out of the scope of the current study.

This study initially looked at participants between 19 and 39 years old, but more
diverse ages would like to be studied. Although the P2S2 provides high correlation with
the commercially available motion-capture system, the P2S2 does present some drawbacks.
It cannot predict the angle of hip and L5S1 when one or both feet are off the ground, such
in walking or running movements, due to the lack of a ground reaction force required for
calculations. This limitation does not allow for the system to predict any angles during the
swing phase of the gait cycle for the swing leg. IMU sensors placed with the P2S2 could
improve joint angle tracking during a gait cycle.

Furthermore, our future study would like to look at additional movements to examine
the capability of the system. This study used GPR to predict lower body joint angles;
in the future, various machine-learning algorithms will be tested to explore potential
improvement for a less computationally expensive but accurate model. Instead of Bluetooth
for wireless data collection, Wi-Fi can be used to accommodate more participants in the test
due to higher capacity of wireless connectivity and facilitate data transfer from a worker to
healthcare provider.

In the current configuration of the P2S2 system, it has a total weight of 71 g, with 46 g
on the outside of the shoe and 25 g inside the shoe. For the future, an all-in-one system is
being developed to allow for the placement of all necessary electrical components below
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the insole. This design will decrease the weight of the system and increase its adaptability
to the shoe industry. Additional shoe sizes will be developed to further generalize the
machine learning model.

Using the proposed method, workers will have greater access to health-related biome-
chanical data, which may decrease the likelihood of workplace injuries. By measuring more
complex movements, a customized shoe-based sensor system will be able to improve foot
work of athletes in training.
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